/** @defgroup rcc_file RCC peripheral API * * @ingroup peripheral_apis * * @brief libopencm3 STM32F3xx Reset and Clock Control * * @version 1.0.0 * * @date 11 July 2013 * * LGPL License Terms @ref lgpl_license */ /* * This file is part of the libopencm3 project. * * Copyright (C) 2009 Federico Ruiz-Ugalde * Copyright (C) 2009 Uwe Hermann * Copyright (C) 2010 Thomas Otto * Modified by 2013 Fernando Cortes (stm32f3) * Modified by 2013 Guillermo Rivera (stm32f3) * * This library is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library. If not, see . */ /**@{*/ #include #include #include #include /* Set the default clock frequencies after reset. */ uint32_t rcc_ahb_frequency = 8000000; uint32_t rcc_apb1_frequency = 8000000; uint32_t rcc_apb2_frequency = 8000000; const struct rcc_clock_scale rcc_hsi_configs[] = { { /* 48MHz */ .pllmul = RCC_CFGR_PLLMUL_MUL12, .pllsrc = RCC_CFGR_PLLSRC_HSI_DIV2, .hpre = RCC_CFGR_HPRE_NODIV, .ppre1 = RCC_CFGR_PPRE_DIV2, .ppre2 = RCC_CFGR_PPRE_NODIV, .flash_waitstates = 1, .ahb_frequency = 48000000, .apb1_frequency = 24000000, .apb2_frequency = 48000000, }, { /* 64MHz */ .pllmul = RCC_CFGR_PLLMUL_MUL16, .pllsrc = RCC_CFGR_PLLSRC_HSI_DIV2, .hpre = RCC_CFGR_HPRE_NODIV, .ppre1 = RCC_CFGR_PPRE_DIV2, .ppre2 = RCC_CFGR_PPRE_NODIV, .flash_waitstates = 2, .ahb_frequency = 64000000, .apb1_frequency = 32000000, .apb2_frequency = 64000000, } }; const struct rcc_clock_scale rcc_hse8mhz_configs[] = { { .pllsrc = RCC_CFGR_PLLSRC_HSE_PREDIV, .pllmul = RCC_CFGR_PLLMUL_MUL9, .plldiv = RCC_CFGR2_PREDIV_NODIV, .usbdiv1 = false, .flash_waitstates = 2, .hpre = RCC_CFGR_HPRE_NODIV, .ppre1 = RCC_CFGR_PPRE_DIV2, .ppre2 = RCC_CFGR_PPRE_NODIV, .ahb_frequency = 72e6, .apb1_frequency = 36e6, .apb2_frequency = 72e6, } }; void rcc_osc_ready_int_clear(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CIR |= RCC_CIR_PLLRDYC; break; case RCC_HSE: RCC_CIR |= RCC_CIR_HSERDYC; break; case RCC_HSI: RCC_CIR |= RCC_CIR_HSIRDYC; break; case RCC_LSE: RCC_CIR |= RCC_CIR_LSERDYC; break; case RCC_LSI: RCC_CIR |= RCC_CIR_LSIRDYC; break; } } void rcc_osc_ready_int_enable(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CIR |= RCC_CIR_PLLRDYIE; break; case RCC_HSE: RCC_CIR |= RCC_CIR_HSERDYIE; break; case RCC_HSI: RCC_CIR |= RCC_CIR_HSIRDYIE; break; case RCC_LSE: RCC_CIR |= RCC_CIR_LSERDYIE; break; case RCC_LSI: RCC_CIR |= RCC_CIR_LSIRDYIE; break; } } void rcc_osc_ready_int_disable(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CIR &= ~RCC_CIR_PLLRDYIE; break; case RCC_HSE: RCC_CIR &= ~RCC_CIR_HSERDYIE; break; case RCC_HSI: RCC_CIR &= ~RCC_CIR_HSIRDYIE; break; case RCC_LSE: RCC_CIR &= ~RCC_CIR_LSERDYIE; break; case RCC_LSI: RCC_CIR &= ~RCC_CIR_LSIRDYIE; break; } } int rcc_osc_ready_int_flag(enum rcc_osc osc) { switch (osc) { case RCC_PLL: return ((RCC_CIR & RCC_CIR_PLLRDYF) != 0); break; case RCC_HSE: return ((RCC_CIR & RCC_CIR_HSERDYF) != 0); break; case RCC_HSI: return ((RCC_CIR & RCC_CIR_HSIRDYF) != 0); break; case RCC_LSE: return ((RCC_CIR & RCC_CIR_LSERDYF) != 0); break; case RCC_LSI: return ((RCC_CIR & RCC_CIR_LSIRDYF) != 0); break; } cm3_assert_not_reached(); } void rcc_css_int_clear(void) { RCC_CIR |= RCC_CIR_CSSC; } int rcc_css_int_flag(void) { return ((RCC_CIR & RCC_CIR_CSSF) != 0); } bool rcc_is_osc_ready(enum rcc_osc osc) { switch (osc) { case RCC_PLL: return RCC_CR & RCC_CR_PLLRDY; case RCC_HSE: return RCC_CR & RCC_CR_HSERDY; case RCC_HSI: return RCC_CR & RCC_CR_HSIRDY; case RCC_LSE: return RCC_BDCR & RCC_BDCR_LSERDY; case RCC_LSI: return RCC_CSR & RCC_CSR_LSIRDY; } return false; } void rcc_wait_for_osc_ready(enum rcc_osc osc) { while (!rcc_is_osc_ready(osc)); } void rcc_wait_for_osc_not_ready(enum rcc_osc osc) { while (rcc_is_osc_ready(osc)); } void rcc_wait_for_sysclk_status(enum rcc_osc osc) { switch (osc) { case RCC_PLL: while (((RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK) != RCC_CFGR_SWS_PLL); break; case RCC_HSE: while (((RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK) != RCC_CFGR_SWS_HSE); break; case RCC_HSI: while (((RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK) != RCC_CFGR_SWS_HSI); break; default: /* Shouldn't be reached. */ break; } } void rcc_osc_on(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CR |= RCC_CR_PLLON; break; case RCC_HSE: RCC_CR |= RCC_CR_HSEON; break; case RCC_HSI: RCC_CR |= RCC_CR_HSION; break; case RCC_LSE: RCC_BDCR |= RCC_BDCR_LSEON; break; case RCC_LSI: RCC_CSR |= RCC_CSR_LSION; break; } } void rcc_osc_off(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CR &= ~RCC_CR_PLLON; break; case RCC_HSE: RCC_CR &= ~RCC_CR_HSEON; break; case RCC_HSI: RCC_CR &= ~RCC_CR_HSION; break; case RCC_LSE: RCC_BDCR &= ~RCC_BDCR_LSEON; break; case RCC_LSI: RCC_CSR &= ~RCC_CSR_LSION; break; } } void rcc_css_enable(void) { RCC_CR |= RCC_CR_CSSON; } void rcc_css_disable(void) { RCC_CR &= ~RCC_CR_CSSON; } void rcc_set_sysclk_source(uint32_t clk) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~((1 << 1) | (1 << 0)); RCC_CFGR = (reg32 | clk); } void rcc_set_pll_source(uint32_t pllsrc) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~RCC_CFGR_PLLSRC; RCC_CFGR = (reg32 | (pllsrc << 16)); } void rcc_set_ppre2(uint32_t ppre2) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~(RCC_CFGR_PPRE2_MASK << RCC_CFGR_PPRE2_SHIFT); RCC_CFGR = (reg32 | (ppre2 << RCC_CFGR_PPRE2_SHIFT)); } void rcc_set_ppre1(uint32_t ppre1) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~(RCC_CFGR_PPRE1_MASK << RCC_CFGR_PPRE1_SHIFT); RCC_CFGR = (reg32 | (ppre1 << RCC_CFGR_PPRE1_SHIFT)); } void rcc_set_hpre(uint32_t hpre) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~(RCC_CFGR_HPRE_MASK << RCC_CFGR_HPRE_SHIFT); RCC_CFGR = (reg32 | (hpre << RCC_CFGR_HPRE_SHIFT)); } /** * Set PLL Source pre-divider **CAUTION**. * On some F3 devices, prediv only applies to HSE source. On others, * this is _after_ source selection. See also f0. * @param[in] prediv division by prediv+1 @ref rcc_cfgr2_prediv */ void rcc_set_prediv(uint32_t prediv) { RCC_CFGR2 = (RCC_CFGR2 & ~RCC_CFGR2_PREDIV) | prediv; } void rcc_set_pll_multiplier(uint32_t pll) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~(RCC_CFGR_PLLMUL_MASK << RCC_CFGR_PLLMUL_SHIFT); RCC_CFGR = (reg32 | (pll << RCC_CFGR_PLLMUL_SHIFT)); } uint32_t rcc_get_system_clock_source(void) { /* Return the clock source which is used as system clock. */ return (RCC_CFGR & 0x000c) >> 2; } /** * Setup clocks to run from PLL. * The arguments provide the pll source, multipliers, dividers, all that's * needed to establish a system clock. * @param clock clock information structure */ void rcc_clock_setup_pll(const struct rcc_clock_scale *clock) { if (clock->pllsrc == RCC_CFGR_PLLSRC_HSE_PREDIV) { rcc_osc_on(RCC_HSE); rcc_wait_for_osc_ready(RCC_HSE); } else { rcc_osc_on(RCC_HSI); rcc_wait_for_osc_ready(RCC_HSI); } rcc_osc_off(RCC_PLL); rcc_usb_prescale_1_5(); if (clock->usbdiv1) { rcc_usb_prescale_1(); } rcc_wait_for_osc_not_ready(RCC_PLL); rcc_set_pll_source(clock->pllsrc); rcc_set_pll_multiplier(clock->pllmul); rcc_set_prediv(clock->plldiv); /* Enable PLL oscillator and wait for it to stabilize. */ rcc_osc_on(RCC_PLL); rcc_wait_for_osc_ready(RCC_PLL); /* Configure flash settings. */ flash_prefetch_enable(); flash_set_ws(clock->flash_waitstates); rcc_set_hpre(clock->hpre); rcc_set_ppre2(clock->ppre2); rcc_set_ppre1(clock->ppre1); /* Select PLL as SYSCLK source. */ rcc_set_sysclk_source(RCC_CFGR_SW_PLL); /* Wait for PLL clock to be selected. */ rcc_wait_for_sysclk_status(RCC_PLL); /* Set the peripheral clock frequencies used. */ rcc_ahb_frequency = clock->ahb_frequency; rcc_apb1_frequency = clock->apb1_frequency; rcc_apb2_frequency = clock->apb2_frequency; } void __attribute__((deprecated)) rcc_clock_setup_hsi(const struct rcc_clock_scale *clock) { /* Enable internal high-speed oscillator. */ rcc_osc_on(RCC_HSI); rcc_wait_for_osc_ready(RCC_HSI); /* Select HSI as SYSCLK source. */ rcc_set_sysclk_source(RCC_CFGR_SW_HSI); /* XXX: se cayo */ rcc_wait_for_sysclk_status(RCC_HSI); rcc_osc_off(RCC_PLL); rcc_wait_for_osc_not_ready(RCC_PLL); rcc_set_pll_source(clock->pllsrc); rcc_set_pll_multiplier(clock->pllmul); /* Enable PLL oscillator and wait for it to stabilize. */ rcc_osc_on(RCC_PLL); rcc_wait_for_osc_ready(RCC_PLL); /* * Set prescalers for AHB, ADC, APB1, APB2. * Do this before touching the PLL (TODO: why?). */ rcc_set_hpre(clock->hpre); rcc_set_ppre2(clock->ppre2); rcc_set_ppre1(clock->ppre1); /* Configure flash settings. */ flash_set_ws(clock->flash_waitstates); /* Select PLL as SYSCLK source. */ rcc_set_sysclk_source(RCC_CFGR_SW_PLL); /* XXX: se cayo */ /* Wait for PLL clock to be selected. */ rcc_wait_for_sysclk_status(RCC_PLL); /* Set the peripheral clock frequencies used. */ rcc_ahb_frequency = clock->ahb_frequency; rcc_apb1_frequency = clock->apb1_frequency; rcc_apb2_frequency = clock->apb2_frequency; } void rcc_backupdomain_reset(void) { /* Set the backup domain software reset. */ RCC_BDCR |= RCC_BDCR_BDRST; /* Clear the backup domain software reset. */ RCC_BDCR &= ~RCC_BDCR_BDRST; } void rcc_set_i2c_clock_hsi(uint32_t i2c) { if (i2c == I2C1) { RCC_CFGR3 &= ~RCC_CFGR3_I2C1SW; } if (i2c == I2C2) { RCC_CFGR3 &= ~RCC_CFGR3_I2C2SW; } } void rcc_set_i2c_clock_sysclk(uint32_t i2c) { if (i2c == I2C1) { RCC_CFGR3 |= RCC_CFGR3_I2C1SW; } if (i2c == I2C2) { RCC_CFGR3 |= RCC_CFGR3_I2C2SW; } } uint32_t rcc_get_i2c_clocks(void) { return RCC_CFGR3 & (RCC_CFGR3_I2C1SW | RCC_CFGR3_I2C2SW); } void rcc_usb_prescale_1_5(void) { RCC_CFGR &= ~RCC_CFGR_USBPRES; } void rcc_usb_prescale_1(void) { RCC_CFGR |= RCC_CFGR_USBPRES; } void rcc_adc_prescale(uint32_t prescale1, uint32_t prescale2) { uint32_t clear_mask = (RCC_CFGR2_ADCxPRES_MASK << RCC_CFGR2_ADC12PRES_SHIFT) | (RCC_CFGR2_ADCxPRES_MASK << RCC_CFGR2_ADC34PRES_SHIFT); uint32_t set = (prescale1 << RCC_CFGR2_ADC12PRES_SHIFT) | (prescale2 << RCC_CFGR2_ADC34PRES_SHIFT); RCC_CFGR2 &= ~(clear_mask); RCC_CFGR2 |= (set); } static uint32_t rcc_get_usart_clksel_freq(uint32_t apb_clk, uint8_t shift) { uint8_t clksel = (RCC_CFGR3 >> shift) & RCC_CFGR3_UARTxSW_MASK; uint8_t hpre = (RCC_CFGR >> RCC_CFGR_HPRE_SHIFT) & RCC_CFGR_HPRE_MASK; switch (clksel) { case RCC_CFGR3_UARTxSW_PCLK: return apb_clk; case RCC_CFGR3_UARTxSW_SYSCLK: return rcc_ahb_frequency * rcc_get_div_from_hpre(hpre); case RCC_CFGR3_UARTxSW_LSE: return 32768; case RCC_CFGR3_UARTxSW_HSI: return 8000000U; } cm3_assert_not_reached(); } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the USART at base specified. * @param usart Base address of USART to get clock frequency for. */ uint32_t rcc_get_usart_clk_freq(uint32_t usart) { /* Handle values with selectable clocks. */ if (usart == USART1_BASE) { return rcc_get_usart_clksel_freq(rcc_apb2_frequency, RCC_CFGR3_UART1SW_SHIFT); } else if (usart == USART2_BASE) { return rcc_get_usart_clksel_freq(rcc_apb1_frequency, RCC_CFGR3_UART2SW_SHIFT); } else if (usart == USART3_BASE) { return rcc_get_usart_clksel_freq(rcc_apb1_frequency, RCC_CFGR3_UART3SW_SHIFT); } else if (usart == UART4_BASE) { return rcc_get_usart_clksel_freq(rcc_apb1_frequency, RCC_CFGR3_UART4SW_SHIFT); } else { /* UART5 */ return rcc_get_usart_clksel_freq(rcc_apb1_frequency, RCC_CFGR3_UART5SW_SHIFT); } } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the Timer at base specified. * @param timer Base address of TIM to get clock frequency for. */ uint32_t rcc_get_timer_clk_freq(uint32_t timer) { /* Handle APB1 timer clocks. */ if (timer >= TIM2_BASE && timer <= TIM7_BASE) { uint8_t ppre1 = (RCC_CFGR >> RCC_CFGR_PPRE1_SHIFT) & RCC_CFGR_PPRE1_MASK; return (ppre1 == RCC_CFGR_PPRE1_DIV_NONE) ? rcc_apb1_frequency : 2 * rcc_apb1_frequency; } else { uint8_t ppre2 = (RCC_CFGR >> RCC_CFGR_PPRE2_SHIFT) & RCC_CFGR_PPRE2_MASK; return (ppre2 == RCC_CFGR_PPRE2_DIV_NONE) ? rcc_apb2_frequency : 2 * rcc_apb2_frequency; } } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the I2C device at base specified. * @param i2c Base address of I2C to get clock frequency for. */ uint32_t rcc_get_i2c_clk_freq(uint32_t i2c) { if (i2c == I2C1_BASE) { if (RCC_CFGR3 & RCC_CFGR3_I2C1SW) { uint8_t hpre = (RCC_CFGR >> RCC_CFGR_HPRE_SHIFT) & RCC_CFGR_HPRE_MASK; return rcc_ahb_frequency * rcc_get_div_from_hpre(hpre); } else { return 8000000U; } } else { return rcc_apb1_frequency; } } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the SPI device at base specified. * @param spi Base address of SPI device to get clock frequency for (e.g. SPI1_BASE). */ uint32_t rcc_get_spi_clk_freq(uint32_t spi) { if (spi == SPI1_BASE || spi == SPI4_BASE) { return rcc_apb2_frequency; } else { return rcc_apb1_frequency; } } /**@}*/