PersonalVotingMachine/extended-setup/components/Adafruit_TouchScreen/TouchScreen.cpp
2020-12-22 14:30:09 +02:00

261 lines
5.5 KiB
C++

// Touch screen library with X Y and Z (pressure) readings as well
// as oversampling to avoid 'bouncing'
// (c) ladyada / adafruit
// Code under MIT License
#include "Arduino.h"
#include "pins_arduino.h"
#ifdef __AVR
#include <avr/pgmspace.h>
#elif defined(ESP8266)
#include <pgmspace.h>
#endif
#include "TouchScreen.h"
// increase or decrease the touchscreen oversampling. This is a little different than you make think:
// 1 is no oversampling, whatever data we get is immediately returned
// 2 is double-sampling and we only return valid data if both points are the same
// 3+ uses insert sort to get the median value.
// We found 2 is precise yet not too slow so we suggest sticking with it!
#define NUMSAMPLES 2
TSPoint::TSPoint(void) {
x = y = 0;
}
TSPoint::TSPoint(int16_t x0, int16_t y0, int16_t z0) {
x = x0;
y = y0;
z = z0;
}
bool TSPoint::operator==(TSPoint p1) {
return ((p1.x == x) && (p1.y == y) && (p1.z == z));
}
bool TSPoint::operator!=(TSPoint p1) {
return ((p1.x != x) || (p1.y != y) || (p1.z != z));
}
#if (NUMSAMPLES > 2)
static void insert_sort(int array[], uint8_t size) {
uint8_t j;
int save;
for (int i = 1; i < size; i++) {
save = array[i];
for (j = i; j >= 1 && save < array[j - 1]; j--)
array[j] = array[j - 1];
array[j] = save;
}
}
#endif
TSPoint TouchScreen::getPoint(void) {
int x, y, z;
int samples[NUMSAMPLES];
uint8_t i, valid;
valid = 1;
pinMode(_yp, INPUT);
pinMode(_ym, INPUT);
pinMode(_xp, OUTPUT);
pinMode(_xm, OUTPUT);
#if defined (USE_FAST_PINIO)
*xp_port |= xp_pin;
*xm_port &= ~xm_pin;
#else
digitalWrite(_xp, HIGH);
digitalWrite(_xm, LOW);
#endif
#ifdef __arm__
delayMicroseconds(20); // Fast ARM chips need to allow voltages to settle
#endif
for (i=0; i<NUMSAMPLES; i++) {
samples[i] = analogRead(_yp);
}
#if NUMSAMPLES > 2
insert_sort(samples, NUMSAMPLES);
#endif
#if NUMSAMPLES == 2
// Allow small amount of measurement noise, because capacitive
// coupling to a TFT display's signals can induce some noise.
if (samples[0] - samples[1] < -4 || samples[0] - samples[1] > 4) {
valid = 0;
} else {
samples[1] = (samples[0] + samples[1]) >> 1; // average 2 samples
}
#endif
x = (1023-samples[NUMSAMPLES/2]);
pinMode(_xp, INPUT);
pinMode(_xm, INPUT);
pinMode(_yp, OUTPUT);
pinMode(_ym, OUTPUT);
#if defined (USE_FAST_PINIO)
*ym_port &= ~ym_pin;
*yp_port |= yp_pin;
#else
digitalWrite(_ym, LOW);
digitalWrite(_yp, HIGH);
#endif
#ifdef __arm__
delayMicroseconds(20); // Fast ARM chips need to allow voltages to settle
#endif
for (i=0; i<NUMSAMPLES; i++) {
samples[i] = analogRead(_xm);
}
#if NUMSAMPLES > 2
insert_sort(samples, NUMSAMPLES);
#endif
#if NUMSAMPLES == 2
// Allow small amount of measurement noise, because capacitive
// coupling to a TFT display's signals can induce some noise.
if (samples[0] - samples[1] < -4 || samples[0] - samples[1] > 4) {
valid = 0;
} else {
samples[1] = (samples[0] + samples[1]) >> 1; // average 2 samples
}
#endif
y = (1023-samples[NUMSAMPLES/2]);
// Set X+ to ground
// Set Y- to VCC
// Hi-Z X- and Y+
pinMode(_xp, OUTPUT);
pinMode(_yp, INPUT);
#if defined (USE_FAST_PINIO)
*xp_port &= ~xp_pin;
*ym_port |= ym_pin;
#else
digitalWrite(_xp, LOW);
digitalWrite(_ym, HIGH);
#endif
int z1 = analogRead(_xm);
int z2 = analogRead(_yp);
if (_rxplate != 0) {
// now read the x
float rtouch;
rtouch = z2;
rtouch /= z1;
rtouch -= 1;
rtouch *= x;
rtouch *= _rxplate;
rtouch /= 1024;
z = rtouch;
} else {
z = (1023-(z2-z1));
}
if (! valid) {
z = 0;
}
return TSPoint(x, y, z);
}
TouchScreen::TouchScreen(uint8_t xp, uint8_t yp, uint8_t xm, uint8_t ym,
uint16_t rxplate=0) {
_yp = yp;
_xm = xm;
_ym = ym;
_xp = xp;
_rxplate = rxplate;
#if defined (USE_FAST_PINIO)
xp_port = portOutputRegister(digitalPinToPort(_xp));
yp_port = portOutputRegister(digitalPinToPort(_yp));
xm_port = portOutputRegister(digitalPinToPort(_xm));
ym_port = portOutputRegister(digitalPinToPort(_ym));
xp_pin = digitalPinToBitMask(_xp);
yp_pin = digitalPinToBitMask(_yp);
xm_pin = digitalPinToBitMask(_xm);
ym_pin = digitalPinToBitMask(_ym);
#endif
pressureThreshhold = 10;
}
int TouchScreen::readTouchX(void) {
pinMode(_yp, INPUT);
pinMode(_ym, INPUT);
digitalWrite(_yp, LOW);
digitalWrite(_ym, LOW);
pinMode(_xp, OUTPUT);
digitalWrite(_xp, HIGH);
pinMode(_xm, OUTPUT);
digitalWrite(_xm, LOW);
return (1023-analogRead(_yp));
}
int TouchScreen::readTouchY(void) {
pinMode(_xp, INPUT);
pinMode(_xm, INPUT);
digitalWrite(_xp, LOW);
digitalWrite(_xm, LOW);
pinMode(_yp, OUTPUT);
digitalWrite(_yp, HIGH);
pinMode(_ym, OUTPUT);
digitalWrite(_ym, LOW);
return (1023-analogRead(_xm));
}
uint16_t TouchScreen::pressure(void) {
// Set X+ to ground
pinMode(_xp, OUTPUT);
digitalWrite(_xp, LOW);
// Set Y- to VCC
pinMode(_ym, OUTPUT);
digitalWrite(_ym, HIGH);
// Hi-Z X- and Y+
digitalWrite(_xm, LOW);
pinMode(_xm, INPUT);
digitalWrite(_yp, LOW);
pinMode(_yp, INPUT);
int z1 = analogRead(_xm);
int z2 = analogRead(_yp);
if (_rxplate != 0) {
// now read the x
float rtouch;
rtouch = z2;
rtouch /= z1;
rtouch -= 1;
rtouch *= readTouchX();
rtouch *= _rxplate;
rtouch /= 1024;
return rtouch;
} else {
return (1023-(z2-z1));
}
}