1
0
Fork 0
This commit is contained in:
Arti Zirk 2016-12-18 14:27:18 +02:00
commit 6cb4dd0157
9 changed files with 1808 additions and 0 deletions

View File

@ -0,0 +1,25 @@
# Arduino Mega RFID-RC522 wiring
## Introduction
**NB! RFID-RC522 requires only 3.3 V DC input voltage. Never connect it to 5V input.**
<div class=pagebreak></div>
## Wiring illustration
![arduino-mega-rfid-rc522-wiring.png](arduino-mega-rfid-rc522-wiring.png)
## Wiring table
| Signal | ATMega2560 port and pin | Arduino Mega 2560 pin | 5V to 3V converter | RFID-RC522 | Wire colour in illustration |
| --- | --- | --- | --- | --- | --- |
| Slave select | PORTB 0 | 53 | - | SDA | White |
| SPI clock | PORTB 1 | 52 | - | SCK | Orange |
| Master out slave in | PORTB 2 | 51 | - | MOSI | Green |
| Master in slave out | PORTB 3 | 50 | - | MISO | Yellow |
| RF522 reset | PORTL 0 | 49 | - | RST | Brown |
| Ground | GND | GND | GND | GND | Black |
| 5 V DC | - | 5V | VIN | - | Red |
| 3,3 V DC | - | - | VOUT | 3.3 V | Red |

Binary file not shown.

After

Width:  |  Height:  |  Size: 140 KiB

2
lib/matejx_avr_lib/README.txt Executable file
View File

@ -0,0 +1,2 @@
Library homepage is at www.randomport.com

View File

@ -0,0 +1,20 @@
#ifndef MAT_HWDEFS_H
#define MAT_HWDEFS_H
#define DDR(x) (*(&x - 1))
#define PIN(x) (*(&x - 2))
#define MFRC522_SS_PORT PORTB
#define MFRC522_SS_BIT 0
#define MFRC522_RST_PORT PORTL
#define MFRC522_RST_BIT 0
#define SCK_DDR DDRB
#define SCK_BIT DDB1
#define MOSI_DDR DDRB
#define MOSI_BIT DDB2
#define MISO_DDR DDRB
#define MISO_BIT DDB3
#endif

View File

@ -0,0 +1,7 @@
#ifndef MAT_HWDEFS_H
#define MAT_HWDEFS_H
#define DDR(x) (*(&x - 1))
#define PIN(x) (*(&x - 2))
#endif

1390
lib/matejx_avr_lib/mfrc522.c Executable file

File diff suppressed because it is too large Load Diff

253
lib/matejx_avr_lib/mfrc522.h Executable file
View File

@ -0,0 +1,253 @@
#ifndef MFRC522_h
#define MFRC522_h
#include <inttypes.h>
typedef uint8_t bool;
typedef uint8_t byte;
typedef uint16_t word;
// MFRC522 registers. Described in chapter 9 of the datasheet.
// When using SPI all addresses are shifted one bit left in the "SPI address byte" (section 8.1.2.3)
enum PCD_Register {
// Page 0: Command and status
// 0x00 // reserved for future use
CommandReg = 0x01 << 1, // starts and stops command execution
ComIEnReg = 0x02 << 1, // enable and disable interrupt request control bits
DivIEnReg = 0x03 << 1, // enable and disable interrupt request control bits
ComIrqReg = 0x04 << 1, // interrupt request bits
DivIrqReg = 0x05 << 1, // interrupt request bits
ErrorReg = 0x06 << 1, // error bits showing the error status of the last command executed
Status1Reg = 0x07 << 1, // communication status bits
Status2Reg = 0x08 << 1, // receiver and transmitter status bits
FIFODataReg = 0x09 << 1, // input and output of 64 byte FIFO buffer
FIFOLevelReg = 0x0A << 1, // number of bytes stored in the FIFO buffer
WaterLevelReg = 0x0B << 1, // level for FIFO underflow and overflow warning
ControlReg = 0x0C << 1, // miscellaneous control registers
BitFramingReg = 0x0D << 1, // adjustments for bit-oriented frames
CollReg = 0x0E << 1, // bit position of the first bit-collision detected on the RF interface
// 0x0F // reserved for future use
// Page 1:Command
// 0x10 // reserved for future use
ModeReg = 0x11 << 1, // defines general modes for transmitting and receiving
TxModeReg = 0x12 << 1, // defines transmission data rate and framing
RxModeReg = 0x13 << 1, // defines reception data rate and framing
TxControlReg = 0x14 << 1, // controls the logical behavior of the antenna driver pins TX1 and TX2
TxASKReg = 0x15 << 1, // controls the setting of the transmission modulation
TxSelReg = 0x16 << 1, // selects the internal sources for the antenna driver
RxSelReg = 0x17 << 1, // selects internal receiver settings
RxThresholdReg = 0x18 << 1, // selects thresholds for the bit decoder
DemodReg = 0x19 << 1, // defines demodulator settings
// 0x1A // reserved for future use
// 0x1B // reserved for future use
MfTxReg = 0x1C << 1, // controls some MIFARE communication transmit parameters
MfRxReg = 0x1D << 1, // controls some MIFARE communication receive parameters
// 0x1E // reserved for future use
SerialSpeedReg = 0x1F << 1, // selects the speed of the serial UART interface
// Page 2: Configuration
// 0x20 // reserved for future use
CRCResultRegH = 0x21 << 1, // shows the MSB and LSB values of the CRC calculation
CRCResultRegL = 0x22 << 1,
// 0x23 // reserved for future use
ModWidthReg = 0x24 << 1, // controls the ModWidth setting?
// 0x25 // reserved for future use
RFCfgReg = 0x26 << 1, // configures the receiver gain
GsNReg = 0x27 << 1, // selects the conductance of the antenna driver pins TX1 and TX2 for modulation
CWGsPReg = 0x28 << 1, // defines the conductance of the p-driver output during periods of no modulation
ModGsPReg = 0x29 << 1, // defines the conductance of the p-driver output during periods of modulation
TModeReg = 0x2A << 1, // defines settings for the internal timer
TPrescalerReg = 0x2B << 1, // the lower 8 bits of the TPrescaler value. The 4 high bits are in TModeReg.
TReloadRegH = 0x2C << 1, // defines the 16-bit timer reload value
TReloadRegL = 0x2D << 1,
TCounterValueRegH = 0x2E << 1, // shows the 16-bit timer value
TCounterValueRegL = 0x2F << 1,
// Page 3:Test Registers
// 0x30 // reserved for future use
TestSel1Reg = 0x31 << 1, // general test signal configuration
TestSel2Reg = 0x32 << 1, // general test signal configuration
TestPinEnReg = 0x33 << 1, // enables pin output driver on pins D1 to D7
TestPinValueReg = 0x34 << 1, // defines the values for D1 to D7 when it is used as an I/O bus
TestBusReg = 0x35 << 1, // shows the status of the internal test bus
AutoTestReg = 0x36 << 1, // controls the digital self test
VersionReg = 0x37 << 1, // shows the software version
AnalogTestReg = 0x38 << 1, // controls the pins AUX1 and AUX2
TestDAC1Reg = 0x39 << 1, // defines the test value for TestDAC1
TestDAC2Reg = 0x3A << 1, // defines the test value for TestDAC2
TestADCReg = 0x3B << 1 // shows the value of ADC I and Q channels
// 0x3C // reserved for production tests
// 0x3D // reserved for production tests
// 0x3E // reserved for production tests
// 0x3F // reserved for production tests
};
// MFRC522 comands. Described in chapter 10 of the datasheet.
enum PCD_Command {
PCD_Idle = 0x00, // no action, cancels current command execution
PCD_Mem = 0x01, // stores 25 bytes into the internal buffer
PCD_GenerateRandomID = 0x02, // generates a 10-byte random ID number
PCD_CalcCRC = 0x03, // activates the CRC coprocessor or performs a self test
PCD_Transmit = 0x04, // transmits data from the FIFO buffer
PCD_NoCmdChange = 0x07, // no command change, can be used to modify the CommandReg register bits without affecting the command, for example, the PowerDown bit
PCD_Receive = 0x08, // activates the receiver circuits
PCD_Transceive = 0x0C, // transmits data from FIFO buffer to antenna and automatically activates the receiver after transmission
PCD_MFAuthent = 0x0E, // performs the MIFARE standard authentication as a reader
PCD_SoftReset = 0x0F // resets the MFRC522
};
// Commands sent to the PICC.
enum PICC_Command {
// The commands used by the PCD to manage communication with several PICCs (ISO 14443-3, Type A, section 6.4)
PICC_CMD_REQA = 0x26, // REQuest command, Type A. Invites PICCs in state IDLE to go to READY and prepare for anticollision or selection. 7 bit frame.
PICC_CMD_WUPA = 0x52, // Wake-UP command, Type A. Invites PICCs in state IDLE and HALT to go to READY(*) and prepare for anticollision or selection. 7 bit frame.
PICC_CMD_CT = 0x88, // Cascade Tag. Not really a command, but used during anti collision.
PICC_CMD_SEL_CL1 = 0x93, // Anti collision/Select, Cascade Level 1
PICC_CMD_SEL_CL2 = 0x95, // Anti collision/Select, Cascade Level 1
PICC_CMD_SEL_CL3 = 0x97, // Anti collision/Select, Cascade Level 1
PICC_CMD_HLTA = 0x50, // HaLT command, Type A. Instructs an ACTIVE PICC to go to state HALT.
// The commands used for MIFARE Classic (from http://www.nxp.com/documents/data_sheet/MF1S503x.pdf, Section 9)
// Use PCD_MFAuthent to authenticate access to a sector, then use these commands to read/write/modify the blocks on the sector.
// The read/write commands can also be used for MIFARE Ultralight.
PICC_CMD_MF_AUTH_KEY_A = 0x60, // Perform authentication with Key A
PICC_CMD_MF_AUTH_KEY_B = 0x61, // Perform authentication with Key B
PICC_CMD_MF_READ = 0x30, // Reads one 16 byte block from the authenticated sector of the PICC. Also used for MIFARE Ultralight.
PICC_CMD_MF_WRITE = 0xA0, // Writes one 16 byte block to the authenticated sector of the PICC. Called "COMPATIBILITY WRITE" for MIFARE Ultralight.
PICC_CMD_MF_DECREMENT = 0xC0, // Decrements the contents of a block and stores the result in the internal data register.
PICC_CMD_MF_INCREMENT = 0xC1, // Increments the contents of a block and stores the result in the internal data register.
PICC_CMD_MF_RESTORE = 0xC2, // Reads the contents of a block into the internal data register.
PICC_CMD_MF_TRANSFER = 0xB0, // Writes the contents of the internal data register to a block.
// The commands used for MIFARE Ultralight (from http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf, Section 8.6)
// The PICC_CMD_MF_READ and PICC_CMD_MF_WRITE can also be used for MIFARE Ultralight.
PICC_CMD_UL_WRITE = 0xA2 // Writes one 4 byte page to the PICC.
};
// MIFARE constants that does not fit anywhere else
enum MIFARE_Misc {
MF_ACK = 0xA, // The MIFARE Classic uses a 4 bit ACK/NAK. Any other value than 0xA is NAK.
MF_KEY_SIZE = 6 // A Mifare Crypto1 key is 6 bytes.
};
// PICC types we can detect. Remember to update PICC_GetTypeName() if you add more.
enum PICC_Type {
PICC_TYPE_UNKNOWN = 0,
PICC_TYPE_ISO_14443_4 = 1, // PICC compliant with ISO/IEC 14443-4
PICC_TYPE_ISO_18092 = 2, // PICC compliant with ISO/IEC 18092 (NFC)
PICC_TYPE_MIFARE_MINI = 3, // MIFARE Classic protocol, 320 bytes
PICC_TYPE_MIFARE_1K = 4, // MIFARE Classic protocol, 1KB
PICC_TYPE_MIFARE_4K = 5, // MIFARE Classic protocol, 4KB
PICC_TYPE_MIFARE_UL = 6, // MIFARE Ultralight or Ultralight C
PICC_TYPE_MIFARE_PLUS = 7, // MIFARE Plus
PICC_TYPE_TNP3XXX = 8, // Only mentioned in NXP AN 10833 MIFARE Type Identification Procedure
PICC_TYPE_NOT_COMPLETE = 255 // SAK indicates UID is not complete.
};
// Return codes from the functions in this class. Remember to update GetStatusCodeName() if you add more.
enum StatusCode {
STATUS_OK = 1, // Success
STATUS_ERROR = 2, // Error in communication
STATUS_COLLISION = 3, // Collission detected
STATUS_TIMEOUT = 4, // Timeout in communication.
STATUS_NO_ROOM = 5, // A buffer is not big enough.
STATUS_INTERNAL_ERROR = 6, // Internal error in the code. Should not happen ;-)
STATUS_INVALID = 7, // Invalid argument.
STATUS_CRC_WRONG = 8, // The CRC_A does not match
STATUS_MIFARE_NACK = 9 // A MIFARE PICC responded with NAK.
};
// A struct used for passing the UID of a PICC.
typedef struct {
byte size; // Number of bytes in the UID. 4, 7 or 10.
byte uidByte[10];
byte sak; // The SAK (Select acknowledge) byte returned from the PICC after successful selection.
} Uid;
// A struct used for passing a MIFARE Crypto1 key
typedef struct {
byte keyByte[MF_KEY_SIZE];
} MIFARE_Key;
// Member variables
//Uid uid; // Used by PICC_ReadCardSerial().
// Size of the MFRC522 FIFO
//static const byte FIFO_SIZE = 64; // The FIFO is 64 bytes.
//-----------------------------------------------------------------------------------
// Functions for setting up the Arduino
//-----------------------------------------------------------------------------------
void MFRC522_init(void);
void setSPIConfig(void);
//-----------------------------------------------------------------------------------
// Basic interface functions for communicating with the MFRC522
//-----------------------------------------------------------------------------------
void PCD_WriteRegister(byte reg, byte value);
void PCD_WriteRegister2(byte reg, byte count, byte *values);
byte PCD_ReadRegister(byte reg);
void PCD_ReadRegister2(byte reg, byte count, byte *values, byte rxAlign);
void setBitMask(unsigned char reg, unsigned char mask);
void PCD_SetRegisterBitMask(byte reg, byte mask);
void PCD_ClearRegisterBitMask(byte reg, byte mask);
byte PCD_CalculateCRC(byte *data, byte length, byte *result);
//-----------------------------------------------------------------------------------
// Functions for manipulating the MFRC522
//-----------------------------------------------------------------------------------
byte PCD_Init(void);
byte PCD_Reset(void);
void PCD_AntennaOn(void);
//-----------------------------------------------------------------------------------
// Functions for communicating with PICCs
//-----------------------------------------------------------------------------------
byte PCD_TransceiveData(byte *sendData, byte sendLen, byte *backData, byte *backLen, byte *validBits, byte rxAlign, bool checkCRC);
byte PCD_CommunicateWithPICC(byte command, byte waitIRq, byte *sendData, byte sendLen, byte *backData, byte *backLen, byte *validBits, byte rxAlign, bool checkCRC);
byte PICC_RequestA(byte *bufferATQA, byte *bufferSize);
byte PICC_WakeupA(byte *bufferATQA, byte *bufferSize);
byte PICC_REQA_or_WUPA( byte command, byte *bufferATQA, byte *bufferSize);
byte PICC_Select(Uid *uid, byte validBits);
byte PICC_HaltA(void);
//-----------------------------------------------------------------------------------
// Functions for communicating with MIFARE PICCs
//-----------------------------------------------------------------------------------
byte PCD_Authenticate(byte command, byte blockAddr, MIFARE_Key *key, Uid *uid);
void PCD_StopCrypto1(void);
byte MIFARE_Read(byte blockAddr, byte *buffer, byte *bufferSize);
byte MIFARE_Write(byte blockAddr, byte *buffer, byte bufferSize);
byte MIFARE_Decrement(byte blockAddr, long delta);
byte MIFARE_Increment(byte blockAddr, long delta);
byte MIFARE_Restore(byte blockAddr);
byte MIFARE_Transfer(byte blockAddr);
byte MIFARE_Ultralight_Write(byte page, byte *buffer, byte bufferSize);
//-----------------------------------------------------------------------------------
// Support functions
//-----------------------------------------------------------------------------------
byte PCD_MIFARE_Transceive( byte *sendData, byte sendLen, bool acceptTimeout);
const char *GetStatusCodeName(byte code);
byte PICC_GetType(byte sak);
const char *PICC_GetTypeName(byte type);
void PICC_DumpToSerial(Uid *uid);
void PICC_DumpMifareClassicToSerial(Uid *uid, byte piccType, MIFARE_Key *key);
void PICC_DumpMifareClassicSectorToSerial(Uid *uid, MIFARE_Key *key, byte sector);
void PICC_DumpMifareUltralightToSerial(void);
void MIFARE_SetAccessBits(byte *accessBitBuffer, byte g0, byte g1, byte g2, byte g3);
//-----------------------------------------------------------------------------------
// Convenience functions - does not add extra functionality
//-----------------------------------------------------------------------------------
bool PICC_IsNewCardPresent(void);
bool PICC_ReadCardSerial(Uid* uid);
/*
private:
byte _chipSelectPin; // Arduino pin connected to MFRC522's SPI slave select input (Pin 24, NSS, active low)
byte _resetPowerDownPin; // Arduino pin connected to MFRC522's reset and power down input (Pin 6, NRSTPD, active low)
byte MIFARE_TwoStepHelper(byte command, byte blockAddr, long data);
*/
#endif

98
lib/matejx_avr_lib/spi.c Executable file
View File

@ -0,0 +1,98 @@
/**
SPI methods are not interrupt driven - they wait until SPI operation completes.
If you're using CMT and would prefer switching to another task while SPI operation
is in progress, you can define SPI_USE_CMT in swdefs.h. This requires CMT_MUTEX_FUNC.
Also, SS (CS) is not controlled by these methods. It's the responsibility of the user.
@file spi.c
@brief SPI routines
@author Matej Kogovsek (matej@hamradio.si)
@copyright LGPL 2.1
@note This file is part of mat-stm32f1-lib
*/
#include <inttypes.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include "spi.h"
#include "hwdefs.h"
#ifdef SPI_USE_CMT
#warning SPI using cmt
#include "cmt.h"
struct cmt_mutex spi_mutex;
#endif
#ifndef SPCR0
#define SPCR0 SPCR
#define SPE0 SPE
#define MSTR0 MSTR
#define SPSR0 SPSR
#define SPDR0 SPDR
#define SPIF0 SPIF
#endif
/**
@brief Initialize SPI interface.
Although SPI can have different clock phase and polarity, I have never ran across anything that uses other
than low polarity and 1st edge phase. Therefore these parameters are implied and not variable. As are 8 bit
words and MSB first.
@param[in] fdiv Baudrate prescaler, F_CPU dependent
*/
void spi_init(uint8_t fdiv)
{
if( SPCR0 & _BV(SPE0) ) return;
#ifdef SPI_USE_CMT
spi_mutex.ac = 0;
#endif
// make SCK, MOSI pins outputs and MISO an input
SCK_DDR |= _BV(SCK_BIT);
MOSI_DDR |= _BV(MOSI_BIT);
MISO_DDR &= ~_BV(MISO_BIT);
// init SPI, MSB first, SCK low when idle
SPCR0 = _BV(SPE0) | _BV(MSTR0) | (fdiv & 3);
SPSR0 = (fdiv >> 2) & 1;
}
/**
@brief Send and receive byte (NSS not controlled)
@param[in] d Byte to send
@return byte received
*/
uint8_t spi_rw(uint8_t d)
{
#ifdef SPI_USE_CMT
cmt_acquire(&spi_mutex);
#endif
SPCR0 |= _BV(MSTR0);
SPDR0 = d;
while( !(SPSR0 & _BV(SPIF0)) ) {
#ifdef SPI_USE_CMT
cmt_delay_ticks(0);
#endif
}
d = SPDR0;
#ifdef SPI_USE_CMT
cmt_release(&spi_mutex);
#endif
return d;
}
// ------------------------------------------------------------------
// INTERRUPTS
// ------------------------------------------------------------------
ISR(SPI_STC_vect)
{
//
}

13
lib/matejx_avr_lib/spi.h Executable file
View File

@ -0,0 +1,13 @@
#ifndef MAT_SPI_H
#define MAT_SPI_H
#include <inttypes.h>
#include <avr/io.h>
// init SPI
void spi_init(uint8_t fdiv);
// send a byte over SPI
uint8_t spi_rw(uint8_t d);
#endif