first commit

This commit is contained in:
valeh
2020-12-22 14:30:09 +02:00
commit 26b0ba5954
1832 changed files with 17777948 additions and 0 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 39 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 109 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 51 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 49 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 17 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 31 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 31 KiB

View File

@@ -0,0 +1,24 @@
001: plain as7
002: create a new gcc c executable project, enter a useful name and solution name
003: select your target device
004: as7 will generate a main.c file. Replace the content of the generated main.c with
the content of https://github.com/olikraus/u8g2/blob/master/sys/avr/atmega328/main.c
005: open the project Properties (Alt+F7)
006: Add Existing item...
007: Mark and add all files of the u8g2/csrc directory, press "add"
008: Select the project, locate Toolchain tab, select "All Configurations", select AVR/GNU C Compiler/Directories and press the green plus icon
Add ".." as relative include path
009: Select the project, locate Toolchain tab, select "All Configurations", select AVR/GNU C Compiler/Symbols and press the green plus icon
Add the target frequency of your controller (here: "F_CPU=8000000")
010: Press F7 (Build->Build Solution)
011: On my own Windows 10 environment, it was required to install a different usb driver for the AVRISP mkII
012: Open the Device Programming dialog (Tools menu)
013:
Select your ISP tool in under "Tool". Select the correct target device and interface. Press "Apply" button.
Read the device signature from your target controller by pressing the "Read" button.
Goto "Production file" tab and select the generated .elf file as a "production file"
014: Check "Flash" and press the "Program" button.

View File

@@ -0,0 +1,186 @@
/*
main.c
AVR Test Project
This project will use 4-Wire SW SPI
Universal 8bit Graphics Library (https://github.com/olikraus/u8g2/)
Copyright (c) 2018, olikraus@gmail.com
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or other
materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <avr/io.h>
#include <u8g2.h>
#include <util/delay.h>
#define DISPLAY_CLK_DIR DDRB
#define DISPLAY_CLK_PORT PORTB
#define DISPLAY_CLK_PIN 5
#define DISPLAY_DATA_DIR DDRB
#define DISPLAY_DATA_PORT PORTB
#define DISPLAY_DATA_PIN 3
#define DISPLAY_CS_DIR DDRB
#define DISPLAY_CS_PORT PORTB
#define DISPLAY_CS_PIN 2
#define DISPLAY_DC_DIR DDRB
#define DISPLAY_DC_PORT PORTB
#define DISPLAY_DC_PIN 1
#define DISPLAY_RESET_DIR DDRB
#define DISPLAY_RESET_PORT PORTB
#define DISPLAY_RESET_PIN 0
#define P_CPU_NS (1000000000UL / F_CPU)
u8g2_t u8g2;
uint8_t u8x8_avr_delay(u8x8_t *u8x8, uint8_t msg, uint8_t arg_int, void *arg_ptr)
{
uint8_t cycles;
switch(msg)
{
case U8X8_MSG_DELAY_NANO: // delay arg_int * 1 nano second
// At 20Mhz, each cycle is 50ns, the call itself is slower.
break;
case U8X8_MSG_DELAY_100NANO: // delay arg_int * 100 nano seconds
// Approximate best case values...
#define CALL_CYCLES 26UL
#define CALC_CYCLES 4UL
#define RETURN_CYCLES 4UL
#define CYCLES_PER_LOOP 4UL
cycles = (100UL * arg_int) / (P_CPU_NS * CYCLES_PER_LOOP);
if(cycles > CALL_CYCLES + RETURN_CYCLES + CALC_CYCLES)
break;
__asm__ __volatile__ (
"1: sbiw %0,1" "\n\t" // 2 cycles
"brne 1b" : "=w" (cycles) : "0" (cycles) // 2 cycles
);
break;
case U8X8_MSG_DELAY_10MICRO: // delay arg_int * 10 micro seconds
for(int i=0 ; i < arg_int ; i++)
_delay_us(10);
break;
case U8X8_MSG_DELAY_MILLI: // delay arg_int * 1 milli second
for(int i=0 ; i < arg_int ; i++)
_delay_ms(1);
break;
default:
return 0;
}
return 1;
}
uint8_t u8x8_avr_gpio_and_delay(u8x8_t *u8x8, uint8_t msg, uint8_t arg_int, void *arg_ptr)
{
// Re-use library for delays
switch(msg)
{
case U8X8_MSG_GPIO_AND_DELAY_INIT: // called once during init phase of u8g2/u8x8
DISPLAY_CLK_DIR |= 1<<DISPLAY_CLK_PIN;
DISPLAY_DATA_DIR |= 1<<DISPLAY_DATA_PIN;
DISPLAY_CS_DIR |= 1<<DISPLAY_CS_PIN;
DISPLAY_DC_DIR |= 1<<DISPLAY_DC_PIN;
DISPLAY_RESET_DIR |= 1<<DISPLAY_RESET_PIN;
break; // can be used to setup pins
case U8X8_MSG_GPIO_SPI_CLOCK: // Clock pin: Output level in arg_int
if(arg_int)
DISPLAY_CLK_PORT |= (1<<DISPLAY_CLK_PIN);
else
DISPLAY_CLK_PORT &= ~(1<<DISPLAY_CLK_PIN);
break;
case U8X8_MSG_GPIO_SPI_DATA: // MOSI pin: Output level in arg_int
if(arg_int)
DISPLAY_DATA_PORT |= (1<<DISPLAY_DATA_PIN);
else
DISPLAY_DATA_PORT &= ~(1<<DISPLAY_DATA_PIN);
break;
case U8X8_MSG_GPIO_CS: // CS (chip select) pin: Output level in arg_int
if(arg_int)
DISPLAY_CS_PORT |= (1<<DISPLAY_CS_PIN);
else
DISPLAY_CS_PORT &= ~(1<<DISPLAY_CS_PIN);
break;
case U8X8_MSG_GPIO_DC: // DC (data/cmd, A0, register select) pin: Output level in arg_int
if(arg_int)
DISPLAY_DC_PORT |= (1<<DISPLAY_DC_PIN);
else
DISPLAY_DC_PORT &= ~(1<<DISPLAY_DC_PIN);
break;
case U8X8_MSG_GPIO_RESET: // Reset pin: Output level in arg_int
if(arg_int)
DISPLAY_RESET_PORT |= (1<<DISPLAY_RESET_PIN);
else
DISPLAY_RESET_PORT &= ~(1<<DISPLAY_RESET_PIN);
break;
default:
if (u8x8_avr_delay(u8x8, msg, arg_int, arg_ptr)) // check for any delay msgs
return 1;
u8x8_SetGPIOResult(u8x8, 1); // default return value
break;
}
return 1;
}
int main(void)
{
/*
Select a setup procedure for your display from here: https://github.com/olikraus/u8g2/wiki/u8g2setupc
1. Arg: Address of an empty u8g2 structure
2. Arg: Usually U8G2_R0, others are listed here: https://github.com/olikraus/u8g2/wiki/u8g2reference#carduino-example
3. Arg: Protocol procedure (u8g2-byte), list is here: https://github.com/olikraus/u8g2/wiki/Porting-to-new-MCU-platform#communication-callback-eg-u8x8_byte_hw_i2c
4. Arg: Defined in this code itself (see above)
*/
u8g2_Setup_st7565_ea_dogm132_f( &u8g2, U8G2_R0, u8x8_byte_4wire_sw_spi, u8x8_avr_gpio_and_delay );
u8g2_InitDisplay(&u8g2);
u8g2_SetPowerSave(&u8g2, 0);
/* full buffer example, setup procedure ends in _f */
u8g2_ClearBuffer(&u8g2);
u8g2_SetFont(&u8g2, u8g2_font_ncenB14_tr);
u8g2_DrawStr(&u8g2, 1, 18, "U8g2 on AVR");
u8g2_SendBuffer(&u8g2);
while(1){
}
}

View File

@@ -0,0 +1,14 @@
This directory contains code that can be shared across all AVR uC, when developing with https://www.nongnu.org/avr-libc/.
Please refer to https://github.com/olikraus/u8g2/wiki/Porting-to-new-MCU-platform to understand what is here.
At lib/u8x8_avr.h, you can find:
u8x8_byte_avr_hw_spi
Implements HW SPI communication. To use it, you're required to define SCK and MOSI ports externally (see example Makefiles).
u8x8_avr_delay
Implements the delay functions that are required by the GPIO and Delay callback function.
This means, you have to write little code to support your own project.
Please refer to the existing main.c and Makefile examples for details on how to use it.

View File

@@ -0,0 +1,45 @@
CC = avr-gcc
OBJCPY = avr-objcopy
SIZE = avr-size
MCU = at90usb1286
F_CPU = 16000000
U8G2_SRC = ../../../../csrc
CFLAGS = \
-mmcu=$(MCU) \
-DF_CPU=$(F_CPU)UL \
-Os \
-std=gnu99 \
-Werror \
-ffunction-sections \
-fdata-sections \
-I$(U8G2_SRC)/ \
-I../lib/ \
-DAVR_USE_HW_SPI \
-DSCK_DDR=DDRB \
-DSCK_BIT=1 \
-DMOSI_DDR=DDRB \
-DMOSI_BIT=2
LDFLAGS = \
-Wl,--gc-sections \
-mmcu=$(MCU)
TEENSY_LOADER = teensy_loader_cli
SRC = $(shell ls $(U8G2_SRC)/*.c) $(shell ls ../lib/*.c) $(shell ls ./*.c)
OBJ = $(SRC:.c=.o)
main.hex: main.elf
$(OBJCPY) -O ihex -R .eeprom -R .fuse -R .lock -R .signature main.elf main.hex
main.elf: $(OBJ)
$(CC) $(CFLAGS) $(LDFLAGS) $(OBJ) -o $@
size: main.elf
$(SIZE) --mcu=$(MCU) --format=avr main.elf
clean:
rm -f $(OBJ) main.elf main.hex
# Example for Teensy 2.0++
upload: main.hex
$(TEENSY_LOADER) -mmcu=$(MCU) -w -v main.hex

View File

@@ -0,0 +1,78 @@
#include <u8g2.h>
#include <util/delay.h>
#include <u8x8_avr.h>
#include <avr/power.h>
#define CS_DDR DDRB
#define CS_PORT PORTB
#define CS_BIT 0
#define DC_DDR DDRB
#define DC_PORT PORTB
#define DC_BIT 4
#define RESET_DDR DDRA
#define RESET_PORT PORTA
#define RESET_BIT 7
u8g2_t u8g2;
uint8_t
u8x8_gpio_and_delay (u8x8_t * u8x8, uint8_t msg, uint8_t arg_int, void *arg_ptr) {
// Re-use library for delays
if (u8x8_avr_delay(u8x8, msg, arg_int, arg_ptr))
return 1;
switch (msg) {
// called once during init phase of u8g2/u8x8
// can be used to setup pins
case U8X8_MSG_GPIO_AND_DELAY_INIT:
CS_DDR |= _BV(CS_BIT);
DC_DDR |= _BV(DC_BIT);
RESET_DDR |= _BV(RESET_BIT);
break;
// CS (chip select) pin: Output level in arg_int
case U8X8_MSG_GPIO_CS:
if (arg_int)
CS_PORT |= _BV(CS_BIT);
else
CS_PORT &= ~_BV(CS_BIT);
break;
// DC (data/cmd, A0, register select) pin: Output level in arg_int
case U8X8_MSG_GPIO_DC:
if (arg_int)
DC_PORT |= _BV(DC_BIT);
else
DC_PORT &= ~_BV(DC_BIT);
break;
// Reset pin: Output level in arg_int
case U8X8_MSG_GPIO_RESET:
if (arg_int)
RESET_PORT |= _BV(RESET_BIT);
else
RESET_PORT &= ~_BV(RESET_BIT);
break;
default:
u8x8_SetGPIOResult(u8x8, 1);
break;
}
return 1;
}
int main (void) {
u8g2_Setup_sh1106_128x64_vcomh0_f(
&u8g2, U8G2_R0,
u8x8_byte_avr_hw_spi,
u8x8_gpio_and_delay
);
u8g2_InitDisplay(&u8g2);
u8g2_SetPowerSave(&u8g2, 0);
while (1) {
u8g2_ClearBuffer(&u8g2);
u8g2_SetFont(&u8g2, u8g2_font_ncenB14_tr);
u8g2_DrawStr(&u8g2, 0, 15, "Hello!");
u8g2_SendBuffer(&u8g2);
}
}

View File

@@ -0,0 +1,42 @@
CC = avr-gcc
OBJCPY = avr-objcopy
SIZE = avr-size
MCU = atmega328p
F_CPU = 16000000
U8G2_SRC = ../../../../csrc
CFLAGS = \
-mmcu=$(MCU) \
-DF_CPU=$(F_CPU)UL \
-Os \
-std=gnu99 \
-Werror \
-ffunction-sections \
-fdata-sections \
-I$(U8G2_SRC)/ \
-I../lib/ \
-DAVR_USE_HW_I2C
LDFLAGS = \
-Wl,--gc-sections \
-mmcu=$(MCU)
AVRDUDE=avrdude
PORT=/dev/serial/by-id/usb-FTDI_FT232R_USB_UART_A4008fhY-if00-port0
SRC = $(shell ls $(U8G2_SRC)/*.c) $(shell ls ../lib/*.c) $(shell ls ../lib/avr-hw-i2c/*.c) $(shell ls ./*.c)
OBJ = $(SRC:.c=.o)
main.hex: main.elf
$(OBJCPY) -O ihex -R .eeprom -R .fuse -R .lock -R .signature main.elf main.hex
main.elf: $(OBJ)
$(CC) $(CFLAGS) $(LDFLAGS) $(OBJ) -o $@
size: main.elf
$(SIZE) --mcu=$(MCU) --format=avr main.elf
clean:
rm -f $(OBJ) main.elf main.hex
# Example for Arduino Duemilanove
upload: main.hex
$(AVRDUDE) -p$(MCU) -carduino -P$(PORT) -b57600 -D -Uflash:w:main.hex:i

Binary file not shown.

After

Width:  |  Height:  |  Size: 708 KiB

View File

@@ -0,0 +1,27 @@
#include <avr/io.h>
#include <util/delay.h>
#include <u8g2.h>
#include <u8x8_avr.h>
#define SSD1306_ADDR 0x78
u8g2_t u8g2;
int main (void)
{
u8g2_Setup_ssd1306_i2c_128x32_univision_f(&u8g2, U8G2_R0, u8x8_byte_avr_hw_i2c, u8x8_avr_delay);
u8g2_SetI2CAddress(&u8g2, SSD1306_ADDR);
u8g2_InitDisplay(&u8g2);
u8g2_SetPowerSave(&u8g2, 0);
while(1){
u8g2_ClearBuffer(&u8g2);
u8g2_SetFont(&u8g2, u8g2_font_smart_patrol_nbp_tr);
u8g2_SetFontRefHeightText(&u8g2);
u8g2_SetFontPosTop(&u8g2);
u8g2_DrawStr(&u8g2, 0, 0, "u8g2 AVR HW I2C");
u8g2_SendBuffer(&u8g2);
}
}

View File

@@ -0,0 +1,46 @@
CC = avr-gcc
OBJCPY = avr-objcopy
SIZE = avr-size
MCU = atmega328p
F_CPU = 16000000
U8G2_SRC = ../../../../csrc
CFLAGS = \
-mmcu=$(MCU) \
-DF_CPU=$(F_CPU)UL \
-Os \
-std=gnu99 \
-Werror \
-ffunction-sections \
-fdata-sections \
-I$(U8G2_SRC)/ \
-I../lib/ \
-DAVR_USE_HW_SPI \
-DSCK_DDR=DDRB \
-DSCK_BIT=5 \
-DMOSI_DDR=DDRB \
-DMOSI_BIT=3
LDFLAGS = \
-Wl,--gc-sections \
-mmcu=$(MCU)
AVRDUDE=avrdude
PORT=/dev/serial/by-id/usb-FTDI_FT232R_USB_UART_A4008fhY-if00-port0
SRC = $(shell ls $(U8G2_SRC)/*.c) $(shell ls ../lib/*.c) $(shell ls ./*.c)
OBJ = $(SRC:.c=.o)
main.hex: main.elf
$(OBJCPY) -O ihex -R .eeprom -R .fuse -R .lock -R .signature main.elf main.hex
main.elf: $(OBJ)
$(CC) $(CFLAGS) $(LDFLAGS) $(OBJ) -o $@
size: main.elf
$(SIZE) --mcu=$(MCU) --format=avr main.elf
clean:
rm -f $(OBJ) main.elf main.hex
# Example for Arduino Duemilanove
upload: main.hex
$(AVRDUDE) -p$(MCU) -carduino -P$(PORT) -b57600 -D -Uflash:w:main.hex:i

View File

@@ -0,0 +1,78 @@
#include <u8g2.h>
#include <util/delay.h>
#include <u8x8_avr.h>
#include <avr/power.h>
#define CS_DDR DDRB
#define CS_PORT PORTB
#define CS_BIT 2
#define DC_DDR DDRB
#define DC_PORT PORTB
#define DC_BIT 1
#define RESET_DDR DDRB
#define RESET_PORT PORTB
#define RESET_BIT 0
u8g2_t u8g2;
uint8_t
u8x8_gpio_and_delay (u8x8_t * u8x8, uint8_t msg, uint8_t arg_int, void *arg_ptr) {
// Re-use library for delays
if (u8x8_avr_delay(u8x8, msg, arg_int, arg_ptr))
return 1;
switch (msg) {
// called once during init phase of u8g2/u8x8
// can be used to setup pins
case U8X8_MSG_GPIO_AND_DELAY_INIT:
CS_DDR |= _BV(CS_BIT);
DC_DDR |= _BV(DC_BIT);
RESET_DDR |= _BV(RESET_BIT);
break;
// CS (chip select) pin: Output level in arg_int
case U8X8_MSG_GPIO_CS:
if (arg_int)
CS_PORT |= _BV(CS_BIT);
else
CS_PORT &= ~_BV(CS_BIT);
break;
// DC (data/cmd, A0, register select) pin: Output level in arg_int
case U8X8_MSG_GPIO_DC:
if (arg_int)
DC_PORT |= _BV(DC_BIT);
else
DC_PORT &= ~_BV(DC_BIT);
break;
// Reset pin: Output level in arg_int
case U8X8_MSG_GPIO_RESET:
if (arg_int)
RESET_PORT |= _BV(RESET_BIT);
else
RESET_PORT &= ~_BV(RESET_BIT);
break;
default:
u8x8_SetGPIOResult(u8x8, 1);
break;
}
return 1;
}
int main (void) {
u8g2_Setup_sh1106_128x64_noname_f(
&u8g2, U8G2_R0,
u8x8_byte_avr_hw_spi,
u8x8_gpio_and_delay
);
u8g2_InitDisplay(&u8g2);
u8g2_SetPowerSave(&u8g2, 0);
while (1) {
u8g2_ClearBuffer(&u8g2);
u8g2_SetFont(&u8g2, u8g2_font_ncenB14_tr);
u8g2_DrawStr(&u8g2, 0, 15, "Hello!");
u8g2_SendBuffer(&u8g2);
}
}

View File

@@ -0,0 +1,178 @@
#ifndef _I2CMASTER_H
#define _I2CMASTER_H 1
/*************************************************************************
* Title: C include file for the I2C master interface
* (i2cmaster.S or twimaster.c)
* Author: Peter Fleury <pfleury@gmx.ch> http://jump.to/fleury
* File: $Id: i2cmaster.h,v 1.10 2005/03/06 22:39:57 Peter Exp $
* Software: AVR-GCC 3.4.3 / avr-libc 1.2.3
* Target: any AVR device
* Usage: see Doxygen manual
**************************************************************************/
#ifdef DOXYGEN
/**
@defgroup pfleury_ic2master I2C Master library
@code #include <i2cmaster.h> @endcode
@brief I2C (TWI) Master Software Library
Basic routines for communicating with I2C slave devices. This single master
implementation is limited to one bus master on the I2C bus.
This I2c library is implemented as a compact assembler software implementation of the I2C protocol
which runs on any AVR (i2cmaster.S) and as a TWI hardware interface for all AVR with built-in TWI hardware (twimaster.c).
Since the API for these two implementations is exactly the same, an application can be linked either against the
software I2C implementation or the hardware I2C implementation.
Use 4.7k pull-up resistor on the SDA and SCL pin.
Adapt the SCL and SDA port and pin definitions and eventually the delay routine in the module
i2cmaster.S to your target when using the software I2C implementation !
Adjust the CPU clock frequence F_CPU in twimaster.c or in the Makfile when using the TWI hardware implementaion.
@note
The module i2cmaster.S is based on the Atmel Application Note AVR300, corrected and adapted
to GNU assembler and AVR-GCC C call interface.
Replaced the incorrect quarter period delays found in AVR300 with
half period delays.
@author Peter Fleury pfleury@gmx.ch http://jump.to/fleury
@par API Usage Example
The following code shows typical usage of this library, see example test_i2cmaster.c
@code
#include <i2cmaster.h>
#define Dev24C02 0xA2 // device address of EEPROM 24C02, see datasheet
int main(void)
{
unsigned char ret;
i2c_init(); // initialize I2C library
// write 0x75 to EEPROM address 5 (Byte Write)
i2c_start_wait(Dev24C02+I2C_WRITE); // set device address and write mode
i2c_write(0x05); // write address = 5
i2c_write(0x75); // write value 0x75 to EEPROM
i2c_stop(); // set stop conditon = release bus
// read previously written value back from EEPROM address 5
i2c_start_wait(Dev24C02+I2C_WRITE); // set device address and write mode
i2c_write(0x05); // write address = 5
i2c_rep_start(Dev24C02+I2C_READ); // set device address and read mode
ret = i2c_readNak(); // read one byte from EEPROM
i2c_stop();
for(;;);
}
@endcode
*/
#endif /* DOXYGEN */
/**@{*/
#if (__GNUC__ * 100 + __GNUC_MINOR__) < 304
#error "This library requires AVR-GCC 3.4 or later, update to newer AVR-GCC compiler !"
#endif
#include <avr/io.h>
/** defines the data direction (reading from I2C device) in i2c_start(),i2c_rep_start() */
#define I2C_READ 1
/** defines the data direction (writing to I2C device) in i2c_start(),i2c_rep_start() */
#define I2C_WRITE 0
/**
@brief initialize the I2C master interace. Need to be called only once
@param void
@return none
*/
extern void i2c_init(void);
/**
@brief Terminates the data transfer and releases the I2C bus
@param void
@return none
*/
extern void i2c_stop(void);
/**
@brief Issues a start condition and sends address and transfer direction
@param addr address and transfer direction of I2C device
@retval 0 device accessible
@retval 1 failed to access device
*/
extern unsigned char i2c_start(unsigned char addr);
/**
@brief Issues a repeated start condition and sends address and transfer direction
@param addr address and transfer direction of I2C device
@retval 0 device accessible
@retval 1 failed to access device
*/
extern unsigned char i2c_rep_start(unsigned char addr);
/**
@brief Issues a start condition and sends address and transfer direction
If device is busy, use ack polling to wait until device ready
@param addr address and transfer direction of I2C device
@return none
*/
extern void i2c_start_wait(unsigned char addr);
/**
@brief Send one byte to I2C device
@param data byte to be transfered
@retval 0 write successful
@retval 1 write failed
*/
extern unsigned char i2c_write(unsigned char data);
/**
@brief read one byte from the I2C device, request more data from device
@return byte read from I2C device
*/
extern unsigned char i2c_readAck(void);
/**
@brief read one byte from the I2C device, read is followed by a stop condition
@return byte read from I2C device
*/
extern unsigned char i2c_readNak(void);
/**
@brief read one byte from the I2C device
Implemented as a macro, which calls either i2c_readAck or i2c_readNak
@param ack 1 send ack, request more data from device<br>
0 send nak, read is followed by a stop condition
@return byte read from I2C device
*/
extern unsigned char i2c_read(unsigned char ack);
#define i2c_read(ack) (ack) ? i2c_readAck() : i2c_readNak();
/**@}*/
#endif

View File

@@ -0,0 +1,236 @@
/*
* modified version of I2C master library
* added a timeout variable for non blocking i2c
*/
/*************************************************************************
* Title: I2C master library using hardware TWI interface
* Author: Peter Fleury <pfleury@gmx.ch> http://jump.to/fleury
* File: $Id: twimaster.c,v 1.3 2005/07/02 11:14:21 Peter Exp $
* Software: AVR-GCC 3.4.3 / avr-libc 1.2.3
* Target: any AVR device with hardware TWI
* Usage: API compatible with I2C Software Library i2cmaster.h
**************************************************************************/
#include <avr-hw-i2c/i2cmaster.h>
#include <inttypes.h>
#include <compat/twi.h>
/* define CPU frequency in Mhz here if not defined in Makefile */
#ifndef F_CPU
#define F_CPU 4000000UL
#endif
/* I2C clock in Hz */
#define SCL_CLOCK 100000L
/* I2C timer max delay */
#define I2C_TIMER_DELAY 0xFF
/*************************************************************************
Initialization of the I2C bus interface. Need to be called only once
*************************************************************************/
void i2c_init(void)
{
/* initialize TWI clock: 100 kHz clock, TWPS = 0 => prescaler = 1 */
TWSR = 0; /* no prescaler */
TWBR = ((F_CPU/SCL_CLOCK)-16)/2; /* must be > 10 for stable operation */
}/* i2c_init */
/*************************************************************************
Issues a start condition and sends address and transfer direction.
return 0 = device accessible, 1= failed to access device
*************************************************************************/
unsigned char i2c_start(unsigned char address)
{
uint32_t i2c_timer = 0;
uint8_t twst;
// send START condition
TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN);
// wait until transmission completed
i2c_timer = I2C_TIMER_DELAY;
while(!(TWCR & (1<<TWINT)) && i2c_timer--);
if(i2c_timer == 0)
return 1;
// check value of TWI Status Register. Mask prescaler bits.
twst = TW_STATUS & 0xF8;
if ( (twst != TW_START) && (twst != TW_REP_START)) return 1;
// send device address
TWDR = address;
TWCR = (1<<TWINT) | (1<<TWEN);
// wail until transmission completed and ACK/NACK has been received
i2c_timer = I2C_TIMER_DELAY;
while(!(TWCR & (1<<TWINT)) && i2c_timer--);
if(i2c_timer == 0)
return 1;
// check value of TWI Status Register. Mask prescaler bits.
twst = TW_STATUS & 0xF8;
if ( (twst != TW_MT_SLA_ACK) && (twst != TW_MR_SLA_ACK) ) return 1;
return 0;
}/* i2c_start */
/*************************************************************************
Issues a start condition and sends address and transfer direction.
If device is busy, use ack polling to wait until device is ready
Input: address and transfer direction of I2C device
*************************************************************************/
void i2c_start_wait(unsigned char address)
{
uint32_t i2c_timer = 0;
uint8_t twst;
while ( 1 )
{
// send START condition
TWCR = (1<<TWINT) | (1<<TWSTA) | (1<<TWEN);
// wait until transmission completed
i2c_timer = I2C_TIMER_DELAY;
while(!(TWCR & (1<<TWINT)) && i2c_timer--);
// check value of TWI Status Register. Mask prescaler bits.
twst = TW_STATUS & 0xF8;
if ( (twst != TW_START) && (twst != TW_REP_START)) continue;
// send device address
TWDR = address;
TWCR = (1<<TWINT) | (1<<TWEN);
// wail until transmission completed
i2c_timer = I2C_TIMER_DELAY;
while(!(TWCR & (1<<TWINT)) && i2c_timer--);
// check value of TWI Status Register. Mask prescaler bits.
twst = TW_STATUS & 0xF8;
if ( (twst == TW_MT_SLA_NACK )||(twst ==TW_MR_DATA_NACK) )
{
/* device busy, send stop condition to terminate write operation */
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
// wait until stop condition is executed and bus released
i2c_timer = I2C_TIMER_DELAY;
while((TWCR & (1<<TWSTO)) && i2c_timer--);
continue;
}
//if( twst != TW_MT_SLA_ACK) return 1;
break;
}
}/* i2c_start_wait */
/*************************************************************************
Issues a repeated start condition and sends address and transfer direction
Input: address and transfer direction of I2C device
Return: 0 device accessible
1 failed to access device
*************************************************************************/
unsigned char i2c_rep_start(unsigned char address)
{
return i2c_start( address );
}/* i2c_rep_start */
/*************************************************************************
Terminates the data transfer and releases the I2C bus
*************************************************************************/
void i2c_stop(void)
{
uint32_t i2c_timer = 0;
/* send stop condition */
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
// wait until stop condition is executed and bus released
i2c_timer = I2C_TIMER_DELAY;
while((TWCR & (1<<TWSTO)) && i2c_timer--);
}/* i2c_stop */
/*************************************************************************
Send one byte to I2C device
Input: byte to be transfered
Return: 0 write successful
1 write failed
*************************************************************************/
unsigned char i2c_write( unsigned char data )
{
uint32_t i2c_timer = 0;
uint8_t twst;
// send data to the previously addressed device
TWDR = data;
TWCR = (1<<TWINT) | (1<<TWEN);
// wait until transmission completed
i2c_timer = I2C_TIMER_DELAY;
while(!(TWCR & (1<<TWINT)) && i2c_timer--);
if(i2c_timer == 0)
return 1;
// check value of TWI Status Register. Mask prescaler bits
twst = TW_STATUS & 0xF8;
if( twst != TW_MT_DATA_ACK) return 1;
return 0;
}/* i2c_write */
/*************************************************************************
Read one byte from the I2C device, request more data from device
Return: byte read from I2C device
*************************************************************************/
unsigned char i2c_readAck(void)
{
uint32_t i2c_timer = 0;
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWEA);
i2c_timer = I2C_TIMER_DELAY;
while(!(TWCR & (1<<TWINT)) && i2c_timer--);
if(i2c_timer == 0)
return 0;
return TWDR;
}/* i2c_readAck */
/*************************************************************************
Read one byte from the I2C device, read is followed by a stop condition
Return: byte read from I2C device
*************************************************************************/
unsigned char i2c_readNak(void)
{
uint32_t i2c_timer = 0;
TWCR = (1<<TWINT) | (1<<TWEN);
i2c_timer = I2C_TIMER_DELAY;
while(!(TWCR & (1<<TWINT)) && i2c_timer--);
if(i2c_timer == 0)
return 0;
return TWDR;
}/* i2c_readNak */

View File

@@ -0,0 +1,177 @@
#include <util/delay.h>
#include "u8x8_avr.h"
#ifdef AVR_USE_HW_I2C
#include <avr-hw-i2c/i2cmaster.h>
#endif
#ifdef AVR_USE_HW_SPI
#ifndef SCK_DDR
#error "SCK_DDR must be defined externally, eg: -DSCK_DDR=DDRB, for atmega328p."
#endif
#ifndef SCK_BIT
#error "SCK_BIT must be defined externally, eg: -DSCK_BIT=5, for atmega328p."
#endif
#ifndef MOSI_DDR
#error "MOSI_DDR must be defined externally, eg: -DMOSI_DDR=DDRB, for atmega328p."
#endif
#ifndef MOSI_BIT
#error "MOSI_BIT must be defined externally, eg: -DMOSI_BIT=3, for atmega328p."
#endif
#endif
#define P_CPU_NS (1000000000UL / F_CPU)
#ifdef AVR_USE_HW_SPI
uint8_t u8x8_byte_avr_hw_spi (u8x8_t * u8x8, uint8_t msg, uint8_t arg_int, void *arg_ptr) {
uint8_t *data;
switch (msg) {
case U8X8_MSG_BYTE_INIT:
SCK_DDR |= _BV (SCK_BIT);
MOSI_DDR |= _BV (MOSI_BIT);
SPCR = (_BV (SPE) | _BV (MSTR));
switch (u8x8->display_info->spi_mode) {
case 0:
break;
case 1:
SPCR |= _BV (CPHA);
break;
case 2:
SPCR |= _BV (CPOL);
break;
case 3:
SPCR |= _BV (CPOL);
SPCR |= _BV (CPHA);
break;
};
switch (F_CPU / u8x8->display_info->sck_clock_hz) {
case 2:
SPSR |= _BV (SPI2X);
break;
case 4:
break;
case 8:
SPSR |= _BV (SPI2X);
SPCR |= _BV (SPR0);
break;
case 16:
SPCR |= _BV (SPR0);
break;
case 32:
SPSR |= _BV (SPI2X);
SPCR |= _BV (SPR1);
break;
case 64:
SPCR |= _BV (SPR1);
break;
case 128:
SPCR |= _BV (SPR1);
SPCR |= _BV (SPR0);
break;
}
u8x8_gpio_SetCS(u8x8, u8x8->display_info->chip_disable_level);
break;
case U8X8_MSG_BYTE_SET_DC:
u8x8_gpio_SetDC(u8x8, arg_int);
break;
case U8X8_MSG_BYTE_START_TRANSFER:
u8x8_gpio_SetCS(u8x8, u8x8->display_info->chip_enable_level);
u8x8->gpio_and_delay_cb(u8x8, U8X8_MSG_DELAY_NANO, u8x8->display_info->post_chip_enable_wait_ns, NULL);
break;
case U8X8_MSG_BYTE_SEND:
data = (uint8_t *) arg_ptr;
while (arg_int > 0) {
SPDR = (uint8_t) * data;
while (!(SPSR & _BV (SPIF)));
data++;
arg_int--;
}
break;
case U8X8_MSG_BYTE_END_TRANSFER:
u8x8->gpio_and_delay_cb(u8x8, U8X8_MSG_DELAY_NANO, u8x8->display_info->pre_chip_disable_wait_ns, NULL);
u8x8_gpio_SetCS(u8x8, u8x8->display_info->chip_disable_level);
break;
default:
return 0;
}
return 1;
}
#endif
#ifdef AVR_USE_HW_I2C
uint8_t u8x8_byte_avr_hw_i2c(u8x8_t *u8x8, uint8_t msg, uint8_t arg_int, void *arg_ptr)
{
uint8_t *data;
switch(msg){
case U8X8_MSG_BYTE_SEND:
data = (uint8_t *)arg_ptr;
while( arg_int-- )
i2c_write(*data++);
break;
case U8X8_MSG_BYTE_INIT:
i2c_init();
break;
case U8X8_MSG_BYTE_SET_DC:
/* ignored for i2c */
break;
case U8X8_MSG_BYTE_START_TRANSFER:
i2c_start_wait(u8x8_GetI2CAddress(u8x8)+I2C_WRITE);
break;
case U8X8_MSG_BYTE_END_TRANSFER:
i2c_stop();
break;
default:
return 0;
}
return 1;
}
#endif
uint8_t u8x8_avr_delay (u8x8_t * u8x8, uint8_t msg, uint8_t arg_int, void *arg_ptr) {
uint8_t cycles;
switch(msg) {
case U8X8_MSG_DELAY_NANO: // delay arg_int * 1 nano second
// At 20Mhz, each cycle is 50ns, the call itself is slower.
break;
case U8X8_MSG_DELAY_100NANO: // delay arg_int * 100 nano seconds
// Approximate best case values...
#define CALL_CYCLES 26UL
#define CALC_CYCLES 4UL
#define RETURN_CYCLES 4UL
#define CYCLES_PER_LOOP 4UL
cycles = (100UL * arg_int) / (P_CPU_NS * CYCLES_PER_LOOP);
if (cycles > CALL_CYCLES + RETURN_CYCLES + CALC_CYCLES)
break;
__asm__ __volatile__ (
"1: sbiw %0,1" "\n\t" // 2 cycles
"brne 1b":"=w" (cycles):"0" (cycles) // 2 cycles
);
break;
case U8X8_MSG_DELAY_10MICRO: // delay arg_int * 10 micro seconds
while( arg_int-- ) _delay_us(10);
break;
case U8X8_MSG_DELAY_MILLI: // delay arg_int * 1 milli second
while( arg_int-- ) _delay_ms(1);
break;
default:
return 0;
}
return 1;
}

View File

@@ -0,0 +1,11 @@
#ifndef U8X8_AVR_H_
#define U8X8_AVR_H_
#include <u8g2.h>
#include <stdint.h>
uint8_t u8x8_byte_avr_hw_spi(u8x8_t * u8x8, uint8_t msg, uint8_t arg_int, void *arg_ptr);
uint8_t u8x8_byte_avr_hw_i2c(u8x8_t *u8x8, uint8_t msg, uint8_t arg_int, void *arg_ptr);
uint8_t u8x8_avr_delay(u8x8_t * u8x8, uint8_t msg, uint8_t arg_int, void *arg_ptr);
#endif /* U8X8_AVR_H_ */