PersonalVotingMachine/basic-setup/components/u8g2/sys/arm/stm32l031x6/i2c_test/main.c
2020-12-22 14:30:09 +02:00

389 lines
9.0 KiB
C

/* STM32L031 Eval Board: I2C Test */
#include "stm32l031xx.h"
#include "delay.h"
#include "u8x8.h"
/*=======================================================================*/
/* external functions */
uint8_t u8x8_gpio_and_delay_stm32l0(u8x8_t *u8x8, uint8_t msg, uint8_t arg_int, void *arg_ptr);
/*=======================================================================*/
/* global variables */
u8x8_t u8x8; // u8x8 object
uint8_t u8x8_x, u8x8_y; // current position on the screen
volatile unsigned long SysTickCount = 0;
/*=======================================================================*/
void __attribute__ ((interrupt, used)) SysTick_Handler(void)
{
SysTickCount++;
}
void setHSIClock()
{
/* test if the current clock source is something else than HSI */
if ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_HSI)
{
/* enable HSI */
RCC->CR |= RCC_CR_HSION;
/* wait until HSI becomes ready */
while ( (RCC->CR & RCC_CR_HSIRDY) == 0 )
;
/* enable the HSI "divide by 4" bit */
RCC->CR |= (uint32_t)(RCC_CR_HSIDIVEN);
/* wait until the "divide by 4" flag is enabled */
while((RCC->CR & RCC_CR_HSIDIVF) == 0)
;
/* then use the HSI clock */
RCC->CFGR = (RCC->CFGR & (uint32_t) (~RCC_CFGR_SW)) | RCC_CFGR_SW_HSI;
/* wait until HSI clock is used */
while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_HSI)
;
}
/* disable PLL */
RCC->CR &= (uint32_t)(~RCC_CR_PLLON);
/* wait until PLL is inactive */
while((RCC->CR & RCC_CR_PLLRDY) != 0)
;
/* set latency to 1 wait state */
FLASH->ACR |= FLASH_ACR_LATENCY;
/* At this point the HSI runs with 4 MHz */
/* Multiply by 16 device by 2 --> 32 MHz */
RCC->CFGR = (RCC->CFGR & (~(RCC_CFGR_PLLMUL| RCC_CFGR_PLLDIV ))) | (RCC_CFGR_PLLMUL16 | RCC_CFGR_PLLDIV2);
/* enable PLL */
RCC->CR |= RCC_CR_PLLON;
/* wait until the PLL is ready */
while ((RCC->CR & RCC_CR_PLLRDY) == 0)
;
/* use the PLL has clock source */
RCC->CFGR |= (uint32_t) (RCC_CFGR_SW_PLL);
/* wait until the PLL source is active */
while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_PLL)
;
}
/*
Enable several power regions: PWR, GPIOA
This must be executed after each reset.
*/
void startUp(void)
{
RCC->IOPENR |= RCC_IOPENR_IOPAEN; /* Enable clock for GPIO Port A */
RCC->APB1ENR |= RCC_APB1ENR_PWREN; /* enable power interface (PWR) */
PWR->CR |= PWR_CR_DBP; /* activate write access to RCC->CSR and RTC */
SysTick->LOAD = (SystemCoreClock/1000)*50 - 1; /* 50ms task */
SysTick->VAL = 0;
SysTick->CTRL = 7; /* enable, generate interrupt (SysTick_Handler), do not divide by 2 */
}
/*=======================================================================*/
/* u8x8 display procedures */
void initDisplay(void)
{
u8x8_Setup(&u8x8, u8x8_d_ssd1306_128x64_noname, u8x8_cad_ssd13xx_i2c, u8x8_byte_sw_i2c, u8x8_gpio_and_delay_stm32l0);
u8x8_InitDisplay(&u8x8);
u8x8_ClearDisplay(&u8x8);
u8x8_SetPowerSave(&u8x8, 0);
u8x8_SetFont(&u8x8, u8x8_font_amstrad_cpc_extended_r);
u8x8_x = 0;
u8x8_y = 0;
}
void outChar(uint8_t c)
{
if ( u8x8_x >= u8x8_GetCols(&u8x8) )
{
u8x8_x = 0;
u8x8_y++;
}
u8x8_DrawGlyph(&u8x8, u8x8_x, u8x8_y, c);
u8x8_x++;
}
void outStr(const char *s)
{
while( *s )
outChar(*s++);
}
void outHexHalfByte(uint8_t b)
{
b &= 0x0f;
if ( b < 10 )
outChar(b+'0');
else
outChar(b+'a'-10);
}
void outHex8(uint8_t b)
{
outHexHalfByte(b >> 4);
outHexHalfByte(b);
}
void outHex16(uint16_t v)
{
outHex8(v>>8);
outHex8(v);
}
void outHex32(uint32_t v)
{
outHex16(v>>16);
outHex16(v);
}
void setRow(uint8_t r)
{
u8x8_x = 0;
u8x8_y = r;
}
/*==============================================*/
volatile unsigned char i2c_mem[256]; /* contains data, which read or written */
volatile unsigned char i2c_idx; /* the current index into i2c_mem */
volatile unsigned char i2c_is_write_idx; /* write state */
volatile uint16_t i2c_total_irq_cnt;
volatile uint16_t i2c_TXIS_cnt;
volatile uint16_t i2c_RXNE_cnt;
void i2c_mem_reset_write(void)
{
i2c_is_write_idx = 1;
}
void i2c_mem_init(void)
{
i2c_idx = 0;
i2c_mem_reset_write();
}
void i2c_mem_set_index(unsigned char value)
{
i2c_idx = value;
i2c_is_write_idx = 0;
}
void i2c_mem_write_via_index(unsigned char value)
{
i2c_mem[i2c_idx++] = value;
}
unsigned char i2c_mem_read(void)
{
i2c_mem_reset_write();
i2c_idx++;
return i2c_mem[i2c_idx];
}
void i2c_mem_write(unsigned char value)
{
if ( i2c_is_write_idx != 0 )
{
i2c_mem_set_index(value);
}
else
{
i2c_is_write_idx = 0;
i2c_mem_write_via_index(value);
}
}
/* address: I2C address multiplied by 2 */
/* Pins PA9 (SCL) and PA10 (SDA) */
void i2c_hw_init(unsigned char address)
{
RCC->APB1ENR |= RCC_APB1ENR_I2C1EN; /* Enable clock for I2C */
RCC->IOPENR |= RCC_IOPENR_IOPAEN; /* Enable clock for GPIO Port A */
__NOP(); /* extra delay for clock stabilization required? */
__NOP();
/* configure io */
GPIOA->MODER &= ~GPIO_MODER_MODE9; /* clear mode for PA9 */
GPIOA->MODER |= GPIO_MODER_MODE9_1; /* alt fn */
GPIOA->OTYPER |= GPIO_OTYPER_OT_9; /* open drain */
GPIOA->AFR[1] &= ~(15<<4); /* Clear Alternate Function PA9 */
GPIOA->AFR[1] |= 1<<4; /* I2C Alternate Function PA9 */
GPIOA->MODER &= ~GPIO_MODER_MODE10; /* clear mode for PA10 */
GPIOA->MODER |= GPIO_MODER_MODE10_1; /* alt fn */
GPIOA->OTYPER |= GPIO_OTYPER_OT_10; /* open drain */
GPIOA->AFR[1] &= ~(15<<8); /* Clear Alternate Function PA10 */
GPIOA->AFR[1] |= 1<<8; /* I2C Alternate Function PA10 */
RCC->CCIPR &= ~RCC_CCIPR_I2C1SEL; /* write 00 to the I2C clk selection register */
RCC->CCIPR |= RCC_CCIPR_I2C1SEL_0; /* select system clock (01) */
/* I2C init flow chart: Clear PE bit */
I2C1->CR1 &= ~I2C_CR1_PE;
/* I2C init flow chart: Configure filter */
/* leave at defaults */
/* I2C init flow chart: Configure timing */
/*
standard mode 100kHz configuration
SYSCLK = I2CCLK = 32 MHz
PRESC = 6 bits 28..31
SCLL = 0x13 bits 0..7
SCLH = 0x0f bits 8..15
SDADEL = 0x02 bits 16..19
SCLDEL = 0x04 bits 20..23
*/
I2C1->TIMINGR = 0x60420f13;
/* I2C init flow chart: Configure NOSTRECH */
I2C1->CR1 |= I2C_CR1_NOSTRETCH;
/* I2C init flow chart: Enable I2C */
I2C1->CR1 |= I2C_CR1_PE;
/* disable OAR1 for reconfiguration */
I2C1->OAR1 &= ~I2C_OAR1_OA1EN;
I2C1->OAR1 = address;
I2C1->OAR1 |= I2C_OAR1_OA1EN;
/* enable interrupts */
I2C1->CR1 |= I2C_CR1_STOPIE;
I2C1->CR1 |= I2C_CR1_NACKIE;
//I2C1->CR1 |= I2C_CR1_ADDRIE;
I2C1->CR1 |= I2C_CR1_RXIE;
I2C1->CR1 |= I2C_CR1_TXIE;
/* load first value into TXDR register */
I2C1->TXDR = i2c_mem[i2c_idx];
/* enable IRQ in NVIC */
NVIC_SetPriority(I2C1_IRQn, 0);
NVIC_EnableIRQ(I2C1_IRQn);
}
void i2c_init()
{
i2c_mem_init();
i2c_hw_init(7*2);
}
void __attribute__ ((interrupt, used)) I2C1_IRQHandler(void)
{
unsigned long isr = I2C1->ISR;
i2c_total_irq_cnt ++;
if ( isr & I2C_ISR_TXIS )
{
i2c_TXIS_cnt++;
I2C1->TXDR = i2c_mem_read();
}
else if ( isr & I2C_ISR_RXNE )
{
i2c_RXNE_cnt++;
i2c_mem_write(I2C1->RXDR);
I2C1->ISR |= I2C_ISR_TXE; // allow overwriting the TCDR with new data
I2C1->TXDR = i2c_mem[i2c_idx];
}
else if ( isr & I2C_ISR_STOPF )
{
I2C1->ICR = I2C_ICR_STOPCF;
I2C1->ISR |= I2C_ISR_TXE; // allow overwriting the TCDR with new data
I2C1->TXDR = i2c_mem[i2c_idx];
i2c_mem_reset_write();
}
else if ( isr & I2C_ISR_NACKF )
{
I2C1->ICR = I2C_ICR_NACKCF;
I2C1->ISR |= I2C_ISR_TXE; // allow overwriting the TCDR with new data
I2C1->TXDR = i2c_mem[i2c_idx];
i2c_mem_reset_write();
}
else if ( isr & I2C_ISR_ADDR )
{
/* not required, the addr match interrupt is not enabled */
I2C1->ICR = I2C_ICR_ADDRCF;
I2C1->ISR |= I2C_ISR_TXE; // allow overwriting the TCDR with new data
I2C1->TXDR = i2c_mem[i2c_idx];
i2c_mem_reset_write();
}
/* if at any time the addr match is set, clear the flag */
/* not sure, whether this is required */
if ( isr & I2C_ISR_ADDR )
{
I2C1->ICR = I2C_ICR_ADDRCF;
}
}
/*==============================================*/
int main()
{
setHSIClock();
startUp();
initDisplay(); /* aktivate display */
i2c_init();
__enable_irq();
setRow(0); outStr("Hello World!");
for(;;)
{
setRow(2); outHex32(SysTickCount);
setRow(3); outHex16(i2c_total_irq_cnt);
setRow(4); outHex16(i2c_TXIS_cnt); outStr(" "); outHex16(i2c_RXNE_cnt);
setRow(5); outStr("I2C_ISR:"); outHex32(I2C1->ISR);
setRow(6); outStr("idx: "); outHex8(i2c_idx);
setRow(7); outHex8(i2c_mem[0]); outStr(" "); outHex8(i2c_mem[1]); outStr(" "); outHex8(i2c_mem[2]);
}
}