/* STM32L031 Eval Board: I2C Test */ #include "stm32l031xx.h" #include "delay.h" #include "u8x8.h" /*=======================================================================*/ /* external functions */ uint8_t u8x8_gpio_and_delay_stm32l0(u8x8_t *u8x8, uint8_t msg, uint8_t arg_int, void *arg_ptr); /*=======================================================================*/ /* global variables */ u8x8_t u8x8; // u8x8 object uint8_t u8x8_x, u8x8_y; // current position on the screen volatile unsigned long SysTickCount = 0; /*=======================================================================*/ void __attribute__ ((interrupt, used)) SysTick_Handler(void) { SysTickCount++; } void setHSIClock() { /* test if the current clock source is something else than HSI */ if ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_HSI) { /* enable HSI */ RCC->CR |= RCC_CR_HSION; /* wait until HSI becomes ready */ while ( (RCC->CR & RCC_CR_HSIRDY) == 0 ) ; /* enable the HSI "divide by 4" bit */ RCC->CR |= (uint32_t)(RCC_CR_HSIDIVEN); /* wait until the "divide by 4" flag is enabled */ while((RCC->CR & RCC_CR_HSIDIVF) == 0) ; /* then use the HSI clock */ RCC->CFGR = (RCC->CFGR & (uint32_t) (~RCC_CFGR_SW)) | RCC_CFGR_SW_HSI; /* wait until HSI clock is used */ while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_HSI) ; } /* disable PLL */ RCC->CR &= (uint32_t)(~RCC_CR_PLLON); /* wait until PLL is inactive */ while((RCC->CR & RCC_CR_PLLRDY) != 0) ; /* set latency to 1 wait state */ FLASH->ACR |= FLASH_ACR_LATENCY; /* At this point the HSI runs with 4 MHz */ /* Multiply by 16 device by 2 --> 32 MHz */ RCC->CFGR = (RCC->CFGR & (~(RCC_CFGR_PLLMUL| RCC_CFGR_PLLDIV ))) | (RCC_CFGR_PLLMUL16 | RCC_CFGR_PLLDIV2); /* enable PLL */ RCC->CR |= RCC_CR_PLLON; /* wait until the PLL is ready */ while ((RCC->CR & RCC_CR_PLLRDY) == 0) ; /* use the PLL has clock source */ RCC->CFGR |= (uint32_t) (RCC_CFGR_SW_PLL); /* wait until the PLL source is active */ while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_PLL) ; } /* Enable several power regions: PWR, GPIOA This must be executed after each reset. */ void startUp(void) { RCC->IOPENR |= RCC_IOPENR_IOPAEN; /* Enable clock for GPIO Port A */ RCC->APB1ENR |= RCC_APB1ENR_PWREN; /* enable power interface (PWR) */ PWR->CR |= PWR_CR_DBP; /* activate write access to RCC->CSR and RTC */ SysTick->LOAD = (SystemCoreClock/1000)*50 - 1; /* 50ms task */ SysTick->VAL = 0; SysTick->CTRL = 7; /* enable, generate interrupt (SysTick_Handler), do not divide by 2 */ } /*=======================================================================*/ /* u8x8 display procedures */ void initDisplay(void) { u8x8_Setup(&u8x8, u8x8_d_ssd1306_128x64_noname, u8x8_cad_ssd13xx_i2c, u8x8_byte_sw_i2c, u8x8_gpio_and_delay_stm32l0); u8x8_InitDisplay(&u8x8); u8x8_ClearDisplay(&u8x8); u8x8_SetPowerSave(&u8x8, 0); u8x8_SetFont(&u8x8, u8x8_font_amstrad_cpc_extended_r); u8x8_x = 0; u8x8_y = 0; } void outChar(uint8_t c) { if ( u8x8_x >= u8x8_GetCols(&u8x8) ) { u8x8_x = 0; u8x8_y++; } u8x8_DrawGlyph(&u8x8, u8x8_x, u8x8_y, c); u8x8_x++; } void outStr(const char *s) { while( *s ) outChar(*s++); } void outHexHalfByte(uint8_t b) { b &= 0x0f; if ( b < 10 ) outChar(b+'0'); else outChar(b+'a'-10); } void outHex8(uint8_t b) { outHexHalfByte(b >> 4); outHexHalfByte(b); } void outHex16(uint16_t v) { outHex8(v>>8); outHex8(v); } void outHex32(uint32_t v) { outHex16(v>>16); outHex16(v); } void setRow(uint8_t r) { u8x8_x = 0; u8x8_y = r; } /*==============================================*/ volatile unsigned char i2c_mem[256]; /* contains data, which read or written */ volatile unsigned char i2c_idx; /* the current index into i2c_mem */ volatile unsigned char i2c_is_write_idx; /* write state */ volatile uint16_t i2c_total_irq_cnt; volatile uint16_t i2c_TXIS_cnt; volatile uint16_t i2c_RXNE_cnt; void i2c_mem_reset_write(void) { i2c_is_write_idx = 1; } void i2c_mem_init(void) { i2c_idx = 0; i2c_mem_reset_write(); } void i2c_mem_set_index(unsigned char value) { i2c_idx = value; i2c_is_write_idx = 0; } void i2c_mem_write_via_index(unsigned char value) { i2c_mem[i2c_idx++] = value; } unsigned char i2c_mem_read(void) { i2c_mem_reset_write(); i2c_idx++; return i2c_mem[i2c_idx]; } void i2c_mem_write(unsigned char value) { if ( i2c_is_write_idx != 0 ) { i2c_mem_set_index(value); } else { i2c_is_write_idx = 0; i2c_mem_write_via_index(value); } } /* address: I2C address multiplied by 2 */ /* Pins PA9 (SCL) and PA10 (SDA) */ void i2c_hw_init(unsigned char address) { RCC->APB1ENR |= RCC_APB1ENR_I2C1EN; /* Enable clock for I2C */ RCC->IOPENR |= RCC_IOPENR_IOPAEN; /* Enable clock for GPIO Port A */ __NOP(); /* extra delay for clock stabilization required? */ __NOP(); /* configure io */ GPIOA->MODER &= ~GPIO_MODER_MODE9; /* clear mode for PA9 */ GPIOA->MODER |= GPIO_MODER_MODE9_1; /* alt fn */ GPIOA->OTYPER |= GPIO_OTYPER_OT_9; /* open drain */ GPIOA->AFR[1] &= ~(15<<4); /* Clear Alternate Function PA9 */ GPIOA->AFR[1] |= 1<<4; /* I2C Alternate Function PA9 */ GPIOA->MODER &= ~GPIO_MODER_MODE10; /* clear mode for PA10 */ GPIOA->MODER |= GPIO_MODER_MODE10_1; /* alt fn */ GPIOA->OTYPER |= GPIO_OTYPER_OT_10; /* open drain */ GPIOA->AFR[1] &= ~(15<<8); /* Clear Alternate Function PA10 */ GPIOA->AFR[1] |= 1<<8; /* I2C Alternate Function PA10 */ RCC->CCIPR &= ~RCC_CCIPR_I2C1SEL; /* write 00 to the I2C clk selection register */ RCC->CCIPR |= RCC_CCIPR_I2C1SEL_0; /* select system clock (01) */ /* I2C init flow chart: Clear PE bit */ I2C1->CR1 &= ~I2C_CR1_PE; /* I2C init flow chart: Configure filter */ /* leave at defaults */ /* I2C init flow chart: Configure timing */ /* standard mode 100kHz configuration SYSCLK = I2CCLK = 32 MHz PRESC = 6 bits 28..31 SCLL = 0x13 bits 0..7 SCLH = 0x0f bits 8..15 SDADEL = 0x02 bits 16..19 SCLDEL = 0x04 bits 20..23 */ I2C1->TIMINGR = 0x60420f13; /* I2C init flow chart: Configure NOSTRECH */ I2C1->CR1 |= I2C_CR1_NOSTRETCH; /* I2C init flow chart: Enable I2C */ I2C1->CR1 |= I2C_CR1_PE; /* disable OAR1 for reconfiguration */ I2C1->OAR1 &= ~I2C_OAR1_OA1EN; I2C1->OAR1 = address; I2C1->OAR1 |= I2C_OAR1_OA1EN; /* enable interrupts */ I2C1->CR1 |= I2C_CR1_STOPIE; I2C1->CR1 |= I2C_CR1_NACKIE; //I2C1->CR1 |= I2C_CR1_ADDRIE; I2C1->CR1 |= I2C_CR1_RXIE; I2C1->CR1 |= I2C_CR1_TXIE; /* load first value into TXDR register */ I2C1->TXDR = i2c_mem[i2c_idx]; /* enable IRQ in NVIC */ NVIC_SetPriority(I2C1_IRQn, 0); NVIC_EnableIRQ(I2C1_IRQn); } void i2c_init() { i2c_mem_init(); i2c_hw_init(7*2); } void __attribute__ ((interrupt, used)) I2C1_IRQHandler(void) { unsigned long isr = I2C1->ISR; i2c_total_irq_cnt ++; if ( isr & I2C_ISR_TXIS ) { i2c_TXIS_cnt++; I2C1->TXDR = i2c_mem_read(); } else if ( isr & I2C_ISR_RXNE ) { i2c_RXNE_cnt++; i2c_mem_write(I2C1->RXDR); I2C1->ISR |= I2C_ISR_TXE; // allow overwriting the TCDR with new data I2C1->TXDR = i2c_mem[i2c_idx]; } else if ( isr & I2C_ISR_STOPF ) { I2C1->ICR = I2C_ICR_STOPCF; I2C1->ISR |= I2C_ISR_TXE; // allow overwriting the TCDR with new data I2C1->TXDR = i2c_mem[i2c_idx]; i2c_mem_reset_write(); } else if ( isr & I2C_ISR_NACKF ) { I2C1->ICR = I2C_ICR_NACKCF; I2C1->ISR |= I2C_ISR_TXE; // allow overwriting the TCDR with new data I2C1->TXDR = i2c_mem[i2c_idx]; i2c_mem_reset_write(); } else if ( isr & I2C_ISR_ADDR ) { /* not required, the addr match interrupt is not enabled */ I2C1->ICR = I2C_ICR_ADDRCF; I2C1->ISR |= I2C_ISR_TXE; // allow overwriting the TCDR with new data I2C1->TXDR = i2c_mem[i2c_idx]; i2c_mem_reset_write(); } /* if at any time the addr match is set, clear the flag */ /* not sure, whether this is required */ if ( isr & I2C_ISR_ADDR ) { I2C1->ICR = I2C_ICR_ADDRCF; } } /*==============================================*/ int main() { setHSIClock(); startUp(); initDisplay(); /* aktivate display */ i2c_init(); __enable_irq(); setRow(0); outStr("Hello World!"); for(;;) { setRow(2); outHex32(SysTickCount); setRow(3); outHex16(i2c_total_irq_cnt); setRow(4); outHex16(i2c_TXIS_cnt); outStr(" "); outHex16(i2c_RXNE_cnt); setRow(5); outStr("I2C_ISR:"); outHex32(I2C1->ISR); setRow(6); outStr("idx: "); outHex8(i2c_idx); setRow(7); outHex8(i2c_mem[0]); outStr(" "); outHex8(i2c_mem[1]); outStr(" "); outHex8(i2c_mem[2]); } }