/** @defgroup rcc_file RCC peripheral API * * @ingroup peripheral_apis * * @section rcc_f2_api_ex Reset and Clock Control API. * * @brief libopencm3 STM32F2xx Reset and Clock Control * * @author @htmlonly © @endhtmlonly 2013 Frantisek Burian * * @date 18 Jun 2013 * * This library supports the Reset and Clock Control System in the STM32 series * of ARM Cortex Microcontrollers by ST Microelectronics. * * LGPL License Terms @ref lgpl_license */ /* * This file is part of the libopencm3 project. * * Copyright (C) 2009 Federico Ruiz-Ugalde * Copyright (C) 2009 Uwe Hermann * Copyright (C) 2010 Thomas Otto * * This library is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library. If not, see . */ #include #include #include /**@{*/ /* Set the default clock frequencies after reset. */ uint32_t rcc_ahb_frequency = 16000000; uint32_t rcc_apb1_frequency = 16000000; uint32_t rcc_apb2_frequency = 16000000; const struct rcc_clock_scale rcc_hse_8mhz_3v3[RCC_CLOCK_3V3_END] = { { /* 120MHz */ .pllm = 8, .plln = 240, .pllp = 2, .pllq = 5, .hpre = RCC_CFGR_HPRE_NODIV, .ppre1 = RCC_CFGR_PPRE_DIV4, .ppre2 = RCC_CFGR_PPRE_DIV2, .flash_config = FLASH_ACR_DCEN | FLASH_ACR_ICEN | FLASH_ACR_LATENCY_3WS, .apb1_frequency = 30000000, .apb2_frequency = 60000000, }, }; void rcc_osc_ready_int_clear(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CIR |= RCC_CIR_PLLRDYC; break; case RCC_HSE: RCC_CIR |= RCC_CIR_HSERDYC; break; case RCC_HSI: RCC_CIR |= RCC_CIR_HSIRDYC; break; case RCC_LSE: RCC_CIR |= RCC_CIR_LSERDYC; break; case RCC_LSI: RCC_CIR |= RCC_CIR_LSIRDYC; break; } } void rcc_osc_ready_int_enable(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CIR |= RCC_CIR_PLLRDYIE; break; case RCC_HSE: RCC_CIR |= RCC_CIR_HSERDYIE; break; case RCC_HSI: RCC_CIR |= RCC_CIR_HSIRDYIE; break; case RCC_LSE: RCC_CIR |= RCC_CIR_LSERDYIE; break; case RCC_LSI: RCC_CIR |= RCC_CIR_LSIRDYIE; break; } } void rcc_osc_ready_int_disable(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CIR &= ~RCC_CIR_PLLRDYIE; break; case RCC_HSE: RCC_CIR &= ~RCC_CIR_HSERDYIE; break; case RCC_HSI: RCC_CIR &= ~RCC_CIR_HSIRDYIE; break; case RCC_LSE: RCC_CIR &= ~RCC_CIR_LSERDYIE; break; case RCC_LSI: RCC_CIR &= ~RCC_CIR_LSIRDYIE; break; } } int rcc_osc_ready_int_flag(enum rcc_osc osc) { switch (osc) { case RCC_PLL: return ((RCC_CIR & RCC_CIR_PLLRDYF) != 0); break; case RCC_HSE: return ((RCC_CIR & RCC_CIR_HSERDYF) != 0); break; case RCC_HSI: return ((RCC_CIR & RCC_CIR_HSIRDYF) != 0); break; case RCC_LSE: return ((RCC_CIR & RCC_CIR_LSERDYF) != 0); break; case RCC_LSI: return ((RCC_CIR & RCC_CIR_LSIRDYF) != 0); break; } cm3_assert_not_reached(); } void rcc_css_int_clear(void) { RCC_CIR |= RCC_CIR_CSSC; } int rcc_css_int_flag(void) { return ((RCC_CIR & RCC_CIR_CSSF) != 0); } bool rcc_is_osc_ready(enum rcc_osc osc) { switch (osc) { case RCC_PLL: return RCC_CR & RCC_CR_PLLRDY; case RCC_HSE: return RCC_CR & RCC_CR_HSERDY; case RCC_HSI: return RCC_CR & RCC_CR_HSIRDY; case RCC_LSE: return RCC_BDCR & RCC_BDCR_LSERDY; case RCC_LSI: return RCC_CSR & RCC_CSR_LSIRDY; } return false; } void rcc_wait_for_osc_ready(enum rcc_osc osc) { while (!rcc_is_osc_ready(osc)); } void rcc_wait_for_sysclk_status(enum rcc_osc osc) { switch (osc) { case RCC_PLL: while (((RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK) != RCC_CFGR_SWS_PLL); break; case RCC_HSE: while (((RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK) != RCC_CFGR_SWS_HSE); break; case RCC_HSI: while (((RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK) != RCC_CFGR_SWS_HSI); break; default: /* Shouldn't be reached. */ break; } } void rcc_osc_on(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CR |= RCC_CR_PLLON; break; case RCC_HSE: RCC_CR |= RCC_CR_HSEON; break; case RCC_HSI: RCC_CR |= RCC_CR_HSION; break; case RCC_LSE: RCC_BDCR |= RCC_BDCR_LSEON; break; case RCC_LSI: RCC_CSR |= RCC_CSR_LSION; break; } } void rcc_osc_off(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CR &= ~RCC_CR_PLLON; break; case RCC_HSE: RCC_CR &= ~RCC_CR_HSEON; break; case RCC_HSI: RCC_CR &= ~RCC_CR_HSION; break; case RCC_LSE: RCC_BDCR &= ~RCC_BDCR_LSEON; break; case RCC_LSI: RCC_CSR &= ~RCC_CSR_LSION; break; } } void rcc_css_enable(void) { RCC_CR |= RCC_CR_CSSON; } void rcc_css_disable(void) { RCC_CR &= ~RCC_CR_CSSON; } void rcc_set_sysclk_source(uint32_t clk) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~((1 << 1) | (1 << 0)); RCC_CFGR = (reg32 | clk); } void rcc_set_pll_source(uint32_t pllsrc) { uint32_t reg32; reg32 = RCC_PLLCFGR; reg32 &= ~(1 << 22); RCC_PLLCFGR = (reg32 | (pllsrc << 22)); } void rcc_set_ppre2(uint32_t ppre2) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~((1 << 13) | (1 << 14) | (1 << 15)); RCC_CFGR = (reg32 | (ppre2 << 13)); } void rcc_set_ppre1(uint32_t ppre1) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~((1 << 10) | (1 << 11) | (1 << 12)); RCC_CFGR = (reg32 | (ppre1 << 10)); } void rcc_set_hpre(uint32_t hpre) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~((1 << 4) | (1 << 5) | (1 << 6) | (1 << 7)); RCC_CFGR = (reg32 | (hpre << 4)); } void rcc_set_rtcpre(uint32_t rtcpre) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~((1 << 16) | (1 << 17) | (1 << 18) | (1 << 19) | (1 << 20)); RCC_CFGR = (reg32 | (rtcpre << 16)); } void rcc_set_main_pll_hsi(uint32_t pllm, uint32_t plln, uint32_t pllp, uint32_t pllq) { RCC_PLLCFGR = (pllm << RCC_PLLCFGR_PLLM_SHIFT) | (plln << RCC_PLLCFGR_PLLN_SHIFT) | (((pllp >> 1) - 1) << RCC_PLLCFGR_PLLP_SHIFT) | (pllq << RCC_PLLCFGR_PLLQ_SHIFT); } void rcc_set_main_pll_hse(uint32_t pllm, uint32_t plln, uint32_t pllp, uint32_t pllq) { RCC_PLLCFGR = (pllm << RCC_PLLCFGR_PLLM_SHIFT) | (plln << RCC_PLLCFGR_PLLN_SHIFT) | (((pllp >> 1) - 1) << RCC_PLLCFGR_PLLP_SHIFT) | RCC_PLLCFGR_PLLSRC | (pllq << RCC_PLLCFGR_PLLQ_SHIFT); } uint32_t rcc_system_clock_source(void) { /* Return the clock source which is used as system clock. */ return (RCC_CFGR & 0x000c) >> 2; } void rcc_clock_setup_hse_3v3(const struct rcc_clock_scale *clock) { /* Enable internal high-speed oscillator. */ rcc_osc_on(RCC_HSI); rcc_wait_for_osc_ready(RCC_HSI); /* Select HSI as SYSCLK source. */ rcc_set_sysclk_source(RCC_CFGR_SW_HSI); /* Enable external high-speed oscillator 8MHz. */ rcc_osc_on(RCC_HSE); rcc_wait_for_osc_ready(RCC_HSE); /* * Set prescalers for AHB, ADC, APB1, APB2. * Do this before touching the PLL (TODO: why?). */ rcc_set_hpre(clock->hpre); rcc_set_ppre1(clock->ppre1); rcc_set_ppre2(clock->ppre2); /* Disable PLL oscillator before changing its configuration. */ rcc_osc_off(RCC_PLL); /* Configure the PLL oscillator. */ rcc_set_main_pll_hse(clock->pllm, clock->plln, clock->pllp, clock->pllq); /* Enable PLL oscillator and wait for it to stabilize. */ rcc_osc_on(RCC_PLL); rcc_wait_for_osc_ready(RCC_PLL); /* Configure flash settings. */ flash_set_ws(clock->flash_config); /* Select PLL as SYSCLK source. */ rcc_set_sysclk_source(RCC_CFGR_SW_PLL); /* Wait for PLL clock to be selected. */ rcc_wait_for_sysclk_status(RCC_PLL); /* Set the peripheral clock frequencies used. */ rcc_apb1_frequency = clock->apb1_frequency; rcc_apb2_frequency = clock->apb2_frequency; } void rcc_backupdomain_reset(void) { /* Set the backup domain software reset. */ RCC_BDCR |= RCC_BDCR_BDRST; /* Clear the backup domain software reset. */ RCC_BDCR &= ~RCC_BDCR_BDRST; } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the USART at base specified. * @param usart Base address of USART to get clock frequency for. */ uint32_t rcc_get_usart_clk_freq(uint32_t usart) { if (usart == USART1_BASE || usart == USART6_BASE) { return rcc_apb2_frequency; } else { return rcc_apb1_frequency; } } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the Timer at base specified. * @param timer Base address of TIM to get clock frequency for. */ uint32_t rcc_get_timer_clk_freq(uint32_t timer) { /* Handle APB1 timer clocks. */ if (timer >= TIM2_BASE && timer <= TIM14_BASE) { uint8_t ppre1 = (RCC_CFGR >> RCC_CFGR_PPRE1_SHIFT) & RCC_CFGR_PPRE1_MASK; return (ppre1 == RCC_CFGR_PPRE_DIV_NONE) ? rcc_apb1_frequency : 2 * rcc_apb1_frequency; } else { uint8_t ppre2 = (RCC_CFGR >> RCC_CFGR_PPRE2_SHIFT) & RCC_CFGR_PPRE2_MASK; return (ppre2 == RCC_CFGR_PPRE_DIV_NONE) ? rcc_apb2_frequency : 2 * rcc_apb2_frequency; } } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the I2C device at base specified. * @param i2c Base address of I2C to get clock frequency for. */ uint32_t rcc_get_i2c_clk_freq(uint32_t i2c __attribute__((unused))) { return rcc_apb1_frequency; } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the SPI device at base specified. * @param spi Base address of SPI device to get clock frequency for (e.g. SPI1_BASE). */ uint32_t rcc_get_spi_clk_freq(uint32_t spi) { if (spi == SPI1_BASE) { return rcc_apb2_frequency; } else { return rcc_apb1_frequency; } } /**@}*/