diff --git a/doc/arduino-mega-rfid-rc522-wiring.markdown b/doc/arduino-mega-rfid-rc522-wiring.markdown new file mode 100644 index 0000000..ada9329 --- /dev/null +++ b/doc/arduino-mega-rfid-rc522-wiring.markdown @@ -0,0 +1,25 @@ +# Arduino Mega RFID-RC522 wiring + +## Introduction + +**NB! RFID-RC522 requires only 3.3 V DC input voltage. Never connect it to 5V input.** + +
+ +## Wiring illustration + +![arduino-mega-rfid-rc522-wiring.png](arduino-mega-rfid-rc522-wiring.png) + +## Wiring table + +| Signal | ATMega2560 port and pin | Arduino Mega 2560 pin | 5V to 3V converter | RFID-RC522 | Wire colour in illustration | +| --- | --- | --- | --- | --- | --- | +| Slave select | PORTB 0 | 53 | - | SDA | White | +| SPI clock | PORTB 1 | 52 | - | SCK | Orange | +| Master out slave in | PORTB 2 | 51 | - | MOSI | Green | +| Master in slave out | PORTB 3 | 50 | - | MISO | Yellow | +| RF522 reset | PORTL 0 | 49 | - | RST | Brown | +| Ground | GND | GND | GND | GND | Black | +| 5 V DC | - | 5V | VIN | - | Red | +| 3,3 V DC | - | - | VOUT | 3.3 V | Red | + diff --git a/doc/arduino-mega-rfid-rc522-wiring.png b/doc/arduino-mega-rfid-rc522-wiring.png new file mode 100644 index 0000000..d3ae3c0 Binary files /dev/null and b/doc/arduino-mega-rfid-rc522-wiring.png differ diff --git a/lib/matejx_avr_lib/README.txt b/lib/matejx_avr_lib/README.txt new file mode 100755 index 0000000..44abdc5 --- /dev/null +++ b/lib/matejx_avr_lib/README.txt @@ -0,0 +1,2 @@ + +Library homepage is at www.randomport.com diff --git a/lib/matejx_avr_lib/hwdefs.h b/lib/matejx_avr_lib/hwdefs.h new file mode 100644 index 0000000..691753e --- /dev/null +++ b/lib/matejx_avr_lib/hwdefs.h @@ -0,0 +1,20 @@ +#ifndef MAT_HWDEFS_H +#define MAT_HWDEFS_H + +#define DDR(x) (*(&x - 1)) +#define PIN(x) (*(&x - 2)) + +#define MFRC522_SS_PORT PORTB +#define MFRC522_SS_BIT 0 + +#define MFRC522_RST_PORT PORTL +#define MFRC522_RST_BIT 0 + +#define SCK_DDR DDRB +#define SCK_BIT DDB1 +#define MOSI_DDR DDRB +#define MOSI_BIT DDB2 +#define MISO_DDR DDRB +#define MISO_BIT DDB3 + +#endif \ No newline at end of file diff --git a/lib/matejx_avr_lib/hwdefs_minimal.h b/lib/matejx_avr_lib/hwdefs_minimal.h new file mode 100755 index 0000000..6b4cce4 --- /dev/null +++ b/lib/matejx_avr_lib/hwdefs_minimal.h @@ -0,0 +1,7 @@ +#ifndef MAT_HWDEFS_H +#define MAT_HWDEFS_H + + #define DDR(x) (*(&x - 1)) + #define PIN(x) (*(&x - 2)) + +#endif diff --git a/lib/matejx_avr_lib/mfrc522.c b/lib/matejx_avr_lib/mfrc522.c new file mode 100755 index 0000000..5171a63 --- /dev/null +++ b/lib/matejx_avr_lib/mfrc522.c @@ -0,0 +1,1390 @@ +/** +@file mfrc522.c +@brief MFRC522 Mifare routines +@author Matej Kogovsek (matej@hamradio.si) +@copyright LGPL 2.1 +@note This file is part of mat-avr-lib +@note This file was not written by me from scratch. It was adapted from code by Miguel Balboa at https://github.com/miguelbalboa/rfid +*/ + +#include +#include +#include + +#include "mfrc522.h" +#include "spi.h" +#include "hwdefs.h" + +#define SPI_CS_LOW MFRC522_SS_PORT &= ~_BV(MFRC522_SS_BIT) +#define SPI_CS_HIGH MFRC522_SS_PORT |= _BV(MFRC522_SS_BIT) + +static const byte FIFO_SIZE = 64; // The FIFO is 64 bytes. + +void MFRC522_init() { + // Set the chipSelectPin as digital output, do not select the slave yet + DDR(MFRC522_SS_PORT) |= _BV(MFRC522_SS_BIT); + SPI_CS_HIGH; + + // Set the resetPowerDownPin as digital output, do not reset or power down. + DDR(MFRC522_RST_PORT) |= _BV(MFRC522_RST_BIT); + MFRC522_RST_PORT |= _BV(MFRC522_RST_BIT); + + // Set SPI bus to work with MFRC522 chip. + spi_init(1); +} + + +//----------------------------------------------------------------------------------- +// Basic interface functions for communicating with the MFRC522 +//----------------------------------------------------------------------------------- + +/** + * Writes a byte to the specified register in the MFRC522 chip. + * The interface is described in the datasheet section 8.1.2. + */ +void PCD_WriteRegister( byte reg, ///< The register to write to. One of the PCD_Register enums. + byte value ///< The value to write. +) { + SPI_CS_LOW; // Select slave + spi_rw(reg & 0x7E); // MSB == 0 is for writing. LSB is not used in address. Datasheet section 8.1.2.3. + spi_rw(value); + SPI_CS_HIGH; // Release slave again +} + +/** + * Writes a number of bytes to the specified register in the MFRC522 chip. + * The interface is described in the datasheet section 8.1.2. + */ +void PCD_WriteRegister2(byte reg, ///< The register to write to. One of the PCD_Register enums. + byte count, ///< The number of bytes to write to the register + byte *values ///< The values to write. Byte array. +) { + SPI_CS_LOW; // Select slave + spi_rw(reg & 0x7E); // MSB == 0 is for writing. LSB is not used in address. Datasheet section 8.1.2.3. + for (byte index = 0; index < count; index++) { + spi_rw(values[index]); + } + SPI_CS_HIGH; // Release slave again +} + +/** + * Reads a byte from the specified register in the MFRC522 chip. + * The interface is described in the datasheet section 8.1.2. + */ +byte PCD_ReadRegister(byte reg ///< The register to read from. One of the PCD_Register enums. +) { + byte value; + SPI_CS_LOW; // Select slave + spi_rw(0x80 | (reg & 0x7E)); // MSB == 1 is for reading. LSB is not used in address. Datasheet section 8.1.2.3. + value = spi_rw(0); // Read the value back. Send 0 to stop reading. + SPI_CS_HIGH; // Release slave again + return value; +} + +/** + * Reads a number of bytes from the specified register in the MFRC522 chip. + * The interface is described in the datasheet section 8.1.2. + */ +void PCD_ReadRegister2( byte reg, ///< The register to read from. One of the PCD_Register enums. + byte count, ///< The number of bytes to read + byte *values, ///< Byte array to store the values in. + byte rxAlign ///< Only bit positions rxAlign..7 in values[0] are updated. +) { + if (count == 0) { + return; + } + byte address = 0x80 | (reg & 0x7E); // MSB == 1 is for reading. LSB is not used in address. Datasheet section 8.1.2.3. + byte index = 0; // Index in values array. + SPI_CS_LOW; // Select slave + count--; // One read is performed outside of the loop + spi_rw(address); // Tell MFRC522 which address we want to read + while (index < count) { + if (index == 0 && rxAlign) { // Only update bit positions rxAlign..7 in values[0] + // Create bit mask for bit positions rxAlign..7 + byte mask = 0; + for (byte i = rxAlign; i <= 7; i++) { + mask |= (1 << i); + } + // Read value and tell that we want to read the same address again. + byte value = spi_rw(address); + // Apply mask to both current value of values[0] and the new data in value. + values[0] = (values[index] & ~mask) | (value & mask); + } + else { // Normal case + values[index] = spi_rw(address); // Read value and tell that we want to read the same address again. + } + index++; + } + values[index] = spi_rw(0); // Read the final byte. Send 0 to stop reading. + SPI_CS_HIGH; // Release slave again +} + +/** + * Sets the bits given in mask in register reg. + */ +void PCD_SetRegisterBitMask(byte reg, ///< The register to update. One of the PCD_Register enums. + byte mask ///< The bits to set. +) { + byte tmp; + tmp = PCD_ReadRegister(reg); + PCD_WriteRegister(reg, tmp | mask); // set bit mask +} + +/** + * Clears the bits given in mask from register reg. + */ +void PCD_ClearRegisterBitMask( byte reg, ///< The register to update. One of the PCD_Register enums. + byte mask ///< The bits to clear. +) { + byte tmp; + tmp = PCD_ReadRegister(reg); + PCD_WriteRegister(reg, tmp & (~mask)); // clear bit mask +} + + +/** + * Use the CRC coprocessor in the MFRC522 to calculate a CRC_A. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte PCD_CalculateCRC( byte *data, ///< In: Pointer to the data to transfer to the FIFO for CRC calculation. + byte length, ///< In: The number of bytes to transfer. + byte *result ///< Out: Pointer to result buffer. Result is written to result[0..1], low byte first. +) { + PCD_WriteRegister(CommandReg, PCD_Idle); // Stop any active command. + PCD_WriteRegister(DivIrqReg, 0x04); // Clear the CRCIRq interrupt request bit + PCD_SetRegisterBitMask(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization + PCD_WriteRegister2(FIFODataReg, length, data); // Write data to the FIFO + PCD_WriteRegister(CommandReg, PCD_CalcCRC); // Start the calculation + + // Wait for the CRC calculation to complete. Each iteration of the while-loop takes 17.73µs. + word i = 5000; + byte n; + while (1) { + n = PCD_ReadRegister(DivIrqReg); // DivIrqReg[7..0] bits are: Set2 reserved reserved MfinActIRq reserved CRCIRq reserved reserved + if (n & 0x04) { // CRCIRq bit set - calculation done + break; + } + if (--i == 0) { // The emergency break. We will eventually terminate on this one after 89ms. Communication with the MFRC522 might be down. + return STATUS_TIMEOUT; + } + } + PCD_WriteRegister(CommandReg, PCD_Idle); // Stop calculating CRC for new content in the FIFO. + + // Transfer the result from the registers to the result buffer + result[0] = PCD_ReadRegister(CRCResultRegL); + result[1] = PCD_ReadRegister(CRCResultRegH); + return STATUS_OK; +} + + +//----------------------------------------------------------------------------------- +// Functions for manipulating the MFRC522 +//----------------------------------------------------------------------------------- + +/** + * Initializes the MFRC522 chip. + */ +byte PCD_Init() { + if ( 0 == (MFRC522_RST_PORT & _BV(MFRC522_RST_BIT)) ) { //The MFRC522 chip is in power down mode. + MFRC522_RST_PORT |= _BV(MFRC522_RST_BIT); // Exit power down mode. This triggers a hard reset. + // Section 8.8.2 in the datasheet says the oscillator start-up time is the start up time of the crystal + 37,74µs. Let us be generous: 50ms. + _delay_ms(50); + } + else { // Perform a soft reset + if( STATUS_OK != PCD_Reset() ) { + return STATUS_TIMEOUT; + } + } + // When communicating with a PICC we need a timeout if something goes wrong. + // f_timer = 13.56 MHz / (2*TPreScaler+1) where TPreScaler = [TPrescaler_Hi:TPrescaler_Lo]. + // TPrescaler_Hi are the four low bits in TModeReg. TPrescaler_Lo is TPrescalerReg. + PCD_WriteRegister(TModeReg, 0x80); // TAuto=1; timer starts automatically at the end of the transmission in all communication modes at all speeds + PCD_WriteRegister(TPrescalerReg, 0xA9); // TPreScaler = TModeReg[3..0]:TPrescalerReg, ie 0x0A9 = 169 => f_timer=40kHz, ie a timer period of 25µs. + PCD_WriteRegister(TReloadRegH, 0x03); // Reload timer with 0x3E8 = 1000, ie 25ms before timeout. + PCD_WriteRegister(TReloadRegL, 0xE8); + + PCD_WriteRegister(TxASKReg, 0x40); // Default 0x00. Force a 100 % ASK modulation independent of the ModGsPReg register setting + PCD_WriteRegister(ModeReg, 0x3D); // Default 0x3F. Set the preset value for the CRC coprocessor for the CalcCRC command to 0x6363 (ISO 14443-3 part 6.2.4) + PCD_AntennaOn(); // Enable the antenna driver pins TX1 and TX2 (they were disabled by the reset) + + return STATUS_OK; +} + +/** + * Performs a soft reset on the MFRC522 chip and waits for it to be ready again. + */ +byte PCD_Reset() { + PCD_WriteRegister(CommandReg, PCD_SoftReset); // Issue the SoftReset command. + // The datasheet does not mention how long the SoftRest command takes to complete. + // But the MFRC522 might have been in soft power-down mode (triggered by bit 4 of CommandReg) + // Section 8.8.2 in the datasheet says the oscillator start-up time is the start up time of the crystal + 37,74µs. Let us be generous: 50ms. + _delay_ms(50); + // Wait for the PowerDown bit in CommandReg to be cleared + word i = 5000; + while (PCD_ReadRegister(CommandReg) & (1<<4)) { + // PCD still restarting - unlikely after waiting 50ms, but better safe than sorry. + if( --i == 0 ) { + return STATUS_TIMEOUT; + } + } + return STATUS_OK; +} + +/** + * Turns the antenna on by enabling pins TX1 and TX2. + * After a reset these pins disabled. + */ +void PCD_AntennaOn() { + byte value = PCD_ReadRegister(TxControlReg); + if ((value & 0x03) != 0x03) { + PCD_WriteRegister(TxControlReg, value | 0x03); + } +} + +//----------------------------------------------------------------------------------- +// Functions for communicating with PICCs +//----------------------------------------------------------------------------------- + +/** + * Executes the Transceive command. + * CRC validation can only be done if backData and backLen are specified. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte PCD_TransceiveData( byte *sendData, ///< Pointer to the data to transfer to the FIFO. + byte sendLen, ///< Number of bytes to transfer to the FIFO. + byte *backData, ///< NULL or pointer to buffer if data should be read back after executing the command. + byte *backLen, ///< In: Max number of bytes to write to *backData. Out: The number of bytes returned. + byte *validBits, ///< In/Out: The number of valid bits in the last byte. 0 for 8 valid bits. Default NULL. + byte rxAlign, ///< In: Defines the bit position in backData[0] for the first bit received. Default 0. + bool checkCRC ///< In: True => The last two bytes of the response is assumed to be a CRC_A that must be validated. +) { + byte waitIRq = 0x30; // RxIRq and IdleIRq + return PCD_CommunicateWithPICC(PCD_Transceive, waitIRq, sendData, sendLen, backData, backLen, validBits, rxAlign, checkCRC); +} + +/** + * Transfers data to the MFRC522 FIFO, executes a command, waits for completion and transfers data back from the FIFO. + * CRC validation can only be done if backData and backLen are specified. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte PCD_CommunicateWithPICC( byte command, ///< The command to execute. One of the PCD_Command enums. + byte waitIRq, ///< The bits in the ComIrqReg register that signals successful completion of the command. + byte *sendData, ///< Pointer to the data to transfer to the FIFO. + byte sendLen, ///< Number of bytes to transfer to the FIFO. + byte *backData, ///< NULL or pointer to buffer if data should be read back after executing the command. + byte *backLen, ///< In: Max number of bytes to write to *backData. Out: The number of bytes returned. + byte *validBits, ///< In/Out: The number of valid bits in the last byte. 0 for 8 valid bits. + byte rxAlign, ///< In: Defines the bit position in backData[0] for the first bit received. Default 0. + bool checkCRC ///< In: True => The last two bytes of the response is assumed to be a CRC_A that must be validated. +) { + byte n, _validBits = 0; + unsigned int i; + + // Prepare values for BitFramingReg + byte txLastBits = validBits ? *validBits : 0; + byte bitFraming = (rxAlign << 4) + txLastBits; // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0] + + PCD_WriteRegister(CommandReg, PCD_Idle); // Stop any active command. + PCD_WriteRegister(ComIrqReg, 0x7F); // Clear all seven interrupt request bits + PCD_SetRegisterBitMask(FIFOLevelReg, 0x80); // FlushBuffer = 1, FIFO initialization + PCD_WriteRegister2(FIFODataReg, sendLen, sendData); // Write sendData to the FIFO + PCD_WriteRegister(BitFramingReg, bitFraming); // Bit adjustments + PCD_WriteRegister(CommandReg, command); // Execute the command + if (command == PCD_Transceive) { + PCD_SetRegisterBitMask(BitFramingReg, 0x80); // StartSend=1, transmission of data starts + } + + // Wait for the command to complete. + // In PCD_Init() we set the TAuto flag in TModeReg. This means the timer automatically starts when the PCD stops transmitting. + // Each iteration of the do-while-loop takes 17.86µs. + i = 2000; + while (1) { + n = PCD_ReadRegister(ComIrqReg); // ComIrqReg[7..0] bits are: Set1 TxIRq RxIRq IdleIRq HiAlertIRq LoAlertIRq ErrIRq TimerIRq + if (n & waitIRq) { // One of the interrupts that signal success has been set. + break; + } + if (n & 0x01) { // Timer interrupt - nothing received in 25ms + return STATUS_TIMEOUT; + } + if (--i == 0) { // The emergency break. If all other condions fail we will eventually terminate on this one after 35.7ms. Communication with the MFRC522 might be down. + return STATUS_TIMEOUT; + } + } + + // Stop now if any errors except collisions were detected. + byte errorRegValue = PCD_ReadRegister(ErrorReg); // ErrorReg[7..0] bits are: WrErr TempErr reserved BufferOvfl CollErr CRCErr ParityErr ProtocolErr + if (errorRegValue & 0x13) { // BufferOvfl ParityErr ProtocolErr + return STATUS_ERROR; + } + + // If the caller wants data back, get it from the MFRC522. + if (backData && backLen) { + n = PCD_ReadRegister(FIFOLevelReg); // Number of bytes in the FIFO + if (n > *backLen) { + return STATUS_NO_ROOM; + } + *backLen = n; // Number of bytes returned + PCD_ReadRegister2(FIFODataReg, n, backData, rxAlign); // Get received data from FIFO + _validBits = PCD_ReadRegister(ControlReg) & 0x07; // RxLastBits[2:0] indicates the number of valid bits in the last received byte. If this value is 000b, the whole byte is valid. + if (validBits) { + *validBits = _validBits; + } + } + + // Tell about collisions + if (errorRegValue & 0x08) { // CollErr + return STATUS_COLLISION; + } + + // Perform CRC_A validation if requested. + if (backData && backLen && checkCRC) { + // In this case a MIFARE Classic NAK is not OK. + if (*backLen == 1 && _validBits == 4) { + return STATUS_MIFARE_NACK; + } + // We need at least the CRC_A value and all 8 bits of the last byte must be received. + if (*backLen < 2 || _validBits != 0) { + return STATUS_CRC_WRONG; + } + // Verify CRC_A - do our own calculation and store the control in controlBuffer. + byte controlBuffer[2]; + n = PCD_CalculateCRC(&backData[0], *backLen - 2, &controlBuffer[0]); + if (n != STATUS_OK) { + return n; + } + if ((backData[*backLen - 2] != controlBuffer[0]) || (backData[*backLen - 1] != controlBuffer[1])) { + return STATUS_CRC_WRONG; + } + } + + return STATUS_OK; +} + +/** + * Transmits a REQuest command, Type A. Invites PICCs in state IDLE to go to READY and prepare for anticollision or selection. 7 bit frame. + * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte PICC_RequestA( byte *bufferATQA, ///< The buffer to store the ATQA (Answer to request) in + byte *bufferSize ///< Buffer size, at least two bytes. Also number of bytes returned if STATUS_OK. +) { + return PICC_REQA_or_WUPA(PICC_CMD_REQA, bufferATQA, bufferSize); +} + +/** + * Transmits a Wake-UP command, Type A. Invites PICCs in state IDLE and HALT to go to READY(*) and prepare for anticollision or selection. 7 bit frame. + * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte PICC_WakeupA( byte *bufferATQA, ///< The buffer to store the ATQA (Answer to request) in + byte *bufferSize ///< Buffer size, at least two bytes. Also number of bytes returned if STATUS_OK. +) { + return PICC_REQA_or_WUPA(PICC_CMD_WUPA, bufferATQA, bufferSize); +} + +/** + * Transmits REQA or WUPA commands. + * Beware: When two PICCs are in the field at the same time I often get STATUS_TIMEOUT - probably due do bad antenna design. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte PICC_REQA_or_WUPA( byte command, ///< The command to send - PICC_CMD_REQA or PICC_CMD_WUPA + byte *bufferATQA, ///< The buffer to store the ATQA (Answer to request) in + byte *bufferSize ///< Buffer size, at least two bytes. Also number of bytes returned if STATUS_OK. +) { + byte validBits; + byte status; + + if (bufferATQA == NULL || *bufferSize < 2) { // The ATQA response is 2 bytes long. + return STATUS_NO_ROOM; + } + PCD_ClearRegisterBitMask(CollReg, 0x80); // ValuesAfterColl=1 => Bits received after collision are cleared. + validBits = 7; // For REQA and WUPA we need the short frame format - transmit only 7 bits of the last (and only) byte. TxLastBits = BitFramingReg[2..0] + status = PCD_TransceiveData(&command, 1, bufferATQA, bufferSize, &validBits, 0, 0); + if (status != STATUS_OK) { + return status; + } + if (*bufferSize != 2 || validBits != 0) { // ATQA must be exactly 16 bits. + return STATUS_ERROR; + } + return STATUS_OK; +} + +/** + * Transmits SELECT/ANTICOLLISION commands to select a single PICC. + * Before calling this function the PICCs must be placed in the READY(*) state by calling PICC_RequestA() or PICC_WakeupA(). + * On success: + * - The chosen PICC is in state ACTIVE(*) and all other PICCs have returned to state IDLE/HALT. (Figure 7 of the ISO/IEC 14443-3 draft.) + * - The UID size and value of the chosen PICC is returned in *uid along with the SAK. + * + * A PICC UID consists of 4, 7 or 10 bytes. + * Only 4 bytes can be specified in a SELECT command, so for the longer UIDs two or three iterations are used: + * UID size Number of UID bytes Cascade levels Example of PICC + * ======== =================== ============== =============== + * single 4 1 MIFARE Classic + * double 7 2 MIFARE Ultralight + * triple 10 3 Not currently in use? + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte PICC_Select( Uid *uid, ///< Pointer to Uid struct. Normally output, but can also be used to supply a known UID. + byte validBits ///< The number of known UID bits supplied in *uid. Normally 0. If set you must also supply uid->size. +) { + bool uidComplete; + bool selectDone; + bool useCascadeTag; + byte cascadeLevel = 1; + byte result; + byte count; + byte index; + byte uidIndex; // The first index in uid->uidByte[] that is used in the current Cascade Level. + char currentLevelKnownBits; // The number of known UID bits in the current Cascade Level. + byte buffer[9]; // The SELECT/ANTICOLLISION commands uses a 7 byte standard frame + 2 bytes CRC_A + byte bufferUsed; // The number of bytes used in the buffer, ie the number of bytes to transfer to the FIFO. + byte rxAlign; // Used in BitFramingReg. Defines the bit position for the first bit received. + byte txLastBits; // Used in BitFramingReg. The number of valid bits in the last transmitted byte. + byte *responseBuffer; + byte responseLength; + + // Description of buffer structure: + // Byte 0: SEL Indicates the Cascade Level: PICC_CMD_SEL_CL1, PICC_CMD_SEL_CL2 or PICC_CMD_SEL_CL3 + // Byte 1: NVB Number of Valid Bits (in complete command, not just the UID): High nibble: complete bytes, Low nibble: Extra bits. + // Byte 2: UID-data or CT See explanation below. CT means Cascade Tag. + // Byte 3: UID-data + // Byte 4: UID-data + // Byte 5: UID-data + // Byte 6: BCC Block Check Character - XOR of bytes 2-5 + // Byte 7: CRC_A + // Byte 8: CRC_A + // The BCC and CRC_A is only transmitted if we know all the UID bits of the current Cascade Level. + // + // Description of bytes 2-5: (Section 6.5.4 of the ISO/IEC 14443-3 draft: UID contents and cascade levels) + // UID size Cascade level Byte2 Byte3 Byte4 Byte5 + // ======== ============= ===== ===== ===== ===== + // 4 bytes 1 uid0 uid1 uid2 uid3 + // 7 bytes 1 CT uid0 uid1 uid2 + // 2 uid3 uid4 uid5 uid6 + // 10 bytes 1 CT uid0 uid1 uid2 + // 2 CT uid3 uid4 uid5 + // 3 uid6 uid7 uid8 uid9 + + // Sanity checks + if (validBits > 80) { + return STATUS_INVALID; + } + + // Prepare MFRC522 + PCD_ClearRegisterBitMask(CollReg, 0x80); // ValuesAfterColl=1 => Bits received after collision are cleared. + + // Repeat Cascade Level loop until we have a complete UID. + uidComplete = 0; + while ( ! uidComplete) { + // Set the Cascade Level in the SEL byte, find out if we need to use the Cascade Tag in byte 2. + switch (cascadeLevel) { + case 1: + buffer[0] = PICC_CMD_SEL_CL1; + uidIndex = 0; + useCascadeTag = validBits && uid->size > 4; // When we know that the UID has more than 4 bytes + break; + + case 2: + buffer[0] = PICC_CMD_SEL_CL2; + uidIndex = 3; + useCascadeTag = validBits && uid->size > 7; // When we know that the UID has more than 7 bytes + break; + + case 3: + buffer[0] = PICC_CMD_SEL_CL3; + uidIndex = 6; + useCascadeTag = 0; // Never used in CL3. + break; + + default: + return STATUS_INTERNAL_ERROR; + break; + } + + // How many UID bits are known in this Cascade Level? + currentLevelKnownBits = validBits - (8 * uidIndex); + if (currentLevelKnownBits < 0) { + currentLevelKnownBits = 0; + } + // Copy the known bits from uid->uidByte[] to buffer[] + index = 2; // destination index in buffer[] + if (useCascadeTag) { + buffer[index++] = PICC_CMD_CT; + } + byte bytesToCopy = currentLevelKnownBits / 8 + (currentLevelKnownBits % 8 ? 1 : 0); // The number of bytes needed to represent the known bits for this level. + if (bytesToCopy) { + byte maxBytes = useCascadeTag ? 3 : 4; // Max 4 bytes in each Cascade Level. Only 3 left if we use the Cascade Tag + if (bytesToCopy > maxBytes) { + bytesToCopy = maxBytes; + } + for (count = 0; count < bytesToCopy; count++) { + buffer[index++] = uid->uidByte[uidIndex + count]; + } + } + // Now that the data has been copied we need to include the 8 bits in CT in currentLevelKnownBits + if (useCascadeTag) { + currentLevelKnownBits += 8; + } + + // Repeat anti collision loop until we can transmit all UID bits + BCC and receive a SAK - max 32 iterations. + selectDone = 0; + while ( ! selectDone) { + // Find out how many bits and bytes to send and receive. + if (currentLevelKnownBits >= 32) { // All UID bits in this Cascade Level are known. This is a SELECT. + //Serial.print("SELECT: currentLevelKnownBits="); Serial.println(currentLevelKnownBits, DEC); + buffer[1] = 0x70; // NVB - Number of Valid Bits: Seven whole bytes + // Calulate BCC - Block Check Character + buffer[6] = buffer[2] ^ buffer[3] ^ buffer[4] ^ buffer[5]; + // Calculate CRC_A + result = PCD_CalculateCRC(buffer, 7, &buffer[7]); + if (result != STATUS_OK) { + return result; + } + txLastBits = 0; // 0 => All 8 bits are valid. + bufferUsed = 9; + // Store response in the last 3 bytes of buffer (BCC and CRC_A - not needed after tx) + responseBuffer = &buffer[6]; + responseLength = 3; + } + else { // This is an ANTICOLLISION. + //Serial.print("ANTICOLLISION: currentLevelKnownBits="); Serial.println(currentLevelKnownBits, DEC); + txLastBits = currentLevelKnownBits % 8; + count = currentLevelKnownBits / 8; // Number of whole bytes in the UID part. + index = 2 + count; // Number of whole bytes: SEL + NVB + UIDs + buffer[1] = (index << 4) + txLastBits; // NVB - Number of Valid Bits + bufferUsed = index + (txLastBits ? 1 : 0); + // Store response in the unused part of buffer + responseBuffer = &buffer[index]; + responseLength = sizeof(buffer) - index; + } + + // Set bit adjustments + rxAlign = txLastBits; // Having a seperate variable is overkill. But it makes the next line easier to read. + PCD_WriteRegister(BitFramingReg, (rxAlign << 4) + txLastBits); // RxAlign = BitFramingReg[6..4]. TxLastBits = BitFramingReg[2..0] + + // Transmit the buffer and receive the response. + result = PCD_TransceiveData(buffer, bufferUsed, responseBuffer, &responseLength, &txLastBits, rxAlign, 0); + if (result == STATUS_COLLISION) { // More than one PICC in the field => collision. + result = PCD_ReadRegister(CollReg); // CollReg[7..0] bits are: ValuesAfterColl reserved CollPosNotValid CollPos[4:0] + if (result & 0x20) { // CollPosNotValid + return STATUS_COLLISION; // Without a valid collision position we cannot continue + } + byte collisionPos = result & 0x1F; // Values 0-31, 0 means bit 32. + if (collisionPos == 0) { + collisionPos = 32; + } + if (collisionPos <= currentLevelKnownBits) { // No progress - should not happen + return STATUS_INTERNAL_ERROR; + } + // Choose the PICC with the bit set. + currentLevelKnownBits = collisionPos; + count = (currentLevelKnownBits - 1) % 8; // The bit to modify + index = 1 + (currentLevelKnownBits / 8) + (count ? 1 : 0); // First byte is index 0. + buffer[index] |= (1 << count); + } + else if (result != STATUS_OK) { + return result; + } + else { // STATUS_OK + if (currentLevelKnownBits >= 32) { // This was a SELECT. + selectDone = 1; // No more anticollision + // We continue below outside the while. + } + else { // This was an ANTICOLLISION. + // We now have all 32 bits of the UID in this Cascade Level + currentLevelKnownBits = 32; + // Run loop again to do the SELECT. + } + } + } // End of while ( ! selectDone) + + // We do not check the CBB - it was constructed by us above. + + // Copy the found UID bytes from buffer[] to uid->uidByte[] + index = (buffer[2] == PICC_CMD_CT) ? 3 : 2; // source index in buffer[] + bytesToCopy = (buffer[2] == PICC_CMD_CT) ? 3 : 4; + for (count = 0; count < bytesToCopy; count++) { + uid->uidByte[uidIndex + count] = buffer[index++]; + } + + // Check response SAK (Select Acknowledge) + if (responseLength != 3 || txLastBits != 0) { // SAK must be exactly 24 bits (1 byte + CRC_A). + return STATUS_ERROR; + } + // Verify CRC_A - do our own calculation and store the control in buffer[2..3] - those bytes are not needed anymore. + result = PCD_CalculateCRC(responseBuffer, 1, &buffer[2]); + if (result != STATUS_OK) { + return result; + } + if ((buffer[2] != responseBuffer[1]) || (buffer[3] != responseBuffer[2])) { + return STATUS_CRC_WRONG; + } + if (responseBuffer[0] & 0x04) { // Cascade bit set - UID not complete yes + cascadeLevel++; + } + else { + uidComplete = 1; + uid->sak = responseBuffer[0]; + } + } // End of while ( ! uidComplete) + + // Set correct uid->size + uid->size = 3 * cascadeLevel + 1; + + return STATUS_OK; +} + +/** + * Instructs a PICC in state ACTIVE(*) to go to state HALT. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte PICC_HaltA() { + byte result; + byte buffer[4]; + + // Build command buffer + buffer[0] = PICC_CMD_HLTA; + buffer[1] = 0; + // Calculate CRC_A + result = PCD_CalculateCRC(buffer, 2, &buffer[2]); + if (result != STATUS_OK) { + return result; + } + + // Send the command. + // The standard says: + // If the PICC responds with any modulation during a period of 1 ms after the end of the frame containing the + // HLTA command, this response shall be interpreted as 'not acknowledge'. + // We interpret that this way: Only STATUS_TIMEOUT is an success. + result = PCD_TransceiveData(buffer, sizeof(buffer), NULL, 0, 0, 0, 0); + if (result == STATUS_TIMEOUT) { + return STATUS_OK; + } + if (result == STATUS_OK) { // That is ironically NOT ok in this case ;-) + return STATUS_ERROR; + } + return result; +} + + +//----------------------------------------------------------------------------------- +// Functions for communicating with MIFARE PICCs +//----------------------------------------------------------------------------------- + +/** + * Executes the MFRC522 MFAuthent command. + * This command manages MIFARE authentication to enable a secure communication to any MIFARE Mini, MIFARE 1K and MIFARE 4K card. + * The authentication is described in the MFRC522 datasheet section 10.3.1.9 and http://www.nxp.com/documents/data_sheet/MF1S503x.pdf section 10.1. + * For use with MIFARE Classic PICCs. + * The PICC must be selected - ie in state ACTIVE(*) - before calling this function. + * Remember to call PCD_StopCrypto1() after communicating with the authenticated PICC - otherwise no new communications can start. + * + * All keys are set to FFFFFFFFFFFFh at chip delivery. + * + * @return STATUS_OK on success, STATUS_??? otherwise. Probably STATUS_TIMEOUT if you supply the wrong key. + */ +byte PCD_Authenticate( byte command, ///< PICC_CMD_MF_AUTH_KEY_A or PICC_CMD_MF_AUTH_KEY_B + byte blockAddr, ///< The block number. See numbering in the comments in the .h file. + MIFARE_Key *key, ///< Pointer to the Crypteo1 key to use (6 bytes) + Uid *uid ///< Pointer to Uid struct. The first 4 bytes of the UID is used. +) { + byte waitIRq = 0x10; // IdleIRq + + // Build command buffer + byte sendData[12]; + sendData[0] = command; + sendData[1] = blockAddr; + for (byte i = 0; i < MF_KEY_SIZE; i++) { // 6 key bytes + sendData[2+i] = key->keyByte[i]; + } + for (byte i = 0; i < 4; i++) { // The first 4 bytes of the UID + sendData[8+i] = uid->uidByte[i]; + } + + // Start the authentication. + return PCD_CommunicateWithPICC(PCD_MFAuthent, waitIRq, &sendData[0], sizeof(sendData), 0, 0, 0, 0, 0); +} + +/** + * Used to exit the PCD from its authenticated state. + * Remember to call this function after communicating with an authenticated PICC - otherwise no new communications can start. + */ +void PCD_StopCrypto1() { + // Clear MFCrypto1On bit + PCD_ClearRegisterBitMask(Status2Reg, 0x08); // Status2Reg[7..0] bits are: TempSensClear I2CForceHS reserved reserved MFCrypto1On ModemState[2:0] +} + +/** + * Reads 16 bytes (+ 2 bytes CRC_A) from the active PICC. + * + * For MIFARE Classic the sector containing the block must be authenticated before calling this function. + * + * For MIFARE Ultralight only addresses 00h to 0Fh are decoded. + * The MF0ICU1 returns a NAK for higher addresses. + * The MF0ICU1 responds to the READ command by sending 16 bytes starting from the page address defined by the command argument. + * For example; if blockAddr is 03h then pages 03h, 04h, 05h, 06h are returned. + * A roll-back is implemented: If blockAddr is 0Eh, then the contents of pages 0Eh, 0Fh, 00h and 01h are returned. + * + * The buffer must be at least 18 bytes because a CRC_A is also returned. + * Checks the CRC_A before returning STATUS_OK. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte MIFARE_Read( byte blockAddr, ///< MIFARE Classic: The block (0-0xff) number. MIFARE Ultralight: The first page to return data from. + byte *buffer, ///< The buffer to store the data in + byte *bufferSize ///< Buffer size, at least 18 bytes. Also number of bytes returned if STATUS_OK. +) { + byte result; + + // Sanity check + if (buffer == NULL || *bufferSize < 18) { + return STATUS_NO_ROOM; + } + + // Build command buffer + buffer[0] = PICC_CMD_MF_READ; + buffer[1] = blockAddr; + // Calculate CRC_A + result = PCD_CalculateCRC(buffer, 2, &buffer[2]); + if (result != STATUS_OK) { + return result; + } + + // Transmit the buffer and receive the response, validate CRC_A. + return PCD_TransceiveData(buffer, 4, buffer, bufferSize, NULL, 0, 1); +} + +/** + * Writes 16 bytes to the active PICC. + * + * For MIFARE Classic the sector containing the block must be authenticated before calling this function. + * + * For MIFARE Ultralight the opretaion is called "COMPATIBILITY WRITE". + * Even though 16 bytes are transferred to the Ultralight PICC, only the least significant 4 bytes (bytes 0 to 3) + * are written to the specified address. It is recommended to set the remaining bytes 04h to 0Fh to all logic 0. + * * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte MIFARE_Write( byte blockAddr, ///< MIFARE Classic: The block (0-0xff) number. MIFARE Ultralight: The page (2-15) to write to. + byte *buffer, ///< The 16 bytes to write to the PICC + byte bufferSize ///< Buffer size, must be at least 16 bytes. Exactly 16 bytes are written. +) { + byte result; + + // Sanity check + if (buffer == NULL || bufferSize < 16) { + return STATUS_INVALID; + } + + // Mifare Classic protocol requires two communications to perform a write. + // Step 1: Tell the PICC we want to write to block blockAddr. + byte cmdBuffer[2]; + cmdBuffer[0] = PICC_CMD_MF_WRITE; + cmdBuffer[1] = blockAddr; + result = PCD_MIFARE_Transceive(cmdBuffer, 2, 0); // Adds CRC_A and checks that the response is MF_ACK. + if (result != STATUS_OK) { + return result; + } + + // Step 2: Transfer the data + result = PCD_MIFARE_Transceive( buffer, bufferSize, 0); // Adds CRC_A and checks that the response is MF_ACK. + if (result != STATUS_OK) { + return result; + } + + return STATUS_OK; +} + +/** + * Writes a 4 byte page to the active MIFARE Ultralight PICC. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ + /* +byte MIFARE_Ultralight_Write( byte page, ///< The page (2-15) to write to. + byte *buffer, ///< The 4 bytes to write to the PICC + byte bufferSize ///< Buffer size, must be at least 4 bytes. Exactly 4 bytes are written. +) { + byte result; + + // Sanity check + if (buffer == NULL || bufferSize < 4) { + return STATUS_INVALID; + } + + // Build commmand buffer + byte cmdBuffer[6]; + cmdBuffer[0] = PICC_CMD_UL_WRITE; + cmdBuffer[1] = page; + memcpy(&cmdBuffer[2], buffer, 4); + + // Perform the write + result = PCD_MIFARE_Transceive(cmdBuffer, 6, 0); // Adds CRC_A and checks that the response is MF_ACK. + if (result != STATUS_OK) { + return result; + } + return STATUS_OK; +} +*/ +// forward declaration +//byte MIFARE_TwoStepHelper( byte command, byte blockAddr, long data); + +/** + * MIFARE Decrement subtracts the delta from the value of the addressed block, and stores the result in a volatile memory. + * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. + * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. + * Use MIFARE_Transfer() to store the result in a block. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +/* +byte MIFARE_Decrement( byte blockAddr, ///< The block (0-0xff) number. + long delta ///< This number is subtracted from the value of block blockAddr. +) { + return MIFARE_TwoStepHelper(PICC_CMD_MF_DECREMENT, blockAddr, delta); +} +*/ +/** + * MIFARE Increment adds the delta to the value of the addressed block, and stores the result in a volatile memory. + * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. + * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. + * Use MIFARE_Transfer() to store the result in a block. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +/* +byte MIFARE_Increment( byte blockAddr, ///< The block (0-0xff) number. + long delta ///< This number is added to the value of block blockAddr. +) { + return MIFARE_TwoStepHelper(PICC_CMD_MF_INCREMENT, blockAddr, delta); +} +*/ +/** + * MIFARE Restore copies the value of the addressed block into a volatile memory. + * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. + * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. + * Use MIFARE_Transfer() to store the result in a block. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ + /* +byte MIFARE_Restore(byte blockAddr ///< The block (0-0xff) number. +) { + // The datasheet describes Restore as a two step operation, but does not explain what data to transfer in step 2. + // Doing only a single step does not work, so I chose to transfer 0L in step two. + return MIFARE_TwoStepHelper(PICC_CMD_MF_RESTORE, blockAddr, 0L); +} +*/ +/** + * Helper function for the two-step MIFARE Classic protocol operations Decrement, Increment and Restore. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ + /* +byte MIFARE_TwoStepHelper( byte command, ///< The command to use + byte blockAddr, ///< The block (0-0xff) number. + long data ///< The data to transfer in step 2 +) { + byte result; + byte cmdBuffer[2]; // We only need room for 2 bytes. + + // Step 1: Tell the PICC the command and block address + cmdBuffer[0] = command; + cmdBuffer[1] = blockAddr; + result = PCD_MIFARE_Transceive( cmdBuffer, 2, 0); // Adds CRC_A and checks that the response is MF_ACK. + if (result != STATUS_OK) { + return result; + } + + // Step 2: Transfer the data + result = PCD_MIFARE_Transceive( (byte *)&data, 4, 1); // Adds CRC_A and accept timeout as success. + if (result != STATUS_OK) { + return result; + } + + return STATUS_OK; +} +*/ +/** + * MIFARE Transfer writes the value stored in the volatile memory into one MIFARE Classic block. + * For MIFARE Classic only. The sector containing the block must be authenticated before calling this function. + * Only for blocks in "value block" mode, ie with access bits [C1 C2 C3] = [110] or [001]. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ + /* +byte MIFARE_Transfer( byte blockAddr ///< The block (0-0xff) number. +) { + byte result; + byte cmdBuffer[2]; // We only need room for 2 bytes. + + // Tell the PICC we want to transfer the result into block blockAddr. + cmdBuffer[0] = PICC_CMD_MF_TRANSFER; + cmdBuffer[1] = blockAddr; + result = PCD_MIFARE_Transceive( cmdBuffer, 2, 0); // Adds CRC_A and checks that the response is MF_ACK. + if (result != STATUS_OK) { + return result; + } + return STATUS_OK; +} +*/ + +//----------------------------------------------------------------------------------- +// Support functions +//----------------------------------------------------------------------------------- + +/** + * Wrapper for MIFARE protocol communication. + * Adds CRC_A, executes the Transceive command and checks that the response is MF_ACK or a timeout. + * + * @return STATUS_OK on success, STATUS_??? otherwise. + */ +byte PCD_MIFARE_Transceive( byte *sendData, ///< Pointer to the data to transfer to the FIFO. Do NOT include the CRC_A. + byte sendLen, ///< Number of bytes in sendData. + bool acceptTimeout ///< True => A timeout is also success +) { + byte result; + byte cmdBuffer[18]; // We need room for 16 bytes data and 2 bytes CRC_A. + + // Sanity check + if (sendData == NULL || sendLen > 16) { + return STATUS_INVALID; + } + + // Copy sendData[] to cmdBuffer[] and add CRC_A + memcpy(cmdBuffer, sendData, sendLen); + result = PCD_CalculateCRC(cmdBuffer, sendLen, &cmdBuffer[sendLen]); + if (result != STATUS_OK) { + return result; + } + sendLen += 2; + + // Transceive the data, store the reply in cmdBuffer[] + byte waitIRq = 0x30; // RxIRq and IdleIRq + byte cmdBufferSize = sizeof(cmdBuffer); + byte validBits = 0; + result = PCD_CommunicateWithPICC(PCD_Transceive, waitIRq, cmdBuffer, sendLen, cmdBuffer, &cmdBufferSize, &validBits, 0, 0); + if (acceptTimeout && result == STATUS_TIMEOUT) { + return STATUS_OK; + } + if (result != STATUS_OK) { + return result; + } + // The PICC must reply with a 4 bit ACK + if (cmdBufferSize != 1 || validBits != 4) { + return STATUS_ERROR; + } + if (cmdBuffer[0] != MF_ACK) { + return STATUS_MIFARE_NACK; + } + return STATUS_OK; +} + +/** + * Returns a string pointer to a status code name. + * + */ +/* +const char *GetStatusCodeName(byte code ///< One of the StatusCode enums. +) { + switch (code) { + case STATUS_OK: return "Success."; break; + case STATUS_ERROR: return "Error in communication."; break; + case STATUS_COLLISION: return "Collission detected."; break; + case STATUS_TIMEOUT: return "Timeout in communication."; break; + case STATUS_NO_ROOM: return "A buffer is not big enough."; break; + case STATUS_INTERNAL_ERROR: return "Internal error in the code. Should not happen."; break; + case STATUS_INVALID: return "Invalid argument."; break; + case STATUS_CRC_WRONG: return "The CRC_A does not match."; break; + case STATUS_MIFARE_NACK: return "A MIFARE PICC responded with NAK."; break; + default: + return "Unknown error"; + break; + } +} +*/ +/** + * Translates the SAK (Select Acknowledge) to a PICC type. + * + * @return PICC_Type + */ + /* +byte PICC_GetType(byte sak ///< The SAK byte returned from PICC_Select(). +) { + if (sak & 0x04) { // UID not complete + return PICC_TYPE_NOT_COMPLETE; + } + + switch (sak) { + case 0x09: return PICC_TYPE_MIFARE_MINI; break; + case 0x08: return PICC_TYPE_MIFARE_1K; break; + case 0x18: return PICC_TYPE_MIFARE_4K; break; + case 0x00: return PICC_TYPE_MIFARE_UL; break; + case 0x10: + case 0x11: return PICC_TYPE_MIFARE_PLUS; break; + case 0x01: return PICC_TYPE_TNP3XXX; break; + default: break; + } + + if (sak & 0x20) { + return PICC_TYPE_ISO_14443_4; + } + + if (sak & 0x40) { + return PICC_TYPE_ISO_18092; + } + + return PICC_TYPE_UNKNOWN; +} +*/ +/** + * Returns a string pointer to the PICC type name. + * + */ + /* +const char *PICC_GetTypeName(byte piccType ///< One of the PICC_Type enums. +) { + switch (piccType) { + case PICC_TYPE_ISO_14443_4: return "PICC compliant with ISO/IEC 14443-4"; break; + case PICC_TYPE_ISO_18092: return "PICC compliant with ISO/IEC 18092 (NFC)"; break; + case PICC_TYPE_MIFARE_MINI: return "MIFARE Mini, 320 bytes"; break; + case PICC_TYPE_MIFARE_1K: return "MIFARE 1KB"; break; + case PICC_TYPE_MIFARE_4K: return "MIFARE 4KB"; break; + case PICC_TYPE_MIFARE_UL: return "MIFARE Ultralight or Ultralight C"; break; + case PICC_TYPE_MIFARE_PLUS: return "MIFARE Plus"; break; + case PICC_TYPE_TNP3XXX: return "MIFARE TNP3XXX"; break; + case PICC_TYPE_NOT_COMPLETE: return "SAK indicates UID is not complete."; break; + case PICC_TYPE_UNKNOWN: + default: return "Unknown type"; break; + } +} +*/ +/** + * Dumps debug info about the selected PICC to Serial. + * On success the PICC is halted after dumping the data. + * For MIFARE Classic the factory default key of 0xFFFFFFFFFFFF is tried. + */ + /* +void PICC_DumpToSerial(Uid *uid ///< Pointer to Uid struct returned from a successful PICC_Select(). + ) { + MIFARE_Key key; + + // UID + Serial.print("Card UID:"); + for (byte i = 0; i < uid->size; i++) { + Serial.print(uid->uidByte[i] < 0x10 ? " 0" : " "); + Serial.print(uid->uidByte[i], HEX); + } + Serial.println(); + + // PICC type + byte piccType = PICC_GetType(uid->sak); + Serial.print("PICC type: "); + Serial.println(PICC_GetTypeName(piccType)); + + // Dump contents + switch (piccType) { + case PICC_TYPE_MIFARE_MINI: + case PICC_TYPE_MIFARE_1K: + case PICC_TYPE_MIFARE_4K: + // All keys are set to FFFFFFFFFFFFh at chip delivery from the factory. + for (byte i = 0; i < 6; i++) { + key.keyByte[i] = 0xFF; + } + PICC_DumpMifareClassicToSerial(uid, piccType, &key); + break; + + case PICC_TYPE_MIFARE_UL: + PICC_DumpMifareUltralightToSerial(); + break; + + case PICC_TYPE_ISO_14443_4: + case PICC_TYPE_ISO_18092: + case PICC_TYPE_MIFARE_PLUS: + case PICC_TYPE_TNP3XXX: + Serial.println("Dumping memory contents not implemented for that PICC type."); + break; + + case PICC_TYPE_UNKNOWN: + case PICC_TYPE_NOT_COMPLETE: + default: + break; // No memory dump here + } + + Serial.println(); + PICC_HaltA(); // Already done if it was a MIFARE Classic PICC. +} // End PICC_DumpToSerial() +*/ +/** + * Dumps memory contents of a MIFARE Classic PICC. + * On success the PICC is halted after dumping the data. + */ + /* +void PICC_DumpMifareClassicToSerial( Uid *uid, ///< Pointer to Uid struct returned from a successful PICC_Select(). + byte piccType, ///< One of the PICC_Type enums. + MIFARE_Key *key ///< Key A used for all sectors. + ) { + byte no_of_sectors = 0; + switch (piccType) { + case PICC_TYPE_MIFARE_MINI: + // Has 5 sectors * 4 blocks/sector * 16 bytes/block = 320 bytes. + no_of_sectors = 5; + break; + + case PICC_TYPE_MIFARE_1K: + // Has 16 sectors * 4 blocks/sector * 16 bytes/block = 1024 bytes. + no_of_sectors = 16; + break; + + case PICC_TYPE_MIFARE_4K: + // Has (32 sectors * 4 blocks/sector + 8 sectors * 16 blocks/sector) * 16 bytes/block = 4096 bytes. + no_of_sectors = 40; + break; + + default: // Should not happen. Ignore. + break; + } + + // Dump sectors, highest address first. + if (no_of_sectors) { + Serial.println("Sector Block 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 AccessBits"); + for (char i = no_of_sectors - 1; i >= 0; i--) { + PICC_DumpMifareClassicSectorToSerial(uid, key, i); + } + } + PICC_HaltA(); // Halt the PICC before stopping the encrypted session. + PCD_StopCrypto1(); +} // End PICC_DumpMifareClassicToSerial() +*/ +/** + * Dumps memory contents of a sector of a MIFARE Classic PICC. + * Uses PCD_Authenticate(), MIFARE_Read() and PCD_StopCrypto1. + * Always uses PICC_CMD_MF_AUTH_KEY_A because only Key A can always read the sector trailer access bits. + */ + /* +void PICC_DumpMifareClassicSectorToSerial(Uid *uid, ///< Pointer to Uid struct returned from a successful PICC_Select(). + MIFARE_Key *key, ///< Key A for the sector. + byte sector ///< The sector to dump, 0..39. + ) { + byte status; + byte firstBlock; // Address of lowest address to dump actually last block dumped) + byte no_of_blocks; // Number of blocks in sector + bool isSectorTrailer; // Set to true while handling the "last" (ie highest address) in the sector. + + // The access bits are stored in a peculiar fashion. + // There are four groups: + // g[3] Access bits for the sector trailer, block 3 (for sectors 0-31) or block 15 (for sectors 32-39) + // g[2] Access bits for block 2 (for sectors 0-31) or blocks 10-14 (for sectors 32-39) + // g[1] Access bits for block 1 (for sectors 0-31) or blocks 5-9 (for sectors 32-39) + // g[0] Access bits for block 0 (for sectors 0-31) or blocks 0-4 (for sectors 32-39) + // Each group has access bits [C1 C2 C3]. In this code C1 is MSB and C3 is LSB. + // The four CX bits are stored together in a nible cx and an inverted nible cx_. + byte c1, c2, c3; // Nibbles + byte c1_, c2_, c3_; // Inverted nibbles + bool invertedError; // True if one of the inverted nibbles did not match + byte g[4]; // Access bits for each of the four groups. + byte group; // 0-3 - active group for access bits + bool firstInGroup; // True for the first block dumped in the group + + // Determine position and size of sector. + if (sector < 32) { // Sectors 0..31 has 4 blocks each + no_of_blocks = 4; + firstBlock = sector * no_of_blocks; + } + else if (sector < 40) { // Sectors 32-39 has 16 blocks each + no_of_blocks = 16; + firstBlock = 128 + (sector - 32) * no_of_blocks; + } + else { // Illegal input, no MIFARE Classic PICC has more than 40 sectors. + return; + } + + // Dump blocks, highest address first. + byte byteCount; + byte buffer[18]; + byte blockAddr; + isSectorTrailer = true; + for (char blockOffset = no_of_blocks - 1; blockOffset >= 0; blockOffset--) { + blockAddr = firstBlock + blockOffset; + // Sector number - only on first line + if (isSectorTrailer) { + Serial.print(sector < 10 ? " " : " "); // Pad with spaces + Serial.print(sector); + Serial.print(" "); + } + else { + Serial.print(" "); + } + // Block number + Serial.print(blockAddr < 10 ? " " : (blockAddr < 100 ? " " : " ")); // Pad with spaces + Serial.print(blockAddr); + Serial.print(" "); + // Establish encrypted communications before reading the first block + if (isSectorTrailer) { + status = PCD_Authenticate(PICC_CMD_MF_AUTH_KEY_A, firstBlock, key, uid); + if (status != STATUS_OK) { + Serial.print("PCD_Authenticate() failed: "); + Serial.println(GetStatusCodeName(status)); + return; + } + } + // Read block + byteCount = sizeof(buffer); + status = MIFARE_Read(blockAddr, buffer, &byteCount); + if (status != STATUS_OK) { + Serial.print("MIFARE_Read() failed: "); + Serial.println(GetStatusCodeName(status)); + continue; + } + // Dump data + for (byte index = 0; index < 16; index++) { + Serial.print(buffer[index] < 0x10 ? " 0" : " "); + Serial.print(buffer[index], HEX); + if ((index % 4) == 3) { + Serial.print(" "); + } + } + // Parse sector trailer data + if (isSectorTrailer) { + c1 = buffer[7] >> 4; + c2 = buffer[8] & 0xF; + c3 = buffer[8] >> 4; + c1_ = buffer[6] & 0xF; + c2_ = buffer[6] >> 4; + c3_ = buffer[7] & 0xF; + invertedError = (c1 != (~c1_ & 0xF)) || (c2 != (~c2_ & 0xF)) || (c3 != (~c3_ & 0xF)); + g[0] = ((c1 & 1) << 2) | ((c2 & 1) << 1) | ((c3 & 1) << 0); + g[1] = ((c1 & 2) << 1) | ((c2 & 2) << 0) | ((c3 & 2) >> 1); + g[2] = ((c1 & 4) << 0) | ((c2 & 4) >> 1) | ((c3 & 4) >> 2); + g[3] = ((c1 & 8) >> 1) | ((c2 & 8) >> 2) | ((c3 & 8) >> 3); + isSectorTrailer = false; + } + + // Which access group is this block in? + if (no_of_blocks == 4) { + group = blockOffset; + firstInGroup = true; + } + else { + group = blockOffset / 5; + firstInGroup = (group == 3) || (group != (blockOffset + 1) / 5); + } + + if (firstInGroup) { + // Print access bits + Serial.print(" [ "); + Serial.print((g[group] >> 2) & 1, DEC); Serial.print(" "); + Serial.print((g[group] >> 1) & 1, DEC); Serial.print(" "); + Serial.print((g[group] >> 0) & 1, DEC); + Serial.print(" ] "); + if (invertedError) { + Serial.print(" Inverted access bits did not match! "); + } + } + + if (group != 3 && (g[group] == 1 || g[group] == 6)) { // Not a sector trailer, a value block + long value = (long(buffer[3])<<24) | (long(buffer[2])<<16) | (long(buffer[1])<<8) | long(buffer[0]); + Serial.print(" Value=0x"); Serial.print(value, HEX); + Serial.print(" Adr=0x"); Serial.print(buffer[12], HEX); + } + Serial.println(); + } + + return; +} // End PICC_DumpMifareClassicSectorToSerial() +*/ +/** + * Dumps memory contents of a MIFARE Ultralight PICC. + */ + /* +void PICC_DumpMifareUltralightToSerial() { + byte status; + byte byteCount; + byte buffer[18]; + byte i; + + Serial.println("Page 0 1 2 3"); + // Try the mpages of the original Ultralight. Ultralight C has more pages. + for (byte page = 0; page < 16; page +=4) { // Read returns data for 4 pages at a time. + // Read pages + byteCount = sizeof(buffer); + status = MIFARE_Read(page, buffer, &byteCount); + if (status != STATUS_OK) { + Serial.print("MIFARE_Read() failed: "); + Serial.println(GetStatusCodeName(status)); + break; + } + // Dump data + for (byte offset = 0; offset < 4; offset++) { + i = page + offset; + Serial.print(i < 10 ? " " : " "); // Pad with spaces + Serial.print(i); + Serial.print(" "); + for (byte index = 0; index < 4; index++) { + i = 4 * offset + index; + Serial.print(buffer[i] < 0x10 ? " 0" : " "); + Serial.print(buffer[i], HEX); + } + Serial.println(); + } + } +} // End PICC_DumpMifareUltralightToSerial() +*/ +/** + * Calculates the bit pattern needed for the specified access bits. In the [C1 C2 C3] tupples C1 is MSB (=4) and C3 is LSB (=1). + */ + /* +void MIFARE_SetAccessBits( byte *accessBitBuffer, ///< Pointer to byte 6, 7 and 8 in the sector trailer. Bytes [0..2] will be set. + byte g0, ///< Access bits [C1 C2 C3] for block 0 (for sectors 0-31) or blocks 0-4 (for sectors 32-39) + byte g1, ///< Access bits C1 C2 C3] for block 1 (for sectors 0-31) or blocks 5-9 (for sectors 32-39) + byte g2, ///< Access bits C1 C2 C3] for block 2 (for sectors 0-31) or blocks 10-14 (for sectors 32-39) + byte g3 ///< Access bits C1 C2 C3] for the sector trailer, block 3 (for sectors 0-31) or block 15 (for sectors 32-39) +) { + byte c1 = ((g3 & 4) << 1) | ((g2 & 4) << 0) | ((g1 & 4) >> 1) | ((g0 & 4) >> 2); + byte c2 = ((g3 & 2) << 2) | ((g2 & 2) << 1) | ((g1 & 2) << 0) | ((g0 & 2) >> 1); + byte c3 = ((g3 & 1) << 3) | ((g2 & 1) << 2) | ((g1 & 1) << 1) | ((g0 & 1) << 0); + + accessBitBuffer[0] = (~c2 & 0xF) << 4 | (~c1 & 0xF); + accessBitBuffer[1] = c1 << 4 | (~c3 & 0xF); + accessBitBuffer[2] = c3 << 4 | c2; +} +*/ + +//----------------------------------------------------------------------------------- +// Convenience functions - does not add extra functionality +//----------------------------------------------------------------------------------- + +/** + * Returns true if a PICC responds to PICC_CMD_REQA. + * Only "new" cards in state IDLE are invited. Sleeping cards in state HALT are ignored. + * + * @return bool + */ +bool PICC_IsNewCardPresent() { + byte bufferATQA[2]; + byte bufferSize = sizeof(bufferATQA); + byte result = PICC_RequestA(bufferATQA, &bufferSize); + return (result == STATUS_OK || result == STATUS_COLLISION); +} + +/** + * Simple wrapper around PICC_Select. + * Returns true if a UID could be read. + * Remember to call PICC_IsNewCardPresent(), PICC_RequestA() or PICC_WakeupA() first. + * The read UID is available in the class variable uid. + * + * @return bool + */ +bool PICC_ReadCardSerial(Uid* uid) { + byte result = PICC_Select(uid, 0); + return (result == STATUS_OK); +} diff --git a/lib/matejx_avr_lib/mfrc522.h b/lib/matejx_avr_lib/mfrc522.h new file mode 100755 index 0000000..28fb5eb --- /dev/null +++ b/lib/matejx_avr_lib/mfrc522.h @@ -0,0 +1,253 @@ +#ifndef MFRC522_h +#define MFRC522_h + + #include + + typedef uint8_t bool; + typedef uint8_t byte; + typedef uint16_t word; + + // MFRC522 registers. Described in chapter 9 of the datasheet. + // When using SPI all addresses are shifted one bit left in the "SPI address byte" (section 8.1.2.3) + enum PCD_Register { + // Page 0: Command and status + // 0x00 // reserved for future use + CommandReg = 0x01 << 1, // starts and stops command execution + ComIEnReg = 0x02 << 1, // enable and disable interrupt request control bits + DivIEnReg = 0x03 << 1, // enable and disable interrupt request control bits + ComIrqReg = 0x04 << 1, // interrupt request bits + DivIrqReg = 0x05 << 1, // interrupt request bits + ErrorReg = 0x06 << 1, // error bits showing the error status of the last command executed + Status1Reg = 0x07 << 1, // communication status bits + Status2Reg = 0x08 << 1, // receiver and transmitter status bits + FIFODataReg = 0x09 << 1, // input and output of 64 byte FIFO buffer + FIFOLevelReg = 0x0A << 1, // number of bytes stored in the FIFO buffer + WaterLevelReg = 0x0B << 1, // level for FIFO underflow and overflow warning + ControlReg = 0x0C << 1, // miscellaneous control registers + BitFramingReg = 0x0D << 1, // adjustments for bit-oriented frames + CollReg = 0x0E << 1, // bit position of the first bit-collision detected on the RF interface + // 0x0F // reserved for future use + + // Page 1:Command + // 0x10 // reserved for future use + ModeReg = 0x11 << 1, // defines general modes for transmitting and receiving + TxModeReg = 0x12 << 1, // defines transmission data rate and framing + RxModeReg = 0x13 << 1, // defines reception data rate and framing + TxControlReg = 0x14 << 1, // controls the logical behavior of the antenna driver pins TX1 and TX2 + TxASKReg = 0x15 << 1, // controls the setting of the transmission modulation + TxSelReg = 0x16 << 1, // selects the internal sources for the antenna driver + RxSelReg = 0x17 << 1, // selects internal receiver settings + RxThresholdReg = 0x18 << 1, // selects thresholds for the bit decoder + DemodReg = 0x19 << 1, // defines demodulator settings + // 0x1A // reserved for future use + // 0x1B // reserved for future use + MfTxReg = 0x1C << 1, // controls some MIFARE communication transmit parameters + MfRxReg = 0x1D << 1, // controls some MIFARE communication receive parameters + // 0x1E // reserved for future use + SerialSpeedReg = 0x1F << 1, // selects the speed of the serial UART interface + + // Page 2: Configuration + // 0x20 // reserved for future use + CRCResultRegH = 0x21 << 1, // shows the MSB and LSB values of the CRC calculation + CRCResultRegL = 0x22 << 1, + // 0x23 // reserved for future use + ModWidthReg = 0x24 << 1, // controls the ModWidth setting? + // 0x25 // reserved for future use + RFCfgReg = 0x26 << 1, // configures the receiver gain + GsNReg = 0x27 << 1, // selects the conductance of the antenna driver pins TX1 and TX2 for modulation + CWGsPReg = 0x28 << 1, // defines the conductance of the p-driver output during periods of no modulation + ModGsPReg = 0x29 << 1, // defines the conductance of the p-driver output during periods of modulation + TModeReg = 0x2A << 1, // defines settings for the internal timer + TPrescalerReg = 0x2B << 1, // the lower 8 bits of the TPrescaler value. The 4 high bits are in TModeReg. + TReloadRegH = 0x2C << 1, // defines the 16-bit timer reload value + TReloadRegL = 0x2D << 1, + TCounterValueRegH = 0x2E << 1, // shows the 16-bit timer value + TCounterValueRegL = 0x2F << 1, + + // Page 3:Test Registers + // 0x30 // reserved for future use + TestSel1Reg = 0x31 << 1, // general test signal configuration + TestSel2Reg = 0x32 << 1, // general test signal configuration + TestPinEnReg = 0x33 << 1, // enables pin output driver on pins D1 to D7 + TestPinValueReg = 0x34 << 1, // defines the values for D1 to D7 when it is used as an I/O bus + TestBusReg = 0x35 << 1, // shows the status of the internal test bus + AutoTestReg = 0x36 << 1, // controls the digital self test + VersionReg = 0x37 << 1, // shows the software version + AnalogTestReg = 0x38 << 1, // controls the pins AUX1 and AUX2 + TestDAC1Reg = 0x39 << 1, // defines the test value for TestDAC1 + TestDAC2Reg = 0x3A << 1, // defines the test value for TestDAC2 + TestADCReg = 0x3B << 1 // shows the value of ADC I and Q channels + // 0x3C // reserved for production tests + // 0x3D // reserved for production tests + // 0x3E // reserved for production tests + // 0x3F // reserved for production tests + }; + + // MFRC522 comands. Described in chapter 10 of the datasheet. + enum PCD_Command { + PCD_Idle = 0x00, // no action, cancels current command execution + PCD_Mem = 0x01, // stores 25 bytes into the internal buffer + PCD_GenerateRandomID = 0x02, // generates a 10-byte random ID number + PCD_CalcCRC = 0x03, // activates the CRC coprocessor or performs a self test + PCD_Transmit = 0x04, // transmits data from the FIFO buffer + PCD_NoCmdChange = 0x07, // no command change, can be used to modify the CommandReg register bits without affecting the command, for example, the PowerDown bit + PCD_Receive = 0x08, // activates the receiver circuits + PCD_Transceive = 0x0C, // transmits data from FIFO buffer to antenna and automatically activates the receiver after transmission + PCD_MFAuthent = 0x0E, // performs the MIFARE standard authentication as a reader + PCD_SoftReset = 0x0F // resets the MFRC522 + }; + + // Commands sent to the PICC. + enum PICC_Command { + // The commands used by the PCD to manage communication with several PICCs (ISO 14443-3, Type A, section 6.4) + PICC_CMD_REQA = 0x26, // REQuest command, Type A. Invites PICCs in state IDLE to go to READY and prepare for anticollision or selection. 7 bit frame. + PICC_CMD_WUPA = 0x52, // Wake-UP command, Type A. Invites PICCs in state IDLE and HALT to go to READY(*) and prepare for anticollision or selection. 7 bit frame. + PICC_CMD_CT = 0x88, // Cascade Tag. Not really a command, but used during anti collision. + PICC_CMD_SEL_CL1 = 0x93, // Anti collision/Select, Cascade Level 1 + PICC_CMD_SEL_CL2 = 0x95, // Anti collision/Select, Cascade Level 1 + PICC_CMD_SEL_CL3 = 0x97, // Anti collision/Select, Cascade Level 1 + PICC_CMD_HLTA = 0x50, // HaLT command, Type A. Instructs an ACTIVE PICC to go to state HALT. + // The commands used for MIFARE Classic (from http://www.nxp.com/documents/data_sheet/MF1S503x.pdf, Section 9) + // Use PCD_MFAuthent to authenticate access to a sector, then use these commands to read/write/modify the blocks on the sector. + // The read/write commands can also be used for MIFARE Ultralight. + PICC_CMD_MF_AUTH_KEY_A = 0x60, // Perform authentication with Key A + PICC_CMD_MF_AUTH_KEY_B = 0x61, // Perform authentication with Key B + PICC_CMD_MF_READ = 0x30, // Reads one 16 byte block from the authenticated sector of the PICC. Also used for MIFARE Ultralight. + PICC_CMD_MF_WRITE = 0xA0, // Writes one 16 byte block to the authenticated sector of the PICC. Called "COMPATIBILITY WRITE" for MIFARE Ultralight. + PICC_CMD_MF_DECREMENT = 0xC0, // Decrements the contents of a block and stores the result in the internal data register. + PICC_CMD_MF_INCREMENT = 0xC1, // Increments the contents of a block and stores the result in the internal data register. + PICC_CMD_MF_RESTORE = 0xC2, // Reads the contents of a block into the internal data register. + PICC_CMD_MF_TRANSFER = 0xB0, // Writes the contents of the internal data register to a block. + // The commands used for MIFARE Ultralight (from http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf, Section 8.6) + // The PICC_CMD_MF_READ and PICC_CMD_MF_WRITE can also be used for MIFARE Ultralight. + PICC_CMD_UL_WRITE = 0xA2 // Writes one 4 byte page to the PICC. + }; + + // MIFARE constants that does not fit anywhere else + enum MIFARE_Misc { + MF_ACK = 0xA, // The MIFARE Classic uses a 4 bit ACK/NAK. Any other value than 0xA is NAK. + MF_KEY_SIZE = 6 // A Mifare Crypto1 key is 6 bytes. + }; + + // PICC types we can detect. Remember to update PICC_GetTypeName() if you add more. + enum PICC_Type { + PICC_TYPE_UNKNOWN = 0, + PICC_TYPE_ISO_14443_4 = 1, // PICC compliant with ISO/IEC 14443-4 + PICC_TYPE_ISO_18092 = 2, // PICC compliant with ISO/IEC 18092 (NFC) + PICC_TYPE_MIFARE_MINI = 3, // MIFARE Classic protocol, 320 bytes + PICC_TYPE_MIFARE_1K = 4, // MIFARE Classic protocol, 1KB + PICC_TYPE_MIFARE_4K = 5, // MIFARE Classic protocol, 4KB + PICC_TYPE_MIFARE_UL = 6, // MIFARE Ultralight or Ultralight C + PICC_TYPE_MIFARE_PLUS = 7, // MIFARE Plus + PICC_TYPE_TNP3XXX = 8, // Only mentioned in NXP AN 10833 MIFARE Type Identification Procedure + PICC_TYPE_NOT_COMPLETE = 255 // SAK indicates UID is not complete. + }; + + // Return codes from the functions in this class. Remember to update GetStatusCodeName() if you add more. + enum StatusCode { + STATUS_OK = 1, // Success + STATUS_ERROR = 2, // Error in communication + STATUS_COLLISION = 3, // Collission detected + STATUS_TIMEOUT = 4, // Timeout in communication. + STATUS_NO_ROOM = 5, // A buffer is not big enough. + STATUS_INTERNAL_ERROR = 6, // Internal error in the code. Should not happen ;-) + STATUS_INVALID = 7, // Invalid argument. + STATUS_CRC_WRONG = 8, // The CRC_A does not match + STATUS_MIFARE_NACK = 9 // A MIFARE PICC responded with NAK. + }; + + // A struct used for passing the UID of a PICC. + typedef struct { + byte size; // Number of bytes in the UID. 4, 7 or 10. + byte uidByte[10]; + byte sak; // The SAK (Select acknowledge) byte returned from the PICC after successful selection. + } Uid; + + // A struct used for passing a MIFARE Crypto1 key + typedef struct { + byte keyByte[MF_KEY_SIZE]; + } MIFARE_Key; + + // Member variables + //Uid uid; // Used by PICC_ReadCardSerial(). + + // Size of the MFRC522 FIFO + //static const byte FIFO_SIZE = 64; // The FIFO is 64 bytes. + + //----------------------------------------------------------------------------------- + // Functions for setting up the Arduino + //----------------------------------------------------------------------------------- + void MFRC522_init(void); + void setSPIConfig(void); + + //----------------------------------------------------------------------------------- + // Basic interface functions for communicating with the MFRC522 + //----------------------------------------------------------------------------------- + void PCD_WriteRegister(byte reg, byte value); + void PCD_WriteRegister2(byte reg, byte count, byte *values); + byte PCD_ReadRegister(byte reg); + void PCD_ReadRegister2(byte reg, byte count, byte *values, byte rxAlign); + void setBitMask(unsigned char reg, unsigned char mask); + void PCD_SetRegisterBitMask(byte reg, byte mask); + void PCD_ClearRegisterBitMask(byte reg, byte mask); + byte PCD_CalculateCRC(byte *data, byte length, byte *result); + + //----------------------------------------------------------------------------------- + // Functions for manipulating the MFRC522 + //----------------------------------------------------------------------------------- + byte PCD_Init(void); + byte PCD_Reset(void); + void PCD_AntennaOn(void); + + //----------------------------------------------------------------------------------- + // Functions for communicating with PICCs + //----------------------------------------------------------------------------------- + byte PCD_TransceiveData(byte *sendData, byte sendLen, byte *backData, byte *backLen, byte *validBits, byte rxAlign, bool checkCRC); + byte PCD_CommunicateWithPICC(byte command, byte waitIRq, byte *sendData, byte sendLen, byte *backData, byte *backLen, byte *validBits, byte rxAlign, bool checkCRC); + + byte PICC_RequestA(byte *bufferATQA, byte *bufferSize); + byte PICC_WakeupA(byte *bufferATQA, byte *bufferSize); + byte PICC_REQA_or_WUPA( byte command, byte *bufferATQA, byte *bufferSize); + byte PICC_Select(Uid *uid, byte validBits); + byte PICC_HaltA(void); + + //----------------------------------------------------------------------------------- + // Functions for communicating with MIFARE PICCs + //----------------------------------------------------------------------------------- + byte PCD_Authenticate(byte command, byte blockAddr, MIFARE_Key *key, Uid *uid); + void PCD_StopCrypto1(void); + byte MIFARE_Read(byte blockAddr, byte *buffer, byte *bufferSize); + byte MIFARE_Write(byte blockAddr, byte *buffer, byte bufferSize); + byte MIFARE_Decrement(byte blockAddr, long delta); + byte MIFARE_Increment(byte blockAddr, long delta); + byte MIFARE_Restore(byte blockAddr); + byte MIFARE_Transfer(byte blockAddr); + byte MIFARE_Ultralight_Write(byte page, byte *buffer, byte bufferSize); + + //----------------------------------------------------------------------------------- + // Support functions + //----------------------------------------------------------------------------------- + byte PCD_MIFARE_Transceive( byte *sendData, byte sendLen, bool acceptTimeout); + const char *GetStatusCodeName(byte code); + byte PICC_GetType(byte sak); + const char *PICC_GetTypeName(byte type); + void PICC_DumpToSerial(Uid *uid); + void PICC_DumpMifareClassicToSerial(Uid *uid, byte piccType, MIFARE_Key *key); + void PICC_DumpMifareClassicSectorToSerial(Uid *uid, MIFARE_Key *key, byte sector); + void PICC_DumpMifareUltralightToSerial(void); + void MIFARE_SetAccessBits(byte *accessBitBuffer, byte g0, byte g1, byte g2, byte g3); + + //----------------------------------------------------------------------------------- + // Convenience functions - does not add extra functionality + //----------------------------------------------------------------------------------- + bool PICC_IsNewCardPresent(void); + bool PICC_ReadCardSerial(Uid* uid); + +/* +private: + byte _chipSelectPin; // Arduino pin connected to MFRC522's SPI slave select input (Pin 24, NSS, active low) + byte _resetPowerDownPin; // Arduino pin connected to MFRC522's reset and power down input (Pin 6, NRSTPD, active low) + byte MIFARE_TwoStepHelper(byte command, byte blockAddr, long data); +*/ + +#endif diff --git a/lib/matejx_avr_lib/spi.c b/lib/matejx_avr_lib/spi.c new file mode 100755 index 0000000..c8dc998 --- /dev/null +++ b/lib/matejx_avr_lib/spi.c @@ -0,0 +1,98 @@ +/** + +SPI methods are not interrupt driven - they wait until SPI operation completes. +If you're using CMT and would prefer switching to another task while SPI operation +is in progress, you can define SPI_USE_CMT in swdefs.h. This requires CMT_MUTEX_FUNC. + +Also, SS (CS) is not controlled by these methods. It's the responsibility of the user. + +@file spi.c +@brief SPI routines +@author Matej Kogovsek (matej@hamradio.si) +@copyright LGPL 2.1 +@note This file is part of mat-stm32f1-lib +*/ + +#include +#include +#include + +#include "spi.h" +#include "hwdefs.h" + +#ifdef SPI_USE_CMT + #warning SPI using cmt + #include "cmt.h" + struct cmt_mutex spi_mutex; +#endif + +#ifndef SPCR0 + #define SPCR0 SPCR + #define SPE0 SPE + #define MSTR0 MSTR + #define SPSR0 SPSR + #define SPDR0 SPDR + #define SPIF0 SPIF +#endif + +/** +@brief Initialize SPI interface. + +Although SPI can have different clock phase and polarity, I have never ran across anything that uses other +than low polarity and 1st edge phase. Therefore these parameters are implied and not variable. As are 8 bit +words and MSB first. +@param[in] fdiv Baudrate prescaler, F_CPU dependent +*/ +void spi_init(uint8_t fdiv) +{ + if( SPCR0 & _BV(SPE0) ) return; + + #ifdef SPI_USE_CMT + spi_mutex.ac = 0; + #endif + + // make SCK, MOSI pins outputs and MISO an input + SCK_DDR |= _BV(SCK_BIT); + MOSI_DDR |= _BV(MOSI_BIT); + MISO_DDR &= ~_BV(MISO_BIT); + + // init SPI, MSB first, SCK low when idle + SPCR0 = _BV(SPE0) | _BV(MSTR0) | (fdiv & 3); + SPSR0 = (fdiv >> 2) & 1; +} + +/** +@brief Send and receive byte (NSS not controlled) +@param[in] d Byte to send +@return byte received +*/ +uint8_t spi_rw(uint8_t d) +{ + #ifdef SPI_USE_CMT + cmt_acquire(&spi_mutex); + #endif + + SPCR0 |= _BV(MSTR0); + SPDR0 = d; + while( !(SPSR0 & _BV(SPIF0)) ) { + #ifdef SPI_USE_CMT + cmt_delay_ticks(0); + #endif + } + d = SPDR0; + + #ifdef SPI_USE_CMT + cmt_release(&spi_mutex); + #endif + + return d; +} + +// ------------------------------------------------------------------ +// INTERRUPTS +// ------------------------------------------------------------------ + +ISR(SPI_STC_vect) +{ +// +} diff --git a/lib/matejx_avr_lib/spi.h b/lib/matejx_avr_lib/spi.h new file mode 100755 index 0000000..da95980 --- /dev/null +++ b/lib/matejx_avr_lib/spi.h @@ -0,0 +1,13 @@ +#ifndef MAT_SPI_H +#define MAT_SPI_H + +#include +#include + +// init SPI +void spi_init(uint8_t fdiv); + +// send a byte over SPI +uint8_t spi_rw(uint8_t d); + +#endif