WindowsXPKg/src/libumskt/pidgen3/BINK1998.cpp

321 lines
8.7 KiB
C++

/**
* This file is a part of the UMSKT Project
*
* Copyleft (C) 2019-2024 UMSKT Contributors (et.al.)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* @FileCreated by Andrew on 01/06/2023
* @Maintainer Andrew
*
* @History {
* Algorithm was initially written and open sourced by z22
* and uploaded to GitHub by TheMCHK in August of 2019
*
* Endermanch (Andrew) rewrote the algorithm in May of 2023
* Neo ported Endermanch's algorithm to CryptoPP in February of 2024
* }
*/
#include "BINK1998.h"
/**
* Packs a Windows XP-like Product Key.
*
* @param ki
* @return Integer representation of KeyInfo
*/
Integer BINK1998::Pack(const KeyInfo &ki)
{
// The quantity of information the key provides is 114 bits.
// We're storing it in 2 64-bit quad-words with 14 trailing bits.
// 64 * 2 = 128
auto serial = (ki.ChannelID * MaxSerial) + ki.Serial;
// Signature [114..59] <- Hash [58..31] <- Serial [30..1] <- Upgrade [0]
Integer raw = CryptoPP::Crop(ki.Signature, 56) << 59 | CryptoPP::Crop(ki.Hash, 28) << 31 |
CryptoPP::Crop(serial, 30) << 1 | ki.isUpgrade;
if (debug)
{
fmt::print(debug, "pack: {:x}\n\n", raw);
}
return raw;
}
/**
* Unpacks a Windows XP-like Product Key.
*
* @param raw Integer to unpack
* @return populated PIDGEN3::KeyInfo struct
*/
BINK1998::KeyInfo BINK1998::Unpack(const Integer &raw)
{
KeyInfo ki;
// We're assuming that the quantity of information within the product key is at most 114 bits.
// log2(24^25) = 114.
// Upgrade = Bit 0
ki.isUpgrade = CryptoPP::Crop(raw, 1).ConvertToLong();
// Serial = Bits [1..30] -> 30 bits
auto serialPack = CryptoPP::Crop((raw >> 1), 30);
ki.Serial = serialPack % MaxSerial;
ki.ChannelID = ((serialPack - ki.Serial) / MaxSerial);
// Hash = Bits [31..58] -> 28 bits
ki.Hash = CryptoPP::Crop((raw >> 31), 28);
// Signature = Bits [59..113] -> 56 bits
ki.Signature = CryptoPP::Crop((raw >> 59), 56);
return ki;
}
/**
* Generates a Windows XP-like Product Key.
*
* @param pKey [out]
* @return true on success, false on fail
*/
BOOL BINK1998::Generate(std::string &pKey)
{
Integer c, s, pRaw;
SHA1 sha1;
// copy initial state from object
auto ki = info;
if (!ki.Rand.IsZero())
{
c = ki.Rand;
}
// Data segment of the RPK.
Integer serialPack = (ki.ChannelID * MaxSerial) + ki.Serial;
Integer pData = (serialPack << 1) | ki.isUpgrade;
// prepare the private key for generation
privateKey = genOrder - privateKey;
do
{
ECP::Point R;
if (ki.Rand.IsZero())
{
// Generate a random number c consisting of 384 bits without any constraints.
c.Randomize(UMSKT::rng, FieldBits);
}
// Pick a random derivative of the base point on the elliptic curve.
// R = cG;
R = eCurve.Multiply(c, genPoint);
if (debug)
{
fmt::print(debug, "c: {:x}\n\n", c);
fmt::print(debug, "R[x,y] [{:x},\n{:x}]\n\n", R.x, R.y);
}
// Acquire its coordinates.
// x = R.x; y = R.y;
BYTE msgDigest[SHA1::DIGESTSIZE], msgBuffer[SHAMessageLength], *pMsgBuffer = msgBuffer;
// Assemble the SHA message.
pMsgBuffer = EncodeN(pData, pMsgBuffer, 4);
pMsgBuffer = EncodeN(R.x, pMsgBuffer, FieldBytes);
EncodeN(R.y, pMsgBuffer, FieldBytes);
// pHash = SHA1(pSerial || R.x || R.y)
sha1.CalculateDigest(msgDigest, msgBuffer, sizeof(msgBuffer));
if (debug)
{
fmt::print(debug, "msgBuffer: ");
for (BYTE b : msgBuffer)
{
fmt::print(debug, "{:x}", b);
}
fmt::print(debug, "\n\n");
fmt::print(debug, "msgDigest: ");
for (BYTE b : msgDigest)
{
fmt::print(debug, "{:x}", b);
}
fmt::print(debug, "\n\n");
}
// Translate the byte digest into a 32-bit integer - this is our computed pHash.
// Truncate the pHash to 28 bits.
ki.Hash = IntegerN(msgDigest, 4) >> 4;
ki.Hash = CryptoPP::Crop(ki.Hash, 28);
/*
*
* Scalars:
* c = Random multiplier
* e = Hash
* s = Signature
* n = Order of G
* k = Private Key
*
* Points:
* G(x, y) = Generator (Base Point)
* R(x, y) = Random derivative of the generator
* K(x, y) = Public Key
*
* We need to find the signature s that satisfies the equation with a given hash:
* P = sG + eK
* s = ek + c (mod n) <- computation optimization
*/
// s = ek;
s = privateKey * ki.Hash;
// s += c (mod n)
s += c;
s %= genOrder;
// Translate resulting scalar into an Integer.
ki.Signature = s;
// Pack product key.
pRaw = Pack(ki);
if (verbose)
{
fmt::print(verbose, "Generation results:\n");
fmt::print(verbose, "{:>10}: {}\n", "Upgrade", (bool)ki.isUpgrade);
fmt::print(verbose, "{:>10}: {}\n", "Channel ID", ki.ChannelID);
fmt::print(verbose, "{:>10}: {}\n", "Sequence", ki.Serial);
fmt::print(verbose, "{:>10}: {:x}\n", "Hash", ki.Hash);
fmt::print(verbose, "{:>10}: {:x}\n", "Signature", ki.Signature);
fmt::print(verbose, "\n");
}
} while (ki.Signature.BitCount() > 55 && ki.Rand.IsZero());
// ↑ ↑ ↑
// The signature can't be longer than 55 bits, else it will
// make the CD-key longer than 25 characters.
// Convert bytecode to Base24 CD-key.
pKey = base24(pRaw);
info = ki;
return true;
}
/**
* Validate a Windows XP-like Product Key.
*
* @param pKey [in]
*
* @return true if provided key validates against loaded curve
*/
BOOL BINK1998::Validate(const std::string &pKey)
{
if (pKey.length() != 25)
{
return false;
}
// Convert Base24 CD-key to bytecode.
Integer pRaw = unbase24(pKey);
SHA1 sha1;
// Extract RPK, hash and signature from bytecode.
KeyInfo ki = Unpack(pRaw);
if (verbose)
{
fmt::print(verbose, "Validation results:\n");
fmt::print(verbose, "{:>10}: {}\n", "Upgrade", (bool)ki.isUpgrade);
fmt::print(verbose, "{:>10}: {}\n", "Channel ID", ki.ChannelID);
fmt::print(verbose, "{:>10}: {}\n", "Sequence", ki.Serial);
fmt::print(verbose, "{:>10}: {:x}\n", "Hash", ki.Hash);
fmt::print(verbose, "{:>10}: {:x}\n", "Signature", ki.Signature);
fmt::print(verbose, "\n");
}
Integer serialPack = (ki.ChannelID * MaxSerial) + ki.Serial;
Integer pData = serialPack << 1 | ki.isUpgrade;
/*
*
* Scalars:
* e = Hash
* s = Schnorr Signature
*
* Points:
* G(x, y) = Generator (Base Point)
* K(x, y) = Public Key
*
* Equation:
* P = sG + eK
*
*/
Integer e = ki.Hash, s = ki.Signature;
// Create 2 points on the elliptic curve.
ECP::Point t, P;
// t = sG
t = eCurve.Multiply(s, genPoint);
// P = eK
P = eCurve.Multiply(e, pubPoint);
// P += t
P = eCurve.Add(P, t);
if (debug)
{
fmt::print(debug, "P[x,y]: [{:x},\n{:x}]\n\n", P.x, P.y);
}
BYTE msgDigest[SHA1::DIGESTSIZE], msgBuffer[SHAMessageLength], *pMsgBuffer = msgBuffer;
// Convert resulting point coordinates to bytes.
// Assemble the SHA message.
pMsgBuffer = EncodeN(pData, pMsgBuffer, 4);
pMsgBuffer = EncodeN(P.x, pMsgBuffer, FieldBytes);
EncodeN(P.y, pMsgBuffer, FieldBytes);
// compHash = SHA1(pSerial || P.x || P.y)
sha1.CalculateDigest(msgDigest, msgBuffer, SHAMessageLength);
auto intDigest = IntegerN(msgDigest);
if (debug)
{
fmt::print(debug, "hash: {:x}\n\n", intDigest);
}
info = ki;
// Translate the byte sha1 into a 32-bit integer - this is our computed hash.
// Truncate the hash to 28 bits.
Integer compHash = CryptoPP::Crop(intDigest >> 4, 28);
// If the computed hash checks out, the key is valid.
return compHash == ki.Hash;
}