/** @defgroup rcc_file RCC peripheral API * * @ingroup peripheral_apis * * @brief libopencm3 STM32G0xx Reset and Clock Control * * @author @htmlonly © @endhtmlonly 2019 Guillaume Revaillot * * @date 10 January 2019 * * This library supports the Reset and Clock Control System in the STM32 series * of ARM Cortex Microcontrollers by ST Microelectronics. * * LGPL License Terms @ref lgpl_license */ /* * This file is part of the libopencm3 project. * * This library is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library. If not, see . */ /**@{*/ #include #include #include #include /* Set the default clock frequencies after reset. */ uint32_t rcc_ahb_frequency = 16000000; uint32_t rcc_apb1_frequency = 16000000; const struct rcc_clock_scale rcc_clock_config[RCC_CLOCK_CONFIG_END] = { [RCC_CLOCK_CONFIG_LSI_32KHZ] = { /* 32khz from lsi, scale2, 0ws */ .sysclock_source = RCC_LSI, .hpre = RCC_CFGR_HPRE_NODIV, .ppre = RCC_CFGR_PPRE_NODIV, .flash_waitstates = FLASH_ACR_LATENCY_0WS, .voltage_scale = PWR_SCALE2, .ahb_frequency = 32000, .apb_frequency = 32000, }, [RCC_CLOCK_CONFIG_HSI_4MHZ] = { /* 4mhz from hsi/4, scale2, 0ws */ .sysclock_source = RCC_HSI, .hsisys_div = RCC_CR_HSIDIV_DIV4, .hpre = RCC_CFGR_HPRE_NODIV, .ppre = RCC_CFGR_PPRE_NODIV, .flash_waitstates = FLASH_ACR_LATENCY_0WS, .voltage_scale = PWR_SCALE2, .ahb_frequency = 4000000, .apb_frequency = 4000000, }, [RCC_CLOCK_CONFIG_HSI_16MHZ] = { /* 16mhz from hsi, scale2, 0ws */ .sysclock_source = RCC_HSI, .hsisys_div = RCC_CR_HSIDIV_DIV1, .hpre = RCC_CFGR_HPRE_NODIV, .ppre = RCC_CFGR_PPRE_NODIV, .flash_waitstates = FLASH_ACR_LATENCY_0WS, .voltage_scale = PWR_SCALE2, .ahb_frequency = 16000000, .apb_frequency = 16000000, }, [RCC_CLOCK_CONFIG_HSI_PLL_32MHZ] = { /* 32mhz from hsi via pll @ 128mhz / 4, scale1, 1ws */ .sysclock_source = RCC_PLL, .pll_source = RCC_PLLCFGR_PLLSRC_HSI16, .pll_div = RCC_PLLCFGR_PLLM_DIV(1), .pll_mul = RCC_PLLCFGR_PLLN_MUL(8), .pllp_div = RCC_PLLCFGR_PLLP_DIV(4), .pllq_div = RCC_PLLCFGR_PLLQ_DIV(4), .pllr_div = RCC_PLLCFGR_PLLR_DIV(4), .hpre = RCC_CFGR_HPRE_NODIV, .ppre = RCC_CFGR_PPRE_NODIV, .flash_waitstates = FLASH_ACR_LATENCY_1WS, .voltage_scale = PWR_SCALE1, .ahb_frequency = 32000000, .apb_frequency = 32000000, }, [RCC_CLOCK_CONFIG_HSI_PLL_64MHZ] = { /* 64mhz from hsi via pll @ 128mhz / 2, scale1, 2ws */ .sysclock_source = RCC_PLL, .pll_source = RCC_PLLCFGR_PLLSRC_HSI16, .pll_div = RCC_PLLCFGR_PLLM_DIV(1), .pll_mul = RCC_PLLCFGR_PLLN_MUL(8), .pllp_div = RCC_PLLCFGR_PLLP_DIV(2), .pllq_div = RCC_PLLCFGR_PLLQ_DIV(2), .pllr_div = RCC_PLLCFGR_PLLR_DIV(2), .hpre = RCC_CFGR_HPRE_NODIV, .ppre = RCC_CFGR_PPRE_NODIV, .flash_waitstates = FLASH_ACR_LATENCY_2WS, .voltage_scale = PWR_SCALE1, .ahb_frequency = 64000000, .apb_frequency = 64000000, }, [RCC_CLOCK_CONFIG_HSE_12MHZ_PLL_64MHZ] = { /* 64mhz from hse@12mhz via pll @ 128mhz / 2, scale1, 2ws */ .sysclock_source = RCC_PLL, .pll_source = RCC_PLLCFGR_PLLSRC_HSE, .pll_div = RCC_PLLCFGR_PLLM_DIV(3), .pll_mul = RCC_PLLCFGR_PLLN_MUL(32), .pllp_div = RCC_PLLCFGR_PLLP_DIV(2), .pllq_div = RCC_PLLCFGR_PLLQ_DIV(2), .pllr_div = RCC_PLLCFGR_PLLR_DIV(2), .hpre = RCC_CFGR_HPRE_NODIV, .ppre = RCC_CFGR_PPRE_NODIV, .flash_waitstates = FLASH_ACR_LATENCY_2WS, .voltage_scale = PWR_SCALE1, .ahb_frequency = 64000000, .apb_frequency = 64000000, }, }; void rcc_osc_on(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CR |= RCC_CR_PLLON; break; case RCC_HSE: RCC_CR |= RCC_CR_HSEON; break; case RCC_HSI: RCC_CR |= RCC_CR_HSION; break; case RCC_LSE: RCC_BDCR |= RCC_BDCR_LSEON; break; case RCC_LSI: RCC_CSR |= RCC_CSR_LSION; break; default: cm3_assert_not_reached(); break; } } void rcc_osc_off(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CR &= ~RCC_CR_PLLON; break; case RCC_HSE: RCC_CR &= ~RCC_CR_HSEON; break; case RCC_HSI: RCC_CR &= ~RCC_CR_HSION; break; case RCC_LSE: RCC_BDCR &= ~RCC_BDCR_LSEON; break; case RCC_LSI: RCC_CSR &= ~RCC_CSR_LSION; break; default: cm3_assert_not_reached(); break; } } bool rcc_is_osc_ready(enum rcc_osc osc) { switch (osc) { case RCC_PLL: return RCC_CR & RCC_CR_PLLRDY; case RCC_HSE: return RCC_CR & RCC_CR_HSERDY; case RCC_HSI: return RCC_CR & RCC_CR_HSIRDY; case RCC_LSE: return RCC_BDCR & RCC_BDCR_LSERDY; case RCC_LSI: return RCC_CSR & RCC_CSR_LSIRDY; default: cm3_assert_not_reached(); return 0; } return false; } void rcc_wait_for_osc_ready(enum rcc_osc osc) { while (!rcc_is_osc_ready(osc)); } void rcc_css_enable(void) { RCC_CR |= RCC_CR_CSSON; } void rcc_css_disable(void) { RCC_CR &= ~RCC_CR_CSSON; } void rcc_css_int_clear(void) { RCC_CICR |= RCC_CICR_CSSC; } int rcc_css_int_flag(void) { return ((RCC_CIFR & RCC_CIFR_CSSF) != 0); } /*---------------------------------------------------------------------------*/ /** @brief Set the Source for the System Clock. * @param osc Oscillator to use. */ void rcc_set_sysclk_source(enum rcc_osc osc) { uint32_t reg32; uint32_t sw = 0; switch (osc) { case RCC_HSI: sw = RCC_CFGR_SW_HSISYS; break; case RCC_HSE: sw = RCC_CFGR_SW_HSE; break; case RCC_PLL: sw = RCC_CFGR_SW_PLLRCLK; break; case RCC_LSE: sw = RCC_CFGR_SW_LSE; break; case RCC_LSI: sw = RCC_CFGR_SW_LSI; break; default: cm3_assert_not_reached(); return; } reg32 = RCC_CFGR; reg32 &= ~(RCC_CFGR_SW_MASK << RCC_CFGR_SW_SHIFT); RCC_CFGR = (reg32 | (sw << RCC_CFGR_SW_SHIFT)); } /*---------------------------------------------------------------------------*/ /** @brief Return the clock source which is used as system clock. * @return rcc_osc system clock source */ enum rcc_osc rcc_system_clock_source(void) { switch ((RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK) { case RCC_CFGR_SW_HSISYS: return RCC_HSI; case RCC_CFGR_SW_HSE: return RCC_HSE; case RCC_CFGR_SWS_PLLRCLK: return RCC_PLL; case RCC_CFGR_SW_LSE: return RCC_LSE; case RCC_CFGR_SW_LSI: return RCC_LSI; default: cm3_assert_not_reached(); return 0; } } /*---------------------------------------------------------------------------*/ /** @brief Wait until system clock switched to given oscillator. * @param osc Oscillator. */ void rcc_wait_for_sysclk_status(enum rcc_osc osc) { uint32_t sws = 0; switch (osc) { case RCC_PLL: sws = RCC_CFGR_SWS_PLLRCLK; break; case RCC_HSE: sws = RCC_CFGR_SWS_HSE; break; case RCC_HSI: sws = RCC_CFGR_SWS_HSISYS; break; case RCC_LSI: sws = RCC_CFGR_SWS_LSI; break; case RCC_LSE: sws = RCC_CFGR_SWS_LSE; break; default: cm3_assert_not_reached(); break; } while (((RCC_CFGR >> RCC_CFGR_SWS_SHIFT) & RCC_CFGR_SWS_MASK) != sws); } /** * @brief Configure pll source. * @param[in] pllsrc pll clock source @ref rcc_pllcfgr_pllsrc */ void rcc_set_pll_source(uint32_t pllsrc) { uint32_t reg32; reg32 = RCC_PLLCFGR; reg32 &= ~(RCC_PLLCFGR_PLLSRC_MASK << RCC_PLLCFGR_PLLSRC_SHIFT); RCC_PLLCFGR = (reg32 | (pllsrc << RCC_PLLCFGR_PLLSRC_SHIFT)); } /** * @brief Configure pll source and output frequencies. * @param[in] source pll clock source @ref rcc_pllcfgr_pllsrc * @param[in] pllm pll vco division factor @ref rcc_pllcfgr_pllm * @param[in] plln pll vco multiplation factor @ref rcc_pllcfgr_plln * @param[in] pllp pll P clock output division factor @ref rcc_pllcfgr_pllp * @param[in] pllq pll Q clock output division factor @ref rcc_pllcfgr_pllq * @param[in] pllr pll R clock output (sysclock pll) division factor @ref rcc_pllcfgr_pllr */ void rcc_set_main_pll(uint32_t source, uint32_t pllm, uint32_t plln, uint32_t pllp, uint32_t pllq, uint32_t pllr) { RCC_PLLCFGR = (source << RCC_PLLCFGR_PLLSRC_SHIFT) | (pllm << RCC_PLLCFGR_PLLM_SHIFT) | (plln << RCC_PLLCFGR_PLLN_SHIFT) | (pllp << RCC_PLLCFGR_PLLP_SHIFT) | (pllq << RCC_PLLCFGR_PLLQ_SHIFT) | (pllr << RCC_PLLCFGR_PLLR_SHIFT); } /** * @brief Enable PLL P clock output. * @param[in] enable or disable P clock output */ void rcc_enable_pllp(bool enable) { if (enable) { RCC_PLLCFGR |= RCC_PLLCFGR_PLLPEN; } else { RCC_PLLCFGR &= ~RCC_PLLCFGR_PLLPEN; } } /** * @brief Enable PLL Q clock output. * @param[in] enable or disable Q clock output */ void rcc_enable_pllq(bool enable) { if (enable) { RCC_PLLCFGR |= RCC_PLLCFGR_PLLQEN; } else { RCC_PLLCFGR &= ~RCC_PLLCFGR_PLLQEN; } } /** * @brief Enable PLL R clock output. * @param[in] enable or disable R clock output */ void rcc_enable_pllr(bool enable) { if (enable) { RCC_PLLCFGR |= RCC_PLLCFGR_PLLREN; } else { RCC_PLLCFGR &= ~RCC_PLLCFGR_PLLREN; } } /** * @brief Configure APB peripheral clock prescaler * @param[in] ppre APB clock prescaler value @ref rcc_cfgr_ppre */ void rcc_set_ppre(uint32_t ppre) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~(RCC_CFGR_PPRE_MASK << RCC_CFGR_PPRE_SHIFT); RCC_CFGR = (reg32 | (ppre << RCC_CFGR_PPRE_SHIFT)); } /** * @brief Configure AHB peripheral clock prescaler * @param[in] hpre AHB clock prescaler value @ref rcc_cfgr_hpre */ void rcc_set_hpre(uint32_t hpre) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~(RCC_CFGR_HPRE_MASK << RCC_CFGR_HPRE_SHIFT); RCC_CFGR = (reg32 | (hpre << RCC_CFGR_HPRE_SHIFT)); } /** * @brief Configure HSI16 clock division factor to feed SYSCLK * @param[in] hsidiv HSYSSIS clock division factor @ref rcc_cr_hsidiv */ void rcc_set_hsisys_div(uint32_t hsidiv) { uint32_t reg32; reg32 = RCC_CR; reg32 &= ~(RCC_CR_HSIDIV_MASK << RCC_CR_HSIDIV_SHIFT); RCC_CR = (reg32 | (hsidiv << RCC_CR_HSIDIV_SHIFT)); } /** * @brief Configure mco prescaler. * @param[in] mcopre prescaler value @ref rcc_cfgr_mcopre */ void rcc_set_mcopre(uint32_t mcopre) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~(RCC_CFGR_MCOPRE_MASK << RCC_CFGR_MCOPRE_SHIFT); RCC_CFGR = (reg32 | (mcopre << RCC_CFGR_MCOPRE_SHIFT)); } /** * @brief Setup sysclock with desired source (HSE/HSI/PLL/LSE/LSI). taking care of flash/pwr and src configuration * @param clock rcc_clock_scale with desired parameters */ void rcc_clock_setup(const struct rcc_clock_scale *clock) { if (clock->sysclock_source == RCC_PLL) { enum rcc_osc pll_source; if (clock->pll_source == RCC_PLLCFGR_PLLSRC_HSE) pll_source = RCC_HSE; else pll_source = RCC_HSI; /* start pll src osc. */ rcc_osc_on(pll_source); rcc_wait_for_osc_ready(pll_source); /* stop pll to reconfigure it. */ rcc_osc_off(RCC_PLL); while (rcc_is_osc_ready(RCC_PLL)); rcc_set_main_pll(clock->pll_source, clock->pll_div, clock->pll_mul, clock->pllp_div, clock->pllq_div, clock->pllr_div); rcc_enable_pllr(true); } else if (clock->sysclock_source == RCC_HSI) { rcc_set_hsisys_div(clock->hsisys_div); } rcc_periph_clock_enable(RCC_PWR); pwr_set_vos_scale(clock->voltage_scale); flash_set_ws(clock->flash_waitstates); /* enable flash prefetch if we have at least 1WS */ if (clock->flash_waitstates > FLASH_ACR_LATENCY_0WS) flash_prefetch_enable(); else flash_prefetch_disable(); rcc_set_hpre(clock->hpre); rcc_set_ppre(clock->ppre); rcc_osc_on(clock->sysclock_source); rcc_wait_for_osc_ready(clock->sysclock_source); rcc_set_sysclk_source(clock->sysclock_source); rcc_wait_for_sysclk_status(clock->sysclock_source); rcc_ahb_frequency = clock->ahb_frequency; rcc_apb1_frequency = clock->apb_frequency; } /** * @brief Setup RNG Peripheral Clock Divider * @param rng_div clock divider @ref rcc_ccipr_rngdiv */ void rcc_set_rng_clk_div(uint32_t rng_div) { uint32_t reg32 = RCC_CCIPR & ~(RCC_CCIPR_RNGDIV_MASK << RCC_CCIPR_RNGDIV_SHIFT); RCC_CCIPR = reg32 | (rng_div << RCC_CCIPR_RNGDIV_SHIFT); } /** * @brief Set the peripheral clock source * @param periph peripheral of choice, eg XXX_BASE * @param sel periphral clock source */ void rcc_set_peripheral_clk_sel(uint32_t periph, uint32_t sel) { uint8_t shift; uint32_t mask; switch (periph) { case ADC1_BASE: shift = RCC_CCIPR_ADCSEL_SHIFT; mask = RCC_CCIPR_ADCSEL_MASK; break; case RNG_BASE: shift = RCC_CCIPR_RNGSEL_SHIFT; mask = RCC_CCIPR_RNGSEL_MASK; break; case TIM1_BASE: shift = RCC_CCIPR_TIM1SEL_SHIFT; mask = RCC_CCIPR_TIM1SEL_MASK; break; case LPTIM1_BASE: shift = RCC_CCIPR_LPTIM1SEL_SHIFT; mask = RCC_CCIPR_LPTIM1SEL_MASK; break; case LPTIM2_BASE: shift = RCC_CCIPR_LPTIM2SEL_SHIFT; mask = RCC_CCIPR_LPTIM2SEL_MASK; break; case CEC_BASE: shift = RCC_CCIPR_CECSEL_SHIFT; mask = RCC_CCIPR_CECSEL_MASK; break; case USART2_BASE: shift = RCC_CCIPR_USART2SEL_SHIFT; mask = RCC_CCIPR_USARTxSEL_MASK; break; case USART1_BASE: shift = RCC_CCIPR_USART1SEL_SHIFT; mask = RCC_CCIPR_USARTxSEL_MASK; break; default: cm3_assert_not_reached(); return; } uint32_t reg32 = RCC_CCIPR & ~(mask << shift); RCC_CCIPR = reg32 | (sel << shift); } static uint32_t rcc_get_clksel_freq(uint8_t shift) { uint8_t clksel = (RCC_CCIPR >> shift) & RCC_CCIPR_USARTxSEL_MASK; uint8_t hpre = (RCC_CFGR >> RCC_CFGR_HPRE_SHIFT) & RCC_CFGR_HPRE_MASK; switch (clksel) { case RCC_CCIPR_USARTxSEL_PCLK: return rcc_apb1_frequency; case RCC_CCIPR_USARTxSEL_SYSCLK: return rcc_ahb_frequency * rcc_get_div_from_hpre(hpre); case RCC_CCIPR_USARTxSEL_LSE: return 32768; case RCC_CCIPR_USARTxSEL_HSI16: return 16000000U; } cm3_assert_not_reached(); } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the USART at base specified. * @param usart Base address of USART to get clock frequency for. */ uint32_t rcc_get_usart_clk_freq(uint32_t usart) { if (usart == USART1_BASE) { return rcc_get_clksel_freq(RCC_CCIPR_USART1SEL_SHIFT); } else if (usart == USART2_BASE) { return rcc_get_clksel_freq(RCC_CCIPR_USART2SEL_SHIFT); } else if (usart == USART3_BASE) { return rcc_get_clksel_freq(RCC_CCIPR_USART3SEL_SHIFT); } else if (usart == LPUART1_BASE) { return rcc_get_clksel_freq(RCC_CCIPR_LPUART1SEL_SHIFT); } else if (usart == LPUART2_BASE) { return rcc_get_clksel_freq(RCC_CCIPR_LPUART2SEL_SHIFT); } cm3_assert_not_reached(); } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the Timer at base specified. * @param timer Base address of TIM to get clock frequency for. */ uint32_t rcc_get_timer_clk_freq(uint32_t timer __attribute__((unused))) { uint8_t ppre = (RCC_CFGR >> RCC_CFGR_PPRE_SHIFT) & RCC_CFGR_PPRE_MASK; return (ppre == RCC_CFGR_PPRE_NODIV) ? rcc_apb1_frequency : 2 * rcc_apb1_frequency; } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the I2C device at base specified. * @param i2c Base address of I2C to get clock frequency for. */ uint32_t rcc_get_i2c_clk_freq(uint32_t i2c) { if (i2c == I2C1_BASE) { return rcc_get_clksel_freq(RCC_CCIPR_I2C1SEL_SHIFT); } else if (i2c == I2C2_BASE) { return rcc_get_clksel_freq(RCC_CCIPR_I2C2SEL_SHIFT); } cm3_assert_not_reached(); } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the SPI device at base specified. * @param spi Base address of SPI device to get clock frequency for (e.g. SPI1_BASE). */ uint32_t rcc_get_spi_clk_freq(uint32_t spi __attribute__((unused))) { return rcc_apb1_frequency; } /**@}*/