// // Created by Andrew on 01/06/2023. // #include "header.h" char pCharset[] = "BCDFGHJKMPQRTVWXY2346789"; void unpackServer( DWORD (&pRaw)[4], DWORD &pChannelID, DWORD &pHash, DWORD (&pSignature)[2], DWORD &pAuthInfo ) { // We're assuming that the quantity of information within the product key is at most 114 bits. // log2(24^25) = 114. // OS Family = Bits [0..10] -> 11 bits pChannelID = pRaw[0] & 0x7ff; // Hash = Bits [11..41] -> 31 bits pHash = ((pRaw[0] >> 11) | (pRaw[1] << 21)) & 0x7fffffff; // Signature = Bits [42..103] -> 62 bits pSignature[0] = (pRaw[1] >> 10) | (pRaw[2] << 22); pSignature[1] = ((pRaw[2] >> 10) | (pRaw[3] << 22)) & 0x3fffffff; // Prefix = Bits [104..113] -> 10 bits pAuthInfo = (pRaw[3] >> 8) & 0x3ff; } void packServer( DWORD (&pRaw)[4], DWORD pChannelID, DWORD pHash, DWORD (&pSignature)[2], DWORD pAuthInfo ) { pRaw[0] = pChannelID | (pHash << 11); pRaw[1] = (pHash >> 21) | (pSignature[0] << 10); pRaw[2] = (pSignature[0] >> 22) | (pSignature[1] << 10); pRaw[3] = (pSignature[1] >> 22) | (pAuthInfo << 8); } bool verifyServerKey(EC_GROUP *eCurve, EC_POINT *generator, EC_POINT *publicKey, char *cdKey) { BN_CTX *context = BN_CTX_new(); // Convert Base24 CD-key to bytecode. DWORD osFamily, hash, sig[2], prefix; DWORD bKey[4]{}; unbase24((BYTE *)bKey, cdKey); // Extract segments from the bytecode and reverse the signature. unpackServer(bKey, osFamily, hash, sig, prefix); endian((BYTE *)sig, 8); BYTE t[FIELD_BYTES_2003]{}, md[SHA_DIGEST_LENGTH]{}; DWORD checkHash, newHash[2]{}; SHA_CTX hContext; // H = SHA-1(5D || OS Family || Hash || Prefix || 00 00) SHA1_Init(&hContext); t[0] = 0x5D; t[1] = (osFamily & 0xff); t[2] = (osFamily & 0xff00) >> 8; t[3] = (hash & 0xff); t[4] = (hash & 0xff00) >> 8; t[5] = (hash & 0xff0000) >> 16; t[6] = (hash & 0xff000000) >> 24; t[7] = (prefix & 0xff); t[8] = (prefix & 0xff00) >> 8; t[9] = 0x00; t[10] = 0x00; SHA1_Update(&hContext, t, 11); SHA1_Final(md, &hContext); // First word. newHash[0] = md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24); // Second word, right shift 2 bits. newHash[1] = (md[4] | (md[5] << 8) | (md[6] << 16) | (md[7] << 24)) >> 2; newHash[1] &= 0x3FFFFFFF; endian((BYTE *)newHash, 8); BIGNUM *x = BN_new(); BIGNUM *y = BN_new(); BIGNUM *s = BN_bin2bn((BYTE *)sig, 8, nullptr); BIGNUM *e = BN_bin2bn((BYTE *)newHash, 8, nullptr); EC_POINT *u = EC_POINT_new(eCurve); EC_POINT *v = EC_POINT_new(eCurve); // EC_POINT_mul calculates r = generator * n + q * m. // v = s * (s * generator + e * publicKey) // u = generator * s EC_POINT_mul(eCurve, u, nullptr, generator, s, context); // v = publicKey * e EC_POINT_mul(eCurve, v, nullptr, publicKey, e, context); // v += u EC_POINT_add(eCurve, v, u, v, context); // v *= s EC_POINT_mul(eCurve, v, nullptr, v, s, context); // EC_POINT_get_affine_coordinates() sets x and y, either of which may be nullptr, to the corresponding coordinates of p. // x = v.x; y = v.y; EC_POINT_get_affine_coordinates_GFp(eCurve, v, x, y, context); // Hash = First31(SHA-1(79 || OS Family || v.x || v.y)) SHA1_Init(&hContext); t[0] = 0x79; t[1] = (osFamily & 0xff); t[2] = (osFamily & 0xff00) >> 8; // Hash chunk of data. SHA1_Update(&hContext, t, 3); // Empty buffer, place v.y in little-endian. memset(t, 0, FIELD_BYTES_2003); BN_bn2bin(x, t); endian(t, FIELD_BYTES_2003); // Hash chunk of data. SHA1_Update(&hContext, t, FIELD_BYTES_2003); // Empty buffer, place v.y in little-endian. memset(t, 0, FIELD_BYTES_2003); BN_bn2bin(y, t); endian(t, FIELD_BYTES_2003); // Hash chunk of data. SHA1_Update(&hContext, t, FIELD_BYTES_2003); // Store the final message from hContext in md. SHA1_Final(md, &hContext); // Hash = First31(SHA-1(79 || OS Family || v.x || v.y)) checkHash = (md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24)) & 0x7fffffff; BN_free(s); BN_free(e); BN_free(x); BN_free(y); BN_CTX_free(context); EC_POINT_free(v); EC_POINT_free(u); // If we managed to generate a key with the same hash, the key is correct. return checkHash == hash; } void generateServerKey(char *pKey, EC_GROUP *eCurve, EC_POINT *generator, BIGNUM *order, BIGNUM *privateKey, DWORD *osFamily, DWORD *prefix) { EC_POINT *r = EC_POINT_new(eCurve); BN_CTX *ctx = BN_CTX_new(); DWORD bKey[4]{}, bSig[2]{}; do { BIGNUM *c = BN_new(); BIGNUM *s = BN_new(); BIGNUM *x = BN_new(); BIGNUM *y = BN_new(); BIGNUM *b = BN_new(); DWORD hash = 0, h[2]{}; memset(bKey, 0, 4); memset(bSig, 0, 2); // Generate a random number c consisting of 512 bits without any constraints. BN_rand(c, FIELD_BITS_2003, BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY); // r = generator * c EC_POINT_mul(eCurve, r, nullptr, generator, c, ctx); // x = r.x; y = r.y; EC_POINT_get_affine_coordinates(eCurve, r, x, y, ctx); SHA_CTX hContext; BYTE md[SHA_DIGEST_LENGTH]{}, buf[FIELD_BYTES_2003]{}; // Hash = SHA-1(79 || OS Family || r.x || r.y) SHA1_Init(&hContext); buf[0] = 0x79; buf[1] = (*osFamily & 0xff); buf[2] = (*osFamily & 0xff00) >> 8; SHA1_Update(&hContext, buf, 3); memset(buf, 0, FIELD_BYTES_2003); BN_bn2bin(x, buf); endian((BYTE *)buf, FIELD_BYTES_2003); SHA1_Update(&hContext, buf, FIELD_BYTES_2003); memset(buf, 0, FIELD_BYTES_2003); BN_bn2bin(y, buf); endian((BYTE *)buf, FIELD_BYTES_2003); SHA1_Update(&hContext, buf, FIELD_BYTES_2003); SHA1_Final(md, &hContext); hash = (md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24)) & 0x7fffffff; // H = SHA-1(5D || OS Family || Hash || Prefix || 00 00) SHA1_Init(&hContext); buf[0] = 0x5D; buf[1] = (*osFamily & 0xff); buf[2] = (*osFamily & 0xff00) >> 8; buf[3] = (hash & 0xff); buf[4] = (hash & 0xff00) >> 8; buf[5] = (hash & 0xff0000) >> 16; buf[6] = (hash & 0xff000000) >> 24; buf[7] = prefix[0] & 0xff; buf[8] = (prefix[0] & 0xff00) >> 8; buf[9] = 0x00; buf[10] = 0x00; // Input length is 11 BYTEs. SHA1_Update(&hContext, buf, 11); SHA1_Final(md, &hContext); // First word. h[0] = md[0] | (md[1] << 8) | (md[2] << 16) | (md[3] << 24); // Second word, right shift 2 bits. h[1] = (md[4] | (md[5] << 8) | (md[6] << 16) | (md[7] << 24)) >> 2; h[1] &= 0x3FFFFFFF; endian((BYTE *)h, 8); BN_bin2bn((BYTE *)h, 8, b); /* * Signature * (Signature * G + H * K) = rG (mod p) * ↓ K = kG ↓ * * Signature * (Signature * G + H * k * G) = rG (mod p) * Signature^2 * G + Signature * HkG = rG (mod p) * G(Signature^2 + Signature * HkG) = G (mod p) * r * ↓ G^(-1)(G (mod p)) = (mod n), n = order of G ↓ * * Signature^2 + Hk * Signature = r (mod n) * Signature = -(b +- sqrt(D)) / 2a → Signature = (-Hk +- sqrt((Hk)^2 + 4r)) / 2 * * S = (-Hk +- sqrt((Hk)^2 + 4r)) (mod n) / 2 * * S = s * H = b * k = privateKey * n = order * r = c * * s = ( ( -b * privateKey +- sqrt( (b * privateKey)^2 + 4c ) ) / 2 ) % order */ // b = (b * privateKey) % order BN_mod_mul(b, b, privateKey, order, ctx); // s = b BN_copy(s, b); // s = (s % order)^2 BN_mod_sqr(s, s, order, ctx); // c <<= 2 (c = 4c) BN_lshift(c, c, 2); // s = s + c BN_add(s, s, c); // s^2 = s % order (order must be prime) BN_mod_sqrt(s, s, order, ctx); // s = s - b BN_mod_sub(s, s, b, order, ctx); // if s is odd, s = s + order if (BN_is_odd(s)) { BN_add(s, s, order); } // s >>= 1 (s = s / 2) BN_rshift1(s, s); // Convert s from BigNum back to bytecode and reverse the endianness. BN_bn2bin(s, (BYTE *)bSig); endian((BYTE *)bSig, BN_num_bytes(s)); // Pack product key. packServer(bKey, *osFamily, hash, bSig, *prefix); BN_free(c); BN_free(s); BN_free(x); BN_free(y); BN_free(b); } while (bSig[1] >= 0x40000000); base24(pKey, (BYTE *)bKey); BN_CTX_free(ctx); EC_POINT_free(r); } int main() { BIGNUM *a, *b, *p, *gx, *gy, *pubx, *puby, *n, *priv; BN_CTX *ctx = BN_CTX_new(); a = BN_new(); b = BN_new(); p = BN_new(); gx = BN_new(); gy = BN_new(); pubx = BN_new(); puby = BN_new(); n = BN_new(); priv = BN_new(); /* Windows Sever 2003 VLK */ BN_set_word(a, 1); BN_set_word(b, 0); BN_hex2bn(&p, "C9AE7AED19F6A7E100AADE98134111AD8118E59B8264734327940064BC675A0C682E19C89695FBFA3A4653E47D47FD7592258C7E3C3C61BBEA07FE5A7E842379"); BN_hex2bn(&gx, "85ACEC9F9F9B456A78E43C3637DC88D21F977A9EC15E5225BD5060CE5B892F24FEDEE574BF5801F06BC232EEF2161074496613698D88FAC4B397CE3B475406A7"); BN_hex2bn(&gy, "66B7D1983F5D4FE43E8B4F1E28685DE0E22BBE6576A1A6B86C67533BF72FD3D082DBA281A556A16E593DB522942C8DD7120BA50C9413DF944E7258BDDF30B3C4"); BN_hex2bn(&pubx, "90BF6BD980C536A8DB93B52AA9AEBA640BABF1D31BEC7AA345BB7510194A9B07379F552DA7B4A3EF81A9B87E0B85B5118E1E20A098641EE4CCF2045558C98C0E"); BN_hex2bn(&puby, "6B87D1E658D03868362945CDD582E2CF33EE4BA06369E0EFE9E4851F6DCBEC7F15081E250D171EA0CC4CB06435BCFCFEA8F438C9766743A06CBD06E7EFB4C3AE"); BN_hex2bn(&n, "4CC5C56529F0237D"); // from mskey 4in1 BN_hex2bn(&priv, "2606120F59C05118"); EC_GROUP *ec = EC_GROUP_new_curve_GFp(p, a, b, ctx); EC_POINT *g = EC_POINT_new(ec); EC_POINT_set_affine_coordinates_GFp(ec, g, gx, gy, ctx); EC_POINT *pub = EC_POINT_new(ec); EC_POINT_set_affine_coordinates_GFp(ec, pub, pubx, puby, ctx); assert(EC_POINT_is_on_curve(ec, g, ctx) == 1); assert(EC_POINT_is_on_curve(ec, pub, ctx) == 1); char pkey[25]; DWORD osfamily[1], prefix[1]; osfamily[0] = 1280; RAND_bytes((BYTE *)prefix, 4); prefix[0] &= 0x3ff; do { generateServerKey(pkey, ec, g, n, priv, osfamily, prefix); } while (!verifyServerKey(ec, g, pub, pkey)); print_product_key(pkey); std::cout << std::endl << std::endl; BN_CTX_free(ctx); return 0; }