Add compilation of c files

This commit is contained in:
Don Brown
2014-01-27 22:58:22 -07:00
parent e73f73d81e
commit ba0c77744d
16 changed files with 5288 additions and 9 deletions

4
.gitignore vendored
View File

@@ -10,4 +10,6 @@ _trial_temp/
*.iws *.iws
.idea .idea
venv venv
build
dist
*.egg-info

View File

@@ -15,6 +15,18 @@ Docs and examples
================= =================
There are some examples in the *examples/* directory. There are some examples in the *examples/* directory.
Features
========
- Works for the asyncio (PEP3156) event loop
- No dependencies
- Connection pooling
- Automatic conversion from unicode (Python) to bytes (inside Redis.)
- Bytes and str protocols.
- Completely tested
- Blocking calls and transactions supported
- Streaming of some multi bulk replies
- Pubsub support
Credits Credits
======= =======
Thanks to (in no particular order): Thanks to (in no particular order):

Binary file not shown.

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,103 @@
/*
* Copyright 2012 10gen, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _CBSONMODULE_H
#define _CBSONMODULE_H
/* Py_ssize_t was new in python 2.5. See conversion
* guidlines in http://www.python.org/dev/peps/pep-0353
* */
#if PY_VERSION_HEX < 0x02050000 && !defined(PY_SSIZE_T_MIN)
typedef int Py_ssize_t;
#define PY_SSIZE_T_MAX INT_MAX
#define PY_SSIZE_T_MIN INT_MIN
#endif
#if defined(WIN32) || defined(_MSC_VER)
/*
* This macro is basically an implementation of asprintf for win32
* We print to the provided buffer to get the string value as an int.
*/
#if defined(_MSC_VER) && (_MSC_VER >= 1400)
#define INT2STRING(buffer, i) \
_snprintf_s((buffer), \
_scprintf("%d", (i)) + 1, \
_scprintf("%d", (i)) + 1, \
"%d", \
(i))
#define STRCAT(dest, n, src) strcat_s((dest), (n), (src))
#else
#define INT2STRING(buffer, i) \
_snprintf((buffer), \
_scprintf("%d", (i)) + 1, \
"%d", \
(i))
#define STRCAT(dest, n, src) strcat((dest), (src))
#endif
#else
#define INT2STRING(buffer, i) snprintf((buffer), sizeof((buffer)), "%d", (i))
#define STRCAT(dest, n, src) strcat((dest), (src))
#endif
/* C API functions */
#define _cbson_buffer_write_bytes_INDEX 0
#define _cbson_buffer_write_bytes_RETURN int
#define _cbson_buffer_write_bytes_PROTO (buffer_t buffer, const char* data, int size)
#define _cbson_write_dict_INDEX 1
#define _cbson_write_dict_RETURN int
#define _cbson_write_dict_PROTO (PyObject* self, buffer_t buffer, PyObject* dict, unsigned char check_keys, unsigned char uuid_subtype, unsigned char top_level)
#define _cbson_write_pair_INDEX 2
#define _cbson_write_pair_RETURN int
#define _cbson_write_pair_PROTO (PyObject* self, buffer_t buffer, const char* name, int name_length, PyObject* value, unsigned char check_keys, unsigned char uuid_subtype, unsigned char allow_id)
#define _cbson_decode_and_write_pair_INDEX 3
#define _cbson_decode_and_write_pair_RETURN int
#define _cbson_decode_and_write_pair_PROTO (PyObject* self, buffer_t buffer, PyObject* key, PyObject* value, unsigned char check_keys, unsigned char uuid_subtype, unsigned char top_level)
/* Total number of C API pointers */
#define _cbson_API_POINTER_COUNT 4
#ifdef _CBSON_MODULE
/* This section is used when compiling _cbsonmodule */
static _cbson_buffer_write_bytes_RETURN buffer_write_bytes _cbson_buffer_write_bytes_PROTO;
static _cbson_write_dict_RETURN write_dict _cbson_write_dict_PROTO;
static _cbson_write_pair_RETURN write_pair _cbson_write_pair_PROTO;
static _cbson_decode_and_write_pair_RETURN decode_and_write_pair _cbson_decode_and_write_pair_PROTO;
#else
/* This section is used in modules that use _cbsonmodule's API */
static void **_cbson_API;
#define buffer_write_bytes (*(_cbson_buffer_write_bytes_RETURN (*)_cbson_buffer_write_bytes_PROTO) _cbson_API[_cbson_buffer_write_bytes_INDEX])
#define write_dict (*(_cbson_write_dict_RETURN (*)_cbson_write_dict_PROTO) _cbson_API[_cbson_write_dict_INDEX])
#define write_pair (*(_cbson_write_pair_RETURN (*)_cbson_write_pair_PROTO) _cbson_API[_cbson_write_pair_INDEX])
#define decode_and_write_pair (*(_cbson_decode_and_write_pair_RETURN (*)_cbson_decode_and_write_pair_PROTO) _cbson_API[_cbson_decode_and_write_pair_INDEX])
#define _cbson_IMPORT _cbson_API = (void **)PyCapsule_Import("_cbson._C_API", 0)
#endif
#endif // _CBSONMODULE_H

View File

@@ -0,0 +1,146 @@
/*
* Copyright 2009-2012 10gen, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdlib.h>
#include <string.h>
#include "buffer.h"
#define INITIAL_BUFFER_SIZE 256
struct buffer {
char* buffer;
int size;
int position;
};
/* Allocate and return a new buffer.
* Return NULL on allocation failure. */
buffer_t buffer_new(void) {
buffer_t buffer;
buffer = (buffer_t)malloc(sizeof(struct buffer));
if (buffer == NULL) {
return NULL;
}
buffer->size = INITIAL_BUFFER_SIZE;
buffer->position = 0;
buffer->buffer = (char*)malloc(sizeof(char) * INITIAL_BUFFER_SIZE);
if (buffer->buffer == NULL) {
free(buffer);
return NULL;
}
return buffer;
}
/* Free the memory allocated for `buffer`.
* Return non-zero on failure. */
int buffer_free(buffer_t buffer) {
if (buffer == NULL) {
return 1;
}
free(buffer->buffer);
free(buffer);
return 0;
}
/* Grow `buffer` to at least `min_length`.
* Return non-zero on allocation failure. */
static int buffer_grow(buffer_t buffer, int min_length) {
int old_size = 0;
int size = buffer->size;
char* old_buffer = buffer->buffer;
if (size >= min_length) {
return 0;
}
while (size < min_length) {
old_size = size;
size *= 2;
if (size <= old_size) {
/* Size did not increase. Could be an overflow
* or size < 1. Just go with min_length. */
size = min_length;
}
}
buffer->buffer = (char*)realloc(buffer->buffer, sizeof(char) * size);
if (buffer->buffer == NULL) {
free(old_buffer);
free(buffer);
return 1;
}
buffer->size = size;
return 0;
}
/* Assure that `buffer` has at least `size` free bytes (and grow if needed).
* Return non-zero on allocation failure. */
static int buffer_assure_space(buffer_t buffer, int size) {
if (buffer->position + size <= buffer->size) {
return 0;
}
return buffer_grow(buffer, buffer->position + size);
}
/* Save `size` bytes from the current position in `buffer` (and grow if needed).
* Return offset for writing, or -1 on allocation failure. */
buffer_position buffer_save_space(buffer_t buffer, int size) {
int position = buffer->position;
if (buffer_assure_space(buffer, size) != 0) {
return -1;
}
buffer->position += size;
return position;
}
/* Write `size` bytes from `data` to `buffer` (and grow if needed).
* Return non-zero on allocation failure. */
int buffer_write(buffer_t buffer, const char* data, int size) {
if (buffer_assure_space(buffer, size) != 0) {
return 1;
}
memcpy(buffer->buffer + buffer->position, data, size);
buffer->position += size;
return 0;
}
/* Write `size` bytes from `data` to `buffer` at position `position`.
* Does not change the internal position of `buffer`.
* Return non-zero if buffer isn't large enough for write. */
int buffer_write_at_position(buffer_t buffer, buffer_position position,
const char* data, int size) {
if (position + size > buffer->size) {
buffer_free(buffer);
return 1;
}
memcpy(buffer->buffer + position, data, size);
return 0;
}
int buffer_get_position(buffer_t buffer) {
return buffer->position;
}
char* buffer_get_buffer(buffer_t buffer) {
return buffer->buffer;
}
void buffer_update_position(buffer_t buffer, buffer_position new_position) {
buffer->position = new_position;
}

View File

@@ -0,0 +1,56 @@
/*
* Copyright 2009-2012 10gen, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef BUFFER_H
#define BUFFER_H
/* Note: if any of these functions return a failure condition then the buffer
* has already been freed. */
/* A buffer */
typedef struct buffer* buffer_t;
/* A position in the buffer */
typedef int buffer_position;
/* Allocate and return a new buffer.
* Return NULL on allocation failure. */
buffer_t buffer_new(void);
/* Free the memory allocated for `buffer`.
* Return non-zero on failure. */
int buffer_free(buffer_t buffer);
/* Save `size` bytes from the current position in `buffer` (and grow if needed).
* Return offset for writing, or -1 on allocation failure. */
buffer_position buffer_save_space(buffer_t buffer, int size);
/* Write `size` bytes from `data` to `buffer` (and grow if needed).
* Return non-zero on allocation failure. */
int buffer_write(buffer_t buffer, const char* data, int size);
/* Write `size` bytes from `data` to `buffer` at position `position`.
* Does not change the internal position of `buffer`.
* Return non-zero if buffer isn't large enough for write. */
int buffer_write_at_position(buffer_t buffer, buffer_position position, const char* data, int size);
/* Getters for the internals of a buffer_t.
* Should try to avoid using these as much as possible
* since they break the abstraction. */
buffer_position buffer_get_position(buffer_t buffer);
char* buffer_get_buffer(buffer_t buffer);
void buffer_update_position(buffer_t buffer, buffer_position new_position);
#endif

View File

@@ -0,0 +1,118 @@
/*
* Copyright 2009-2012 10gen, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "encoding_helpers.h"
/*
* Portions Copyright 2001 Unicode, Inc.
*
* Disclaimer
*
* This source code is provided as is by Unicode, Inc. No claims are
* made as to fitness for any particular purpose. No warranties of any
* kind are expressed or implied. The recipient agrees to determine
* applicability of information provided. If this file has been
* purchased on magnetic or optical media from Unicode, Inc., the
* sole remedy for any claim will be exchange of defective media
* within 90 days of receipt.
*
* Limitations on Rights to Redistribute This Code
*
* Unicode, Inc. hereby grants the right to freely use the information
* supplied in this file in the creation of products supporting the
* Unicode Standard, and to make copies of this file in any form
* for internal or external distribution as long as this notice
* remains attached.
*/
/*
* Index into the table below with the first byte of a UTF-8 sequence to
* get the number of trailing bytes that are supposed to follow it.
*/
static const char trailingBytesForUTF8[256] = {
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2, 3,3,3,3,3,3,3,3,4,4,4,4,5,5,5,5
};
/* --------------------------------------------------------------------- */
/*
* Utility routine to tell whether a sequence of bytes is legal UTF-8.
* This must be called with the length pre-determined by the first byte.
* The length can be set by:
* length = trailingBytesForUTF8[*source]+1;
* and the sequence is illegal right away if there aren't that many bytes
* available.
* If presented with a length > 4, this returns 0. The Unicode
* definition of UTF-8 goes up to 4-byte sequences.
*/
static unsigned char isLegalUTF8(const unsigned char* source, int length) {
unsigned char a;
const unsigned char* srcptr = source + length;
switch (length) {
default: return 0;
/* Everything else falls through when "true"... */
case 4: if ((a = (*--srcptr)) < 0x80 || a > 0xBF) return 0;
case 3: if ((a = (*--srcptr)) < 0x80 || a > 0xBF) return 0;
case 2: if ((a = (*--srcptr)) > 0xBF) return 0;
switch (*source) {
/* no fall-through in this inner switch */
case 0xE0: if (a < 0xA0) return 0; break;
case 0xF0: if (a < 0x90) return 0; break;
case 0xF4: if (a > 0x8F) return 0; break;
default: if (a < 0x80) return 0;
}
case 1: if (*source >= 0x80 && *source < 0xC2) return 0;
if (*source > 0xF4) return 0;
}
return 1;
}
result_t check_string(const unsigned char* string, const int length,
const char check_utf8, const char check_null) {
int position = 0;
/* By default we go character by character. Will be different for checking
* UTF-8 */
int sequence_length = 1;
if (!check_utf8 && !check_null) {
return VALID;
}
while (position < length) {
if (check_null && *(string + position) == 0) {
return HAS_NULL;
}
if (check_utf8) {
sequence_length = trailingBytesForUTF8[*(string + position)] + 1;
if ((position + sequence_length) > length) {
return NOT_UTF_8;
}
if (!isLegalUTF8(string + position, sequence_length)) {
return NOT_UTF_8;
}
}
position += sequence_length;
}
return VALID;
}

View File

@@ -0,0 +1,29 @@
/*
* Copyright 2009-2012 10gen, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ENCODING_HELPERS_H
#define ENCODING_HELPERS_H
typedef enum {
VALID,
NOT_UTF_8,
HAS_NULL
} result_t;
result_t check_string(const unsigned char* string, const int length,
const char check_utf8, const char check_null);
#endif

View File

@@ -0,0 +1,789 @@
/*
Copyright (c) 2007-2010 Michael G Schwern
This software originally derived from Paul Sheer's pivotal_gmtime_r.c.
The MIT License:
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
*/
/*
Programmers who have available to them 64-bit time values as a 'long
long' type can use localtime64_r() and gmtime64_r() which correctly
converts the time even on 32-bit systems. Whether you have 64-bit time
values will depend on the operating system.
localtime64_r() is a 64-bit equivalent of localtime_r().
gmtime64_r() is a 64-bit equivalent of gmtime_r().
*/
#ifdef _MSC_VER
#define _CRT_SECURE_NO_WARNINGS
#endif
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <errno.h>
#include "time64.h"
#include "time64_limits.h"
/* Spec says except for stftime() and the _r() functions, these
all return static memory. Stabbings! */
static struct TM Static_Return_Date;
static const int days_in_month[2][12] = {
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31},
};
static const int julian_days_by_month[2][12] = {
{0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334},
{0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335},
};
static const int length_of_year[2] = { 365, 366 };
/* Some numbers relating to the gregorian cycle */
static const Year years_in_gregorian_cycle = 400;
#define days_in_gregorian_cycle ((365 * 400) + 100 - 4 + 1)
static const Time64_T seconds_in_gregorian_cycle = days_in_gregorian_cycle * 60LL * 60LL * 24LL;
/* Year range we can trust the time funcitons with */
#define MAX_SAFE_YEAR 2037
#define MIN_SAFE_YEAR 1971
/* 28 year Julian calendar cycle */
#define SOLAR_CYCLE_LENGTH 28
/* Year cycle from MAX_SAFE_YEAR down. */
static const int safe_years_high[SOLAR_CYCLE_LENGTH] = {
2016, 2017, 2018, 2019,
2020, 2021, 2022, 2023,
2024, 2025, 2026, 2027,
2028, 2029, 2030, 2031,
2032, 2033, 2034, 2035,
2036, 2037, 2010, 2011,
2012, 2013, 2014, 2015
};
/* Year cycle from MIN_SAFE_YEAR up */
static const int safe_years_low[SOLAR_CYCLE_LENGTH] = {
1996, 1997, 1998, 1971,
1972, 1973, 1974, 1975,
1976, 1977, 1978, 1979,
1980, 1981, 1982, 1983,
1984, 1985, 1986, 1987,
1988, 1989, 1990, 1991,
1992, 1993, 1994, 1995,
};
/* This isn't used, but it's handy to look at */
static const int dow_year_start[SOLAR_CYCLE_LENGTH] = {
5, 0, 1, 2, /* 0 2016 - 2019 */
3, 5, 6, 0, /* 4 */
1, 3, 4, 5, /* 8 1996 - 1998, 1971*/
6, 1, 2, 3, /* 12 1972 - 1975 */
4, 6, 0, 1, /* 16 */
2, 4, 5, 6, /* 20 2036, 2037, 2010, 2011 */
0, 2, 3, 4 /* 24 2012, 2013, 2014, 2015 */
};
/* Let's assume people are going to be looking for dates in the future.
Let's provide some cheats so you can skip ahead.
This has a 4x speed boost when near 2008.
*/
/* Number of days since epoch on Jan 1st, 2008 GMT */
#define CHEAT_DAYS (1199145600 / 24 / 60 / 60)
#define CHEAT_YEARS 108
#define IS_LEAP(n) ((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0)
#define WRAP(a,b,m) ((a) = ((a) < 0 ) ? ((b)--, (a) + (m)) : (a))
#ifdef USE_SYSTEM_LOCALTIME
# define SHOULD_USE_SYSTEM_LOCALTIME(a) ( \
(a) <= SYSTEM_LOCALTIME_MAX && \
(a) >= SYSTEM_LOCALTIME_MIN \
)
#else
# define SHOULD_USE_SYSTEM_LOCALTIME(a) (0)
#endif
#ifdef USE_SYSTEM_GMTIME
# define SHOULD_USE_SYSTEM_GMTIME(a) ( \
(a) <= SYSTEM_GMTIME_MAX && \
(a) >= SYSTEM_GMTIME_MIN \
)
#else
# define SHOULD_USE_SYSTEM_GMTIME(a) (0)
#endif
/* Multi varadic macros are a C99 thing, alas */
#ifdef TIME_64_DEBUG
# define TIME64_TRACE(format) (fprintf(stderr, format))
# define TIME64_TRACE1(format, var1) (fprintf(stderr, format, var1))
# define TIME64_TRACE2(format, var1, var2) (fprintf(stderr, format, var1, var2))
# define TIME64_TRACE3(format, var1, var2, var3) (fprintf(stderr, format, var1, var2, var3))
#else
# define TIME64_TRACE(format) ((void)0)
# define TIME64_TRACE1(format, var1) ((void)0)
# define TIME64_TRACE2(format, var1, var2) ((void)0)
# define TIME64_TRACE3(format, var1, var2, var3) ((void)0)
#endif
static int is_exception_century(Year year)
{
int is_exception = ((year % 100 == 0) && !(year % 400 == 0));
TIME64_TRACE1("# is_exception_century: %s\n", is_exception ? "yes" : "no");
return(is_exception);
}
/* Compare two dates.
The result is like cmp.
Ignores things like gmtoffset and dst
*/
int cmp_date( const struct TM* left, const struct tm* right ) {
if( left->tm_year > right->tm_year )
return 1;
else if( left->tm_year < right->tm_year )
return -1;
if( left->tm_mon > right->tm_mon )
return 1;
else if( left->tm_mon < right->tm_mon )
return -1;
if( left->tm_mday > right->tm_mday )
return 1;
else if( left->tm_mday < right->tm_mday )
return -1;
if( left->tm_hour > right->tm_hour )
return 1;
else if( left->tm_hour < right->tm_hour )
return -1;
if( left->tm_min > right->tm_min )
return 1;
else if( left->tm_min < right->tm_min )
return -1;
if( left->tm_sec > right->tm_sec )
return 1;
else if( left->tm_sec < right->tm_sec )
return -1;
return 0;
}
/* Check if a date is safely inside a range.
The intention is to check if its a few days inside.
*/
int date_in_safe_range( const struct TM* date, const struct tm* min, const struct tm* max ) {
if( cmp_date(date, min) == -1 )
return 0;
if( cmp_date(date, max) == 1 )
return 0;
return 1;
}
/* timegm() is not in the C or POSIX spec, but it is such a useful
extension I would be remiss in leaving it out. Also I need it
for localtime64()
*/
Time64_T timegm64(const struct TM *date) {
Time64_T days = 0;
Time64_T seconds = 0;
Year year;
Year orig_year = (Year)date->tm_year;
int cycles = 0;
if( orig_year > 100 ) {
cycles = (int)((orig_year - 100) / 400);
orig_year -= cycles * 400;
days += (Time64_T)cycles * days_in_gregorian_cycle;
}
else if( orig_year < -300 ) {
cycles = (int)((orig_year - 100) / 400);
orig_year -= cycles * 400;
days += (Time64_T)cycles * days_in_gregorian_cycle;
}
TIME64_TRACE3("# timegm/ cycles: %d, days: %lld, orig_year: %lld\n", cycles, days, orig_year);
if( orig_year > 70 ) {
year = 70;
while( year < orig_year ) {
days += length_of_year[IS_LEAP(year)];
year++;
}
}
else if ( orig_year < 70 ) {
year = 69;
do {
days -= length_of_year[IS_LEAP(year)];
year--;
} while( year >= orig_year );
}
days += julian_days_by_month[IS_LEAP(orig_year)][date->tm_mon];
days += date->tm_mday - 1;
seconds = days * 60 * 60 * 24;
seconds += date->tm_hour * 60 * 60;
seconds += date->tm_min * 60;
seconds += date->tm_sec;
return(seconds);
}
#ifndef NDEBUG
static int check_tm(struct TM *tm)
{
/* Don't forget leap seconds */
assert(tm->tm_sec >= 0);
assert(tm->tm_sec <= 61);
assert(tm->tm_min >= 0);
assert(tm->tm_min <= 59);
assert(tm->tm_hour >= 0);
assert(tm->tm_hour <= 23);
assert(tm->tm_mday >= 1);
assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]);
assert(tm->tm_mon >= 0);
assert(tm->tm_mon <= 11);
assert(tm->tm_wday >= 0);
assert(tm->tm_wday <= 6);
assert(tm->tm_yday >= 0);
assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]);
#ifdef HAS_TM_TM_GMTOFF
assert(tm->tm_gmtoff >= -24 * 60 * 60);
assert(tm->tm_gmtoff <= 24 * 60 * 60);
#endif
return 1;
}
#endif
/* The exceptional centuries without leap years cause the cycle to
shift by 16
*/
static Year cycle_offset(Year year)
{
const Year start_year = 2000;
Year year_diff = year - start_year;
Year exceptions;
if( year > start_year )
year_diff--;
exceptions = year_diff / 100;
exceptions -= year_diff / 400;
TIME64_TRACE3("# year: %lld, exceptions: %lld, year_diff: %lld\n",
year, exceptions, year_diff);
return exceptions * 16;
}
/* For a given year after 2038, pick the latest possible matching
year in the 28 year calendar cycle.
A matching year...
1) Starts on the same day of the week.
2) Has the same leap year status.
This is so the calendars match up.
Also the previous year must match. When doing Jan 1st you might
wind up on Dec 31st the previous year when doing a -UTC time zone.
Finally, the next year must have the same start day of week. This
is for Dec 31st with a +UTC time zone.
It doesn't need the same leap year status since we only care about
January 1st.
*/
static int safe_year(const Year year)
{
int safe_year = 0;
Year year_cycle;
if( year >= MIN_SAFE_YEAR && year <= MAX_SAFE_YEAR ) {
return (int)year;
}
year_cycle = year + cycle_offset(year);
/* safe_years_low is off from safe_years_high by 8 years */
if( year < MIN_SAFE_YEAR )
year_cycle -= 8;
/* Change non-leap xx00 years to an equivalent */
if( is_exception_century(year) )
year_cycle += 11;
/* Also xx01 years, since the previous year will be wrong */
if( is_exception_century(year - 1) )
year_cycle += 17;
year_cycle %= SOLAR_CYCLE_LENGTH;
if( year_cycle < 0 )
year_cycle = SOLAR_CYCLE_LENGTH + year_cycle;
assert( year_cycle >= 0 );
assert( year_cycle < SOLAR_CYCLE_LENGTH );
if( year < MIN_SAFE_YEAR )
safe_year = safe_years_low[year_cycle];
else if( year > MAX_SAFE_YEAR )
safe_year = safe_years_high[year_cycle];
else
assert(0);
TIME64_TRACE3("# year: %lld, year_cycle: %lld, safe_year: %d\n",
year, year_cycle, safe_year);
assert(safe_year <= MAX_SAFE_YEAR && safe_year >= MIN_SAFE_YEAR);
return safe_year;
}
void copy_tm_to_TM64(const struct tm *src, struct TM *dest) {
if( src == NULL ) {
memset(dest, 0, sizeof(*dest));
}
else {
# ifdef USE_TM64
dest->tm_sec = src->tm_sec;
dest->tm_min = src->tm_min;
dest->tm_hour = src->tm_hour;
dest->tm_mday = src->tm_mday;
dest->tm_mon = src->tm_mon;
dest->tm_year = (Year)src->tm_year;
dest->tm_wday = src->tm_wday;
dest->tm_yday = src->tm_yday;
dest->tm_isdst = src->tm_isdst;
# ifdef HAS_TM_TM_GMTOFF
dest->tm_gmtoff = src->tm_gmtoff;
# endif
# ifdef HAS_TM_TM_ZONE
dest->tm_zone = src->tm_zone;
# endif
# else
/* They're the same type */
memcpy(dest, src, sizeof(*dest));
# endif
}
}
void copy_TM64_to_tm(const struct TM *src, struct tm *dest) {
if( src == NULL ) {
memset(dest, 0, sizeof(*dest));
}
else {
# ifdef USE_TM64
dest->tm_sec = src->tm_sec;
dest->tm_min = src->tm_min;
dest->tm_hour = src->tm_hour;
dest->tm_mday = src->tm_mday;
dest->tm_mon = src->tm_mon;
dest->tm_year = (int)src->tm_year;
dest->tm_wday = src->tm_wday;
dest->tm_yday = src->tm_yday;
dest->tm_isdst = src->tm_isdst;
# ifdef HAS_TM_TM_GMTOFF
dest->tm_gmtoff = src->tm_gmtoff;
# endif
# ifdef HAS_TM_TM_ZONE
dest->tm_zone = src->tm_zone;
# endif
# else
/* They're the same type */
memcpy(dest, src, sizeof(*dest));
# endif
}
}
/* Simulate localtime_r() to the best of our ability */
struct tm * fake_localtime_r(const time_t *time, struct tm *result) {
const struct tm *static_result = localtime(time);
assert(result != NULL);
if( static_result == NULL ) {
memset(result, 0, sizeof(*result));
return NULL;
}
else {
memcpy(result, static_result, sizeof(*result));
return result;
}
}
/* Simulate gmtime_r() to the best of our ability */
struct tm * fake_gmtime_r(const time_t *time, struct tm *result) {
const struct tm *static_result = gmtime(time);
assert(result != NULL);
if( static_result == NULL ) {
memset(result, 0, sizeof(*result));
return NULL;
}
else {
memcpy(result, static_result, sizeof(*result));
return result;
}
}
static Time64_T seconds_between_years(Year left_year, Year right_year) {
int increment = (left_year > right_year) ? 1 : -1;
Time64_T seconds = 0;
int cycles;
if( left_year > 2400 ) {
cycles = (int)((left_year - 2400) / 400);
left_year -= cycles * 400;
seconds += cycles * seconds_in_gregorian_cycle;
}
else if( left_year < 1600 ) {
cycles = (int)((left_year - 1600) / 400);
left_year += cycles * 400;
seconds += cycles * seconds_in_gregorian_cycle;
}
while( left_year != right_year ) {
seconds += length_of_year[IS_LEAP(right_year - 1900)] * 60 * 60 * 24;
right_year += increment;
}
return seconds * increment;
}
Time64_T mktime64(const struct TM *input_date) {
struct tm safe_date;
struct TM date;
Time64_T time;
Year year = input_date->tm_year + 1900;
if( date_in_safe_range(input_date, &SYSTEM_MKTIME_MIN, &SYSTEM_MKTIME_MAX) )
{
copy_TM64_to_tm(input_date, &safe_date);
return (Time64_T)mktime(&safe_date);
}
/* Have to make the year safe in date else it won't fit in safe_date */
date = *input_date;
date.tm_year = safe_year(year) - 1900;
copy_TM64_to_tm(&date, &safe_date);
time = (Time64_T)mktime(&safe_date);
time += seconds_between_years(year, (Year)(safe_date.tm_year + 1900));
return time;
}
/* Because I think mktime() is a crappy name */
Time64_T timelocal64(const struct TM *date) {
return mktime64(date);
}
struct TM *gmtime64_r (const Time64_T *in_time, struct TM *p)
{
int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday;
Time64_T v_tm_tday;
int leap;
Time64_T m;
Time64_T time = *in_time;
Year year = 70;
int cycles = 0;
assert(p != NULL);
/* Use the system gmtime() if time_t is small enough */
if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) {
time_t safe_time = (time_t)*in_time;
struct tm safe_date;
GMTIME_R(&safe_time, &safe_date);
copy_tm_to_TM64(&safe_date, p);
assert(check_tm(p));
return p;
}
#ifdef HAS_TM_TM_GMTOFF
p->tm_gmtoff = 0;
#endif
p->tm_isdst = 0;
#ifdef HAS_TM_TM_ZONE
p->tm_zone = "UTC";
#endif
v_tm_sec = (int)(time % 60);
time /= 60;
v_tm_min = (int)(time % 60);
time /= 60;
v_tm_hour = (int)(time % 24);
time /= 24;
v_tm_tday = time;
WRAP (v_tm_sec, v_tm_min, 60);
WRAP (v_tm_min, v_tm_hour, 60);
WRAP (v_tm_hour, v_tm_tday, 24);
v_tm_wday = (int)((v_tm_tday + 4) % 7);
if (v_tm_wday < 0)
v_tm_wday += 7;
m = v_tm_tday;
if (m >= CHEAT_DAYS) {
year = CHEAT_YEARS;
m -= CHEAT_DAYS;
}
if (m >= 0) {
/* Gregorian cycles, this is huge optimization for distant times */
cycles = (int)(m / (Time64_T) days_in_gregorian_cycle);
if( cycles ) {
m -= (cycles * (Time64_T) days_in_gregorian_cycle);
year += (cycles * years_in_gregorian_cycle);
}
/* Years */
leap = IS_LEAP (year);
while (m >= (Time64_T) length_of_year[leap]) {
m -= (Time64_T) length_of_year[leap];
year++;
leap = IS_LEAP (year);
}
/* Months */
v_tm_mon = 0;
while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) {
m -= (Time64_T) days_in_month[leap][v_tm_mon];
v_tm_mon++;
}
} else {
year--;
/* Gregorian cycles */
cycles = (int)((m / (Time64_T) days_in_gregorian_cycle) + 1);
if( cycles ) {
m -= (cycles * (Time64_T) days_in_gregorian_cycle);
year += (cycles * years_in_gregorian_cycle);
}
/* Years */
leap = IS_LEAP (year);
while (m < (Time64_T) -length_of_year[leap]) {
m += (Time64_T) length_of_year[leap];
year--;
leap = IS_LEAP (year);
}
/* Months */
v_tm_mon = 11;
while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) {
m += (Time64_T) days_in_month[leap][v_tm_mon];
v_tm_mon--;
}
m += (Time64_T) days_in_month[leap][v_tm_mon];
}
p->tm_year = (int)year;
if( p->tm_year != year ) {
#ifdef EOVERFLOW
errno = EOVERFLOW;
#endif
return NULL;
}
/* At this point m is less than a year so casting to an int is safe */
p->tm_mday = (int) m + 1;
p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m;
p->tm_sec = v_tm_sec;
p->tm_min = v_tm_min;
p->tm_hour = v_tm_hour;
p->tm_mon = v_tm_mon;
p->tm_wday = v_tm_wday;
assert(check_tm(p));
return p;
}
struct TM *localtime64_r (const Time64_T *time, struct TM *local_tm)
{
time_t safe_time;
struct tm safe_date;
struct TM gm_tm;
Year orig_year;
int month_diff;
assert(local_tm != NULL);
/* Use the system localtime() if time_t is small enough */
if( SHOULD_USE_SYSTEM_LOCALTIME(*time) ) {
safe_time = (time_t)*time;
TIME64_TRACE1("Using system localtime for %lld\n", *time);
LOCALTIME_R(&safe_time, &safe_date);
copy_tm_to_TM64(&safe_date, local_tm);
assert(check_tm(local_tm));
return local_tm;
}
if( gmtime64_r(time, &gm_tm) == NULL ) {
TIME64_TRACE1("gmtime64_r returned null for %lld\n", *time);
return NULL;
}
orig_year = gm_tm.tm_year;
if (gm_tm.tm_year > (2037 - 1900) ||
gm_tm.tm_year < (1970 - 1900)
)
{
TIME64_TRACE1("Mapping tm_year %lld to safe_year\n", (Year)gm_tm.tm_year);
gm_tm.tm_year = safe_year((Year)(gm_tm.tm_year + 1900)) - 1900;
}
safe_time = (time_t)timegm64(&gm_tm);
if( LOCALTIME_R(&safe_time, &safe_date) == NULL ) {
TIME64_TRACE1("localtime_r(%d) returned NULL\n", (int)safe_time);
return NULL;
}
copy_tm_to_TM64(&safe_date, local_tm);
local_tm->tm_year = (int)orig_year;
if( local_tm->tm_year != orig_year ) {
TIME64_TRACE2("tm_year overflow: tm_year %lld, orig_year %lld\n",
(Year)local_tm->tm_year, (Year)orig_year);
#ifdef EOVERFLOW
errno = EOVERFLOW;
#endif
return NULL;
}
month_diff = local_tm->tm_mon - gm_tm.tm_mon;
/* When localtime is Dec 31st previous year and
gmtime is Jan 1st next year.
*/
if( month_diff == 11 ) {
local_tm->tm_year--;
}
/* When localtime is Jan 1st, next year and
gmtime is Dec 31st, previous year.
*/
if( month_diff == -11 ) {
local_tm->tm_year++;
}
/* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st
in a non-leap xx00. There is one point in the cycle
we can't account for which the safe xx00 year is a leap
year. So we need to correct for Dec 31st comming out as
the 366th day of the year.
*/
if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 )
local_tm->tm_yday--;
assert(check_tm(local_tm));
return local_tm;
}
int valid_tm_wday( const struct TM* date ) {
if( 0 <= date->tm_wday && date->tm_wday <= 6 )
return 1;
else
return 0;
}
int valid_tm_mon( const struct TM* date ) {
if( 0 <= date->tm_mon && date->tm_mon <= 11 )
return 1;
else
return 0;
}
/* Non-thread safe versions of the above */
struct TM *localtime64(const Time64_T *time) {
#ifdef _MSC_VER
_tzset();
#else
tzset();
#endif
return localtime64_r(time, &Static_Return_Date);
}
struct TM *gmtime64(const Time64_T *time) {
return gmtime64_r(time, &Static_Return_Date);
}

View File

@@ -0,0 +1,67 @@
#ifndef TIME64_H
# define TIME64_H
#include <time.h>
#include "time64_config.h"
/* Set our custom types */
typedef INT_64_T Int64;
typedef Int64 Time64_T;
typedef Int64 Year;
/* A copy of the tm struct but with a 64 bit year */
struct TM64 {
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
Year tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;
#ifdef HAS_TM_TM_GMTOFF
long tm_gmtoff;
#endif
#ifdef HAS_TM_TM_ZONE
char *tm_zone;
#endif
};
/* Decide which tm struct to use */
#ifdef USE_TM64
#define TM TM64
#else
#define TM tm
#endif
/* Declare public functions */
struct TM *gmtime64_r (const Time64_T *, struct TM *);
struct TM *localtime64_r (const Time64_T *, struct TM *);
struct TM *gmtime64 (const Time64_T *);
struct TM *localtime64 (const Time64_T *);
Time64_T timegm64 (const struct TM *);
Time64_T mktime64 (const struct TM *);
Time64_T timelocal64 (const struct TM *);
/* Not everyone has gm/localtime_r(), provide a replacement */
#ifdef HAS_LOCALTIME_R
# define LOCALTIME_R(clock, result) localtime_r(clock, result)
#else
# define LOCALTIME_R(clock, result) fake_localtime_r(clock, result)
#endif
#ifdef HAS_GMTIME_R
# define GMTIME_R(clock, result) gmtime_r(clock, result)
#else
# define GMTIME_R(clock, result) fake_gmtime_r(clock, result)
#endif
#endif

View File

@@ -0,0 +1,78 @@
/* Configuration
-------------
Define as appropriate for your system.
Sensible defaults provided.
*/
#ifndef TIME64_CONFIG_H
# define TIME64_CONFIG_H
/* Debugging
TIME_64_DEBUG
Define if you want debugging messages
*/
/* #define TIME_64_DEBUG */
/* INT_64_T
A 64 bit integer type to use to store time and others.
Must be defined.
*/
#define INT_64_T long long
/* USE_TM64
Should we use a 64 bit safe replacement for tm? This will
let you go past year 2 billion but the struct will be incompatible
with tm. Conversion functions will be provided.
*/
/* #define USE_TM64 */
/* Availability of system functions.
HAS_GMTIME_R
Define if your system has gmtime_r()
HAS_LOCALTIME_R
Define if your system has localtime_r()
HAS_TIMEGM
Define if your system has timegm(), a GNU extension.
*/
#if !defined(WIN32) && !defined(_MSC_VER)
#define HAS_GMTIME_R
#define HAS_LOCALTIME_R
#endif
/* #define HAS_TIMEGM */
/* Details of non-standard tm struct elements.
HAS_TM_TM_GMTOFF
True if your tm struct has a "tm_gmtoff" element.
A BSD extension.
HAS_TM_TM_ZONE
True if your tm struct has a "tm_zone" element.
A BSD extension.
*/
/* #define HAS_TM_TM_GMTOFF */
/* #define HAS_TM_TM_ZONE */
/* USE_SYSTEM_LOCALTIME
USE_SYSTEM_GMTIME
USE_SYSTEM_MKTIME
USE_SYSTEM_TIMEGM
Should we use the system functions if the time is inside their range?
Your system localtime() is probably more accurate, but our gmtime() is
fast and safe.
*/
#define USE_SYSTEM_LOCALTIME
/* #define USE_SYSTEM_GMTIME */
#define USE_SYSTEM_MKTIME
/* #define USE_SYSTEM_TIMEGM */
#endif /* TIME64_CONFIG_H */

View File

@@ -0,0 +1,95 @@
/*
Maximum and minimum inputs your system's respective time functions
can correctly handle. time64.h will use your system functions if
the input falls inside these ranges and corresponding USE_SYSTEM_*
constant is defined.
*/
#ifndef TIME64_LIMITS_H
#define TIME64_LIMITS_H
/* Max/min for localtime() */
#define SYSTEM_LOCALTIME_MAX 2147483647
#define SYSTEM_LOCALTIME_MIN -2147483647-1
/* Max/min for gmtime() */
#define SYSTEM_GMTIME_MAX 2147483647
#define SYSTEM_GMTIME_MIN -2147483647-1
/* Max/min for mktime() */
static const struct tm SYSTEM_MKTIME_MAX = {
7,
14,
19,
18,
0,
138,
1,
17,
0
#ifdef HAS_TM_TM_GMTOFF
,-28800
#endif
#ifdef HAS_TM_TM_ZONE
,"PST"
#endif
};
static const struct tm SYSTEM_MKTIME_MIN = {
52,
45,
12,
13,
11,
1,
5,
346,
0
#ifdef HAS_TM_TM_GMTOFF
,-28800
#endif
#ifdef HAS_TM_TM_ZONE
,"PST"
#endif
};
/* Max/min for timegm() */
#ifdef HAS_TIMEGM
static const struct tm SYSTEM_TIMEGM_MAX = {
7,
14,
3,
19,
0,
138,
2,
18,
0
#ifdef HAS_TM_TM_GMTOFF
,0
#endif
#ifdef HAS_TM_TM_ZONE
,"UTC"
#endif
};
static const struct tm SYSTEM_TIMEGM_MIN = {
52,
45,
20,
13,
11,
1,
5,
346,
0
#ifdef HAS_TM_TM_GMTOFF
,0
#endif
#ifdef HAS_TM_TM_ZONE
,"UTC"
#endif
};
#endif /* HAS_TIMEGM */
#endif /* TIME64_LIMITS_H */

Binary file not shown.

File diff suppressed because it is too large Load Diff

View File

@@ -12,11 +12,16 @@ from distutils.errors import CCompilerError
from distutils.errors import DistutilsPlatformError, DistutilsExecError from distutils.errors import DistutilsPlatformError, DistutilsExecError
from distutils.core import Extension from distutils.core import Extension
requirements = ["asyncio"]
requirements = []
try: try:
import xml.etree.ElementTree import xml.etree.ElementTree
except ImportError: except ImportError:
requirements.append("elementtree") requirements.append("elementtree")
try:
import asyncio
except ImportError:
requirements.append("asyncio")
if sys.platform == 'win32' and sys.version_info > (2, 6): if sys.platform == 'win32' and sys.version_info > (2, 6):
@@ -69,11 +74,16 @@ although they do result in significant speed improvements.
c_ext = Feature( c_ext = Feature(
"optional C extension", "optional C extension",
standard=True, standard=True,
ext_modules=[Extension('txmongo._pymongo._cbson', ext_modules=[Extension('asyncio_mongo._bson._cbson',
include_dirs=['txmongo/_pymongo'], include_dirs=['asyncio_mongo/_bson'],
sources=['txmongo/_pymongo/_cbsonmodule.c', sources=['asyncio_mongo/_bson/_cbsonmodule.c',
'txmongo/_pymongo/time_helpers.c', 'asyncio_mongo/_bson/time64.c',
'txmongo/_pymongo/encoding_helpers.c'])]) 'asyncio_mongo/_bson/buffer.c',
'asyncio_mongo/_bson/encoding_helpers.c']),
Extension('asyncio_mongo._pymongo._cmessage',
include_dirs=['bson'],
sources=['asyncio_mongo._pymongo/_cmessagemodule.c',
'asyncio_mongo/_bson/buffer.c'])])
if "--no_ext" in sys.argv: if "--no_ext" in sys.argv:
sys.argv = [x for x in sys.argv if x != "--no_ext"] sys.argv = [x for x in sys.argv if x != "--no_ext"]
@@ -83,13 +93,13 @@ else:
setup( setup(
name="asyncio-mongo", name="asyncio-mongo",
version="0.1.0", version="0.1-dev",
description="Asynchronous Python 3.3+ driver for MongoDB <http://www.mongodb.org>", description="Asynchronous Python 3.3+ driver for MongoDB <http://www.mongodb.org>",
author="Alexandre Fiori, Don Brown", author="Alexandre Fiori, Don Brown",
author_email="mrdon@twdata.org", author_email="mrdon@twdata.org",
url="https://bitbucket.org/mrdon/asyncio-mongo", url="https://bitbucket.org/mrdon/asyncio-mongo",
keywords=["mongo", "mongodb", "pymongo", "gridfs", "asyncio_mongo", "asyncio"], keywords=["mongo", "mongodb", "pymongo", "gridfs", "asyncio_mongo", "asyncio"],
packages=["asyncio_mongo", "asyncio_mongo._pymongo", "asyncio_mongo._gridfs", "asyncio_mongo._bson"], packages=["asyncio_mongo", "asyncio_mongo._pymongo", "asyncio_mongo._bson"],
install_requires=requirements, install_requires=requirements,
features=features, features=features,
license="Apache License, Version 2.0", license="Apache License, Version 2.0",