/** @addtogroup i2c_file I2C peripheral API * @ingroup peripheral_apis */ /* * This file is part of the libopencm3 project. * * This library is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library. If not, see . */ #include #include /**@{*/ /*---------------------------------------------------------------------------*/ /** @brief I2C Peripheral Enable. * * @param[in] i2c Unsigned int32. I2C register base address @ref i2c_reg_base. */ void i2c_peripheral_enable(uint32_t i2c) { I2C_CR1(i2c) |= I2C_CR1_PE; } /*---------------------------------------------------------------------------*/ /** @brief I2C Peripheral Disable. * * This must not be reset while in Master mode until a communication has * finished. In Slave mode, the peripheral is disabled only after communication * has ended. * * @param[in] i2c Unsigned int32. I2C register base address @ref i2c_reg_base. */ void i2c_peripheral_disable(uint32_t i2c) { I2C_CR1(i2c) &= ~I2C_CR1_PE; } /*---------------------------------------------------------------------------*/ /** @brief I2C Send Start Condition. * * If in Master mode this will cause a restart condition to occur at the end of * the current transmission. If in Slave mode, this will initiate a start * condition when the current bus activity is completed. * * @param[in] i2c Unsigned int32. I2C register base address @ref i2c_reg_base. */ void i2c_send_start(uint32_t i2c) { I2C_CR2(i2c) |= I2C_CR2_START; } /*---------------------------------------------------------------------------*/ /** @brief I2C Send Stop Condition. * * After the current byte transfer this will initiate a stop condition if in * Master mode, or simply release the bus if in Slave mode. * * @param[in] i2c Unsigned int32. I2C register base address @ref i2c_reg_base. */ void i2c_send_stop(uint32_t i2c) { I2C_CR2(i2c) |= I2C_CR2_STOP; } /*---------------------------------------------------------------------------*/ /** @brief I2C Clear Stop Flag. * * Clear the "Send Stop" flag in the I2C config register * * @param[in] i2c Unsigned int32. I2C register base address @ref i2c_reg_base. */ void i2c_clear_stop(uint32_t i2c) { I2C_ICR(i2c) |= I2C_ICR_STOPCF; } /*---------------------------------------------------------------------------*/ /** @brief I2C Set the 7 bit Slave Address for the Peripheral. * * This sets an address for Slave mode operation, in 7 bit form. * * @param[in] i2c Unsigned int32. I2C register base address @ref i2c_reg_base. * @param[in] slave Unsigned int8. Slave address 0...127. */ void i2c_set_own_7bit_slave_address(uint32_t i2c, uint8_t slave) { I2C_OAR1(i2c) = (uint16_t)(slave << 1); I2C_OAR1(i2c) &= ~I2C_OAR1_OA1MODE; } /*---------------------------------------------------------------------------*/ /** @brief I2C Set the 10 bit Slave Address for the Peripheral. * * This sets an address for Slave mode operation, in 10 bit form. * * @param[in] i2c Unsigned int32. I2C register base address @ref i2c_reg_base. * @param[in] slave Unsigned int16. Slave address 0...1023. */ void i2c_set_own_10bit_slave_address(uint32_t i2c, uint16_t slave) { I2C_OAR1(i2c) = (uint16_t)(I2C_OAR1_OA1MODE | slave); } /*---------------------------------------------------------------------------*/ /** @brief I2C Send Data. * * @param[in] i2c Unsigned int32. I2C register base address @ref i2c_reg_base. * @param[in] data Unsigned int8. Byte to send. */ void i2c_send_data(uint32_t i2c, uint8_t data) { I2C_TXDR(i2c) = data; } /*---------------------------------------------------------------------------*/ /** @brief I2C Get Data. * * @param[in] i2c Unsigned int32. I2C register base address @ref i2c_reg_base. */ uint8_t i2c_get_data(uint32_t i2c) { return I2C_RXDR(i2c) & 0xff; } void i2c_enable_analog_filter(uint32_t i2c) { I2C_CR1(i2c) &= ~I2C_CR1_ANFOFF; } void i2c_disable_analog_filter(uint32_t i2c) { I2C_CR1(i2c) |= I2C_CR1_ANFOFF; } /** * Set the I2C digital filter. * These bits are used to configure the digital noise filter on SDA and * SCL input. The digital filter will filter spikes with a length of up * to dnf_setting * I2CCLK clocks * @param i2c peripheral of interest * @param dnf_setting 0 to disable, else 1..15 i2c clocks */ void i2c_set_digital_filter(uint32_t i2c, uint8_t dnf_setting) { I2C_CR1(i2c) = (I2C_CR1(i2c) & ~(I2C_CR1_DNF_MASK << I2C_CR1_DNF_SHIFT)) | (dnf_setting << I2C_CR1_DNF_SHIFT); } /* t_presc= (presc+1)*t_i2cclk */ void i2c_set_prescaler(uint32_t i2c, uint8_t presc) { I2C_TIMINGR(i2c) = (I2C_TIMINGR(i2c) & ~I2C_TIMINGR_PRESC_MASK) | (presc << I2C_TIMINGR_PRESC_SHIFT); } void i2c_set_data_setup_time(uint32_t i2c, uint8_t s_time) { I2C_TIMINGR(i2c) = (I2C_TIMINGR(i2c) & ~I2C_TIMINGR_SCLDEL_MASK) | (s_time << I2C_TIMINGR_SCLDEL_SHIFT); } void i2c_set_data_hold_time(uint32_t i2c, uint8_t h_time) { I2C_TIMINGR(i2c) = (I2C_TIMINGR(i2c) & ~I2C_TIMINGR_SDADEL_MASK) | (h_time << I2C_TIMINGR_SDADEL_SHIFT); } void i2c_set_scl_high_period(uint32_t i2c, uint8_t period) { I2C_TIMINGR(i2c) = (I2C_TIMINGR(i2c) & ~I2C_TIMINGR_SCLH_MASK) | (period << I2C_TIMINGR_SCLH_SHIFT); } void i2c_set_scl_low_period(uint32_t i2c, uint8_t period) { I2C_TIMINGR(i2c) = (I2C_TIMINGR(i2c) & ~I2C_TIMINGR_SCLL_MASK) | (period << I2C_TIMINGR_SCLL_SHIFT); } void i2c_enable_stretching(uint32_t i2c) { I2C_CR1(i2c) &= ~I2C_CR1_NOSTRETCH; } void i2c_disable_stretching(uint32_t i2c) { I2C_CR1(i2c) |= I2C_CR1_NOSTRETCH; } void i2c_set_7bit_addr_mode(uint32_t i2c) { I2C_CR2(i2c) &= ~I2C_CR2_ADD10; } void i2c_set_10bit_addr_mode(uint32_t i2c) { I2C_CR2(i2c) |= I2C_CR2_ADD10; } void i2c_set_7bit_address(uint32_t i2c, uint8_t addr) { I2C_CR2(i2c) = (I2C_CR2(i2c) & ~I2C_CR2_SADD_7BIT_MASK) | ((addr & 0x7F) << I2C_CR2_SADD_7BIT_SHIFT); } void i2c_set_10bit_address(uint32_t i2c, uint16_t addr) { I2C_CR2(i2c) = (I2C_CR2(i2c) & ~I2C_CR2_SADD_10BIT_MASK) | ((addr & 0x3FF) << I2C_CR2_SADD_10BIT_SHIFT); } void i2c_set_write_transfer_dir(uint32_t i2c) { I2C_CR2(i2c) &= ~I2C_CR2_RD_WRN; } void i2c_set_read_transfer_dir(uint32_t i2c) { I2C_CR2(i2c) |= I2C_CR2_RD_WRN; } void i2c_set_bytes_to_transfer(uint32_t i2c, uint32_t n_bytes) { I2C_CR2(i2c) = (I2C_CR2(i2c) & ~I2C_CR2_NBYTES_MASK) | (n_bytes << I2C_CR2_NBYTES_SHIFT); } bool i2c_is_start(uint32_t i2c) { return (I2C_CR2(i2c) & I2C_CR2_START); } void i2c_enable_autoend(uint32_t i2c) { I2C_CR2(i2c) |= I2C_CR2_AUTOEND; } void i2c_disable_autoend(uint32_t i2c) { I2C_CR2(i2c) &= ~I2C_CR2_AUTOEND; } bool i2c_nack(uint32_t i2c) { return (I2C_ISR(i2c) & I2C_ISR_NACKF); } bool i2c_busy(uint32_t i2c) { return (I2C_ISR(i2c) & I2C_ISR_BUSY); } bool i2c_transmit_int_status(uint32_t i2c) { return (I2C_ISR(i2c) & I2C_ISR_TXIS); } bool i2c_transfer_complete(uint32_t i2c) { return (I2C_ISR(i2c) & I2C_ISR_TC); } bool i2c_received_data(uint32_t i2c) { return (I2C_ISR(i2c) & I2C_ISR_RXNE); } /*---------------------------------------------------------------------------*/ /** @brief I2C Enable Interrupt * * @param[in] i2c Unsigned int32. I2C register base address @ref i2c_reg_base. * @param[in] interrupt Unsigned int32. Interrupt to enable. */ void i2c_enable_interrupt(uint32_t i2c, uint32_t interrupt) { I2C_CR1(i2c) |= interrupt; } /*---------------------------------------------------------------------------*/ /** @brief I2C Disable Interrupt * * @param[in] i2c Unsigned int32. I2C register base address @ref i2c_reg_base. * @param[in] interrupt Unsigned int32. Interrupt to disable. */ void i2c_disable_interrupt(uint32_t i2c, uint32_t interrupt) { I2C_CR1(i2c) &= ~interrupt; } /*---------------------------------------------------------------------------*/ /** @brief I2C Enable reception DMA * * @param[in] i2c Unsigned int32. I2C register base address @ref i2c_reg_base. */ void i2c_enable_rxdma(uint32_t i2c) { I2C_CR1(i2c) |= I2C_CR1_RXDMAEN; } /*---------------------------------------------------------------------------*/ /** @brief I2C Disable reception DMA * * @param[in] i2c Unsigned int32. I2C register base address @ref i2c_reg_base. */ void i2c_disable_rxdma(uint32_t i2c) { I2C_CR1(i2c) &= ~I2C_CR1_RXDMAEN; } /*---------------------------------------------------------------------------*/ /** @brief I2C Enable transmission DMA * * @param[in] i2c Unsigned int32. I2C register base address @ref i2c_reg_base. */ void i2c_enable_txdma(uint32_t i2c) { I2C_CR1(i2c) |= I2C_CR1_TXDMAEN; } /*---------------------------------------------------------------------------*/ /** @brief I2C Disable transmission DMA * * @param[in] i2c Unsigned int32. I2C register base address @ref i2c_reg_base. */ void i2c_disable_txdma(uint32_t i2c) { I2C_CR1(i2c) &= ~I2C_CR1_TXDMAEN; } /** * Run a write/read transaction to a given 7bit i2c address * If both write & read are provided, the read will use repeated start. * Both write and read are optional * @param i2c peripheral of choice, eg I2C1 * @param addr 7 bit i2c device address * @param w buffer of data to write * @param wn length of w * @param r destination buffer to read into * @param rn number of bytes to read (r should be at least this long) */ void i2c_transfer7(uint32_t i2c, uint8_t addr, const uint8_t *w, size_t wn, uint8_t *r, size_t rn) { /* waiting for busy is unnecessary. read the RM */ if (wn) { i2c_set_7bit_address(i2c, addr); i2c_set_write_transfer_dir(i2c); i2c_set_bytes_to_transfer(i2c, wn); if (rn) { i2c_disable_autoend(i2c); } else { i2c_enable_autoend(i2c); } i2c_send_start(i2c); while (wn--) { bool wait = true; while (wait) { if (i2c_transmit_int_status(i2c)) { wait = false; } while (i2c_nack(i2c)); /* FIXME Some error */ } i2c_send_data(i2c, *w++); } /* not entirely sure this is really necessary. * RM implies it will stall until it can write out the later bits */ if (rn) { while (!i2c_transfer_complete(i2c)); } } if (rn) { /* Setting transfer properties */ i2c_set_7bit_address(i2c, addr); i2c_set_read_transfer_dir(i2c); i2c_set_bytes_to_transfer(i2c, rn); /* start transfer */ i2c_send_start(i2c); /* important to do it afterwards to do a proper repeated start! */ i2c_enable_autoend(i2c); for (size_t i = 0; i < rn; i++) { while (i2c_received_data(i2c) == 0); r[i] = i2c_get_data(i2c); } } } /** * Set the i2c communication speed. * NOTE: 1MHz mode not yet implemented! * Min clock speed: 8MHz for FM, 2Mhz for SM, * @param i2c peripheral, eg I2C1 * @param speed one of the listed speed modes @ref i2c_speeds * @param clock_megahz i2c peripheral clock speed in MHz. Usually, rcc_apb1_frequency / 1e6 */ void i2c_set_speed(uint32_t i2c, enum i2c_speeds speed, uint32_t clock_megahz) { int prescaler; switch(speed) { case i2c_speed_fmp_1m: /* FIXME - add support for this mode! */ break; case i2c_speed_fm_400k: /* target 8Mhz input, so tpresc = 125ns */ prescaler = clock_megahz / 8 - 1; i2c_set_prescaler(i2c, prescaler); i2c_set_scl_low_period(i2c, 10-1); // 1250ns i2c_set_scl_high_period(i2c, 4-1); // 500ns i2c_set_data_hold_time(i2c, 3); // 375ns i2c_set_data_setup_time(i2c, 4-1); // 500ns break; default: /* fall back to standard mode */ case i2c_speed_sm_100k: /* target 4Mhz input, so tpresc = 250ns */ prescaler = (clock_megahz / 4) - 1; i2c_set_prescaler(i2c, prescaler); i2c_set_scl_low_period(i2c, 20-1); // 5usecs i2c_set_scl_high_period(i2c, 16-1); // 4usecs i2c_set_data_hold_time(i2c, 2); // 0.5usecs i2c_set_data_setup_time(i2c, 5-1); // 1.25usecs break; } } /**@}*/