/** @defgroup rcc_file RCC peripheral API * * @ingroup peripheral_apis * * @section rcc_l4_api_ex Reset and Clock Control API. * * @brief libopencm3 STM32L4xx Reset and Clock Control * * @author @htmlonly © @endhtmlonly 2016 Karl Palsson * * @date 12 Feb 2016 * * This library supports the Reset and Clock Control System in the STM32 series * of ARM Cortex Microcontrollers by ST Microelectronics. * * LGPL License Terms @ref lgpl_license */ /* * This file is part of the libopencm3 project. * * Copyright (C) 2016 Karl Palsson * * This library is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library. If not, see . */ /**@{*/ #include #include #include #include /* Set the default clock frequencies after reset. */ uint32_t rcc_ahb_frequency = 4000000; uint32_t rcc_apb1_frequency = 4000000; uint32_t rcc_apb2_frequency = 4000000; const struct rcc_clock_scale rcc_hsi16_configs[RCC_CLOCK_CONFIG_END] = { { /* 80MHz PLL from HSI16 VR1 */ .pllm = 4, .plln = 40, .pllp = RCC_PLLCFGR_PLLP_DIV7, .pllq = RCC_PLLCFGR_PLLQ_DIV6, .pllr = RCC_PLLCFGR_PLLR_DIV2, .pll_source = RCC_PLLCFGR_PLLSRC_HSI16, .hpre = RCC_CFGR_HPRE_NODIV, .ppre1 = RCC_CFGR_PPRE_NODIV, .ppre2 = RCC_CFGR_PPRE_NODIV, .voltage_scale = PWR_SCALE1, .flash_config = FLASH_ACR_DCEN | FLASH_ACR_ICEN | FLASH_ACR_LATENCY_4WS, .ahb_frequency = 80000000, .apb1_frequency = 80000000, .apb2_frequency = 80000000, }, }; void rcc_osc_ready_int_clear(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CICR |= RCC_CICR_PLLRDYC; break; case RCC_HSE: RCC_CICR |= RCC_CICR_HSERDYC; break; case RCC_HSI16: RCC_CICR |= RCC_CICR_HSIRDYC; break; case RCC_MSI: RCC_CICR |= RCC_CICR_MSIRDYC; break; case RCC_LSE: RCC_CICR |= RCC_CICR_LSERDYC; break; case RCC_LSI: RCC_CICR |= RCC_CICR_LSIRDYC; break; case RCC_HSI48: RCC_CICR |= RCC_CICR_HSI48RDYC; break; } } void rcc_osc_ready_int_enable(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CIER |= RCC_CIER_PLLRDYIE; break; case RCC_HSE: RCC_CIER |= RCC_CIER_HSERDYIE; break; case RCC_HSI16: RCC_CIER |= RCC_CIER_HSIRDYIE; break; case RCC_MSI: RCC_CIER |= RCC_CIER_MSIRDYIE; break; case RCC_LSE: RCC_CIER |= RCC_CIER_LSERDYIE; break; case RCC_LSI: RCC_CIER |= RCC_CIER_LSIRDYIE; break; case RCC_HSI48: RCC_CIER |= RCC_CIER_HSI48RDYIE; break; } } void rcc_osc_ready_int_disable(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CIER &= ~RCC_CIER_PLLRDYIE; break; case RCC_HSE: RCC_CIER &= ~RCC_CIER_HSERDYIE; break; case RCC_HSI16: RCC_CIER &= ~RCC_CIER_HSIRDYIE; break; case RCC_MSI: RCC_CIER &= ~RCC_CIER_MSIRDYIE; break; case RCC_LSE: RCC_CIER &= ~RCC_CIER_LSERDYIE; break; case RCC_LSI: RCC_CIER &= ~RCC_CIER_LSIRDYIE; break; case RCC_HSI48: RCC_CIER &= ~RCC_CIER_HSI48RDYIE; break; } } int rcc_osc_ready_int_flag(enum rcc_osc osc) { switch (osc) { case RCC_PLL: return ((RCC_CIFR & RCC_CIFR_PLLRDYF) != 0); break; case RCC_HSE: return ((RCC_CIFR & RCC_CIFR_HSERDYF) != 0); break; case RCC_HSI16: return ((RCC_CIFR & RCC_CIFR_HSIRDYF) != 0); break; case RCC_MSI: return ((RCC_CIFR & RCC_CIFR_MSIRDYF) != 0); break; case RCC_LSE: return ((RCC_CIFR & RCC_CIFR_LSERDYF) != 0); break; case RCC_LSI: return ((RCC_CIFR & RCC_CIFR_LSIRDYF) != 0); break; case RCC_HSI48: return ((RCC_CIFR & RCC_CIFR_HSI48RDYF) != 0); break; } return false; } void rcc_css_int_clear(void) { RCC_CICR |= RCC_CICR_CSSC; } int rcc_css_int_flag(void) { return ((RCC_CIFR & RCC_CIFR_CSSF) != 0); } bool rcc_is_osc_ready(enum rcc_osc osc) { switch (osc) { case RCC_PLL: return RCC_CR & RCC_CR_PLLRDY; case RCC_HSE: return RCC_CR & RCC_CR_HSERDY; case RCC_HSI16: return RCC_CR & RCC_CR_HSIRDY; case RCC_MSI: return RCC_CR & RCC_CR_MSIRDY; case RCC_LSE: return RCC_BDCR & RCC_BDCR_LSERDY; case RCC_LSI: return RCC_CSR & RCC_CSR_LSIRDY; case RCC_HSI48: return RCC_CRRCR & RCC_CRRCR_HSI48RDY; } return false; } void rcc_wait_for_osc_ready(enum rcc_osc osc) { while (!rcc_is_osc_ready(osc)); } void rcc_wait_for_sysclk_status(enum rcc_osc osc) { switch (osc) { case RCC_PLL: while (((RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK) != RCC_CFGR_SWS_PLL); break; case RCC_HSE: while (((RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK) != RCC_CFGR_SWS_HSE); break; case RCC_HSI16: while (((RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK) != RCC_CFGR_SWS_HSI16); break; case RCC_MSI: while (((RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK) != RCC_CFGR_SWS_MSI); break; default: /* Shouldn't be reached. */ break; } } void rcc_osc_on(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CR |= RCC_CR_PLLON; break; case RCC_HSE: RCC_CR |= RCC_CR_HSEON; break; case RCC_HSI16: RCC_CR |= RCC_CR_HSION; break; case RCC_MSI: RCC_CR |= RCC_CR_MSION; break; case RCC_LSE: RCC_BDCR |= RCC_BDCR_LSEON; break; case RCC_LSI: RCC_CSR |= RCC_CSR_LSION; break; case RCC_HSI48: RCC_CRRCR |= RCC_CRRCR_HSI48ON; break; } } void rcc_osc_off(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CR &= ~RCC_CR_PLLON; break; case RCC_HSE: RCC_CR &= ~RCC_CR_HSEON; break; case RCC_HSI16: RCC_CR &= ~RCC_CR_HSION; break; case RCC_MSI: RCC_CR &= ~RCC_CR_MSION; break; case RCC_LSE: RCC_BDCR &= ~RCC_BDCR_LSEON; break; case RCC_LSI: RCC_CSR &= ~RCC_CSR_LSION; break; case RCC_HSI48: RCC_CRRCR &= ~RCC_CRRCR_HSI48ON; break; } } void rcc_css_enable(void) { RCC_CR |= RCC_CR_CSSON; } void rcc_css_disable(void) { RCC_CR &= ~RCC_CR_CSSON; } void rcc_set_sysclk_source(uint32_t clk) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~(RCC_CFGR_SW_MASK << RCC_CFGR_SW_SHIFT); RCC_CFGR = (reg32 | (clk << RCC_CFGR_SW_SHIFT)); } void rcc_set_pll_source(uint32_t pllsrc) { uint32_t reg32; reg32 = RCC_PLLCFGR; reg32 &= ~(RCC_PLLCFGR_PLLSRC_MASK << RCC_PLLCFGR_PLLSRC_SHIFT); RCC_PLLCFGR = (reg32 | (pllsrc << RCC_PLLCFGR_PLLSRC_SHIFT)); } void rcc_set_ppre2(uint32_t ppre2) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~(RCC_CFGR_PPRE2_MASK << RCC_CFGR_PPRE2_SHIFT); RCC_CFGR = (reg32 | (ppre2 << RCC_CFGR_PPRE2_SHIFT)); } void rcc_set_ppre1(uint32_t ppre1) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~(RCC_CFGR_PPRE1_MASK << RCC_CFGR_PPRE1_SHIFT); RCC_CFGR = (reg32 | (ppre1 << RCC_CFGR_PPRE1_SHIFT)); } void rcc_set_hpre(uint32_t hpre) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~(RCC_CFGR_HPRE_MASK << RCC_CFGR_HPRE_SHIFT); RCC_CFGR = (reg32 | (hpre << RCC_CFGR_HPRE_SHIFT)); } void rcc_set_main_pll(uint32_t source, uint32_t pllm, uint32_t plln, uint32_t pllp, uint32_t pllq, uint32_t pllr) { RCC_PLLCFGR = (RCC_PLLCFGR_PLLM(pllm) << RCC_PLLCFGR_PLLM_SHIFT) | (plln << RCC_PLLCFGR_PLLN_SHIFT) | (pllp) | (source << RCC_PLLCFGR_PLLSRC_SHIFT) | (pllq << RCC_PLLCFGR_PLLQ_SHIFT) | (pllr << RCC_PLLCFGR_PLLR_SHIFT) | RCC_PLLCFGR_PLLREN; } uint32_t rcc_system_clock_source(void) { /* Return the clock source which is used as system clock. */ return (RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK; } /** * Setup clocks to run from PLL. * * The arguments provide the pll source, multipliers, dividers, all that's * needed to establish a system clock. * * @param clock clock information structure. */ void rcc_clock_setup_pll(const struct rcc_clock_scale *clock) { /* Enable internal high-speed oscillator (HSI16). */ rcc_osc_on(RCC_HSI16); rcc_wait_for_osc_ready(RCC_HSI16); /* Select HSI16 as SYSCLK source. */ rcc_set_sysclk_source(RCC_PLLCFGR_PLLSRC_HSI16); /* Enable external high-speed oscillator (HSE). */ if (clock->pll_source == RCC_PLLCFGR_PLLSRC_HSE) { rcc_osc_on(RCC_HSE); rcc_wait_for_osc_ready(RCC_HSE); } /* Set the VOS scale mode */ rcc_periph_clock_enable(RCC_PWR); pwr_set_vos_scale(clock->voltage_scale); /* * Set prescalers for AHB, ADC, APB1, APB2. * Do this before touching the PLL (TODO: why?). */ rcc_set_hpre(clock->hpre); rcc_set_ppre1(clock->ppre1); rcc_set_ppre2(clock->ppre2); /* Disable PLL oscillator before changing its configuration. */ rcc_osc_off(RCC_PLL); /* Configure the PLL oscillator. */ rcc_set_main_pll(clock->pll_source, clock->pllm, clock->plln, clock->pllp, clock->pllq, clock->pllr); /* Enable PLL oscillator and wait for it to stabilize. */ rcc_osc_on(RCC_PLL); rcc_wait_for_osc_ready(RCC_PLL); /* Configure flash settings. */ if (clock->flash_config & FLASH_ACR_DCEN) { flash_dcache_enable(); } else { flash_dcache_disable(); } if (clock->flash_config & FLASH_ACR_ICEN) { flash_icache_enable(); } else { flash_icache_disable(); } flash_set_ws(clock->flash_config); /* Select PLL as SYSCLK source. */ rcc_set_sysclk_source(RCC_CFGR_SW_PLL); /* Wait for PLL clock to be selected. */ rcc_wait_for_sysclk_status(RCC_PLL); /* Set the peripheral clock frequencies used. */ rcc_ahb_frequency = clock->ahb_frequency; rcc_apb1_frequency = clock->apb1_frequency; rcc_apb2_frequency = clock->apb2_frequency; /* Disable internal high-speed oscillator. */ if (clock->pll_source == RCC_PLLCFGR_PLLSRC_HSE) { rcc_osc_off(RCC_HSI16); } } /** * Set the msi run time range. * Can only be called when MSI is either OFF, or when MSI is on _and_ * ready. (RCC_CR_MSIRDY bit). @sa rcc_set_msi_range_standby * @param msi_range range number @ref rcc_cr_msirange */ void rcc_set_msi_range(uint32_t msi_range) { uint32_t reg = RCC_CR; reg &= ~(RCC_CR_MSIRANGE_MASK << RCC_CR_MSIRANGE_SHIFT); reg |= msi_range << RCC_CR_MSIRANGE_SHIFT; RCC_CR = reg | RCC_CR_MSIRGSEL; } /** * Set the msi range after reset/standby. * Until MSIRGSEl bit is set, this defines the MSI range. * Note that not all MSI range values are allowed here! * @sa rcc_set_msi_range * @param msi_range range number valid for post standby @ref rcc_csr_msirange */ void rcc_set_msi_range_standby(uint32_t msi_range) { uint32_t reg = RCC_CSR; reg &= ~(RCC_CSR_MSIRANGE_MASK << RCC_CSR_MSIRANGE_SHIFT); reg |= msi_range << RCC_CSR_MSIRANGE_SHIFT; RCC_CSR = reg; } /** Enable PLL Output * * - P (RCC_PLLCFGR_PLLPEN) * - Q (RCC_PLLCFGR_PLLQEN) * - R (RCC_PLLCFGR_PLLREN) * * @param pllout One or more of the definitions above */ void rcc_pll_output_enable(uint32_t pllout) { RCC_PLLCFGR |= pllout; } /** Set clock source for 48MHz clock * * The 48 MHz clock is derived from one of the four following sources: * - main PLL VCO (RCC_CCIPR_CLK48SEL_PLL) * - PLLSAI1 VCO (RCC_CCIPR_CLK48SEL_PLLSAI1Q) * - MSI clock (RCC_CCIPR_CLK48SEL_MSI) * - HSI48 internal oscillator (RCC_CCIPR_CLK48SEL_HSI48) * * @param clksel One of the definitions above */ void rcc_set_clock48_source(uint32_t clksel) { RCC_CCIPR &= ~(RCC_CCIPR_CLK48SEL_MASK << RCC_CCIPR_CLK48SEL_SHIFT); RCC_CCIPR |= (clksel << RCC_CCIPR_CLK48SEL_SHIFT); } /** Enable the RTC clock */ void rcc_enable_rtc_clock(void) { RCC_BDCR |= RCC_BDCR_RTCEN; } /** Disable the RTC clock */ void rcc_disable_rtc_clock(void) { RCC_BDCR &= ~RCC_BDCR_RTCEN; } /** Set the source for the RTC clock * @param[in] clk ::rcc_osc. RTC clock source. Only HSE/32, LSE and LSI. */ void rcc_set_rtc_clock_source(enum rcc_osc clk) { RCC_BDCR &= ~(RCC_BDCR_RTCSEL_MASK << RCC_BDCR_RTCSEL_SHIFT); switch (clk) { case RCC_HSE: RCC_BDCR |= (RCC_BDCR_RTCSEL_HSEDIV32 << RCC_BDCR_RTCSEL_SHIFT); break; case RCC_LSE: RCC_BDCR |= (RCC_BDCR_RTCSEL_LSE << RCC_BDCR_RTCSEL_SHIFT); break; case RCC_LSI: RCC_BDCR |= (RCC_BDCR_RTCSEL_LSI << RCC_BDCR_RTCSEL_SHIFT); break; default: /* none selected */ break; } } /* Helper to calculate the frequency of a UART/I2C based on the apb and clksel value. * For I2C, clock selection 0b11 is reserved while it specifies LSE for UARTs. */ static uint32_t rcc_uart_i2c_clksel_freq_hz(uint32_t apb_clk, uint8_t shift, uint32_t clock_reg) { uint8_t clksel = (clock_reg >> shift) & RCC_CCIPR_USARTxSEL_MASK; uint8_t hpre = (RCC_CFGR >> RCC_CFGR_HPRE_SHIFT) & RCC_CFGR_HPRE_MASK; switch (clksel) { case RCC_CCIPR_USARTxSEL_APB: return apb_clk; case RCC_CCIPR_USARTxSEL_SYS: return rcc_ahb_frequency * rcc_get_div_from_hpre(hpre); case RCC_CCIPR_USARTxSEL_HSI16: return 16000000U; case RCC_CCIPR_USARTxSEL_LSE: return 32768U; } cm3_assert_not_reached(); } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the USART at base specified. * @param usart Base address of USART to get clock frequency for. */ uint32_t rcc_get_usart_clk_freq(uint32_t usart) { /* Handle values with selectable clocks. */ if (usart == LPUART1_BASE) { return rcc_uart_i2c_clksel_freq_hz(rcc_apb1_frequency, RCC_CCIPR_LPUART1SEL_SHIFT, RCC_CCIPR); } else if (usart == USART1_BASE) { return rcc_uart_i2c_clksel_freq_hz(rcc_apb2_frequency, RCC_CCIPR_USART1SEL_SHIFT, RCC_CCIPR); } else if (usart == USART2_BASE) { return rcc_uart_i2c_clksel_freq_hz(rcc_apb1_frequency, RCC_CCIPR_USART2SEL_SHIFT, RCC_CCIPR); } else if (usart == USART3_BASE) { return rcc_uart_i2c_clksel_freq_hz(rcc_apb1_frequency, RCC_CCIPR_USART3SEL_SHIFT, RCC_CCIPR); } else if (usart == UART4_BASE) { return rcc_uart_i2c_clksel_freq_hz(rcc_apb1_frequency, RCC_CCIPR_UART4SEL_SHIFT, RCC_CCIPR); } else { /* USART5 */ return rcc_uart_i2c_clksel_freq_hz(rcc_apb1_frequency, RCC_CCIPR_UART5SEL_SHIFT, RCC_CCIPR); } } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the Timer at base specified. * @param timer Base address of TIM to get clock frequency for. */ uint32_t rcc_get_timer_clk_freq(uint32_t timer) { /* Handle APB1 timers, and apply multiplier if necessary. */ if (timer == LPTIM1_BASE || timer == LPTIM2_BASE) { int shift = (timer == LPTIM1_BASE) ? RCC_CCIPR_LPTIM1SEL_SHIFT : RCC_CCIPR_LPTIM2SEL_SHIFT; uint8_t clksel = (RCC_CCIPR >> shift) & RCC_CCIPR_LPTIMxSEL_MASK; switch (clksel) { case RCC_CCIPR_LPTIMxSEL_APB: return rcc_apb1_frequency; case RCC_CCIPR_LPTIMxSEL_LSI: return 32000U; case RCC_CCIPR_LPTIMxSEL_HSI16: return 16000000U; case RCC_CCIPR_LPTIMxSEL_LSE: return 32768U; } } else if (timer >= TIM2_BASE && timer <= TIM7_BASE) { uint8_t ppre1 = (RCC_CFGR >> RCC_CFGR_PPRE1_SHIFT) & RCC_CFGR_PPRE1_MASK; return (ppre1 == RCC_CFGR_PPRE_NODIV) ? rcc_apb1_frequency : 2 * rcc_apb1_frequency; } else { uint8_t ppre2 = (RCC_CFGR >> RCC_CFGR_PPRE2_SHIFT) & RCC_CFGR_PPRE2_MASK; return (ppre2 == RCC_CFGR_PPRE_NODIV) ? rcc_apb2_frequency : 2 * rcc_apb2_frequency; } cm3_assert_not_reached(); } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the I2C device at base specified. * @param i2c Base address of I2C to get clock frequency for. */ uint32_t rcc_get_i2c_clk_freq(uint32_t i2c) { if (i2c == I2C1_BASE) { return rcc_uart_i2c_clksel_freq_hz(rcc_apb1_frequency, RCC_CCIPR_I2C1SEL_SHIFT, RCC_CCIPR); } else if (i2c == I2C2_BASE) { return rcc_uart_i2c_clksel_freq_hz(rcc_apb1_frequency, RCC_CCIPR_I2C2SEL_SHIFT, RCC_CCIPR); } else if (i2c == I2C3_BASE) { return rcc_uart_i2c_clksel_freq_hz(rcc_apb1_frequency, RCC_CCIPR_I2C3SEL_SHIFT, RCC_CCIPR); } else { /* I2C4 */ return rcc_uart_i2c_clksel_freq_hz(rcc_apb1_frequency, RCC_CCIPR_I2C4SEL_SHIFT, RCC_CCIPR2); } } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the SPI device at base specified. * @param spi Base address of SPI device to get clock frequency for (e.g. SPI1_BASE). */ uint32_t rcc_get_spi_clk_freq(uint32_t spi) { if (spi == SPI1_BASE) { return rcc_apb2_frequency; } else { return rcc_apb1_frequency; } } /**@}*/