/** @defgroup rcc_file RCC peripheral API * * @ingroup peripheral_apis * * @brief libopencm3 STM32L0xx Reset and Clock Control * * @version 1.0.0 * * @date November 2014 * * This library supports the Reset and Clock Control System in the STM32F0xx * series of ARM Cortex Microcontrollers by ST Microelectronics. * * LGPL License Terms @ref lgpl_license */ /* * This file is part of the libopencm3 project. * * Copyright (C) 2014 Karl Palsson * * This library is free software: you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with this library. If not, see . */ /**@{*/ #include #include #include #include /* Set the default clock frequencies after reset. */ uint32_t rcc_ahb_frequency = 2097000; uint32_t rcc_apb1_frequency = 2097000; uint32_t rcc_apb2_frequency = 2097000; void rcc_osc_on(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CR |= RCC_CR_PLLON; break; case RCC_MSI: RCC_CR |= RCC_CR_MSION; break; case RCC_HSE: RCC_CR |= RCC_CR_HSEON; break; case RCC_HSI48: RCC_CRRCR |= RCC_CRRCR_HSI48ON; break; case RCC_HSI16: RCC_CR |= RCC_CR_HSI16ON; break; case RCC_LSE: RCC_CSR |= RCC_CSR_LSEON; break; case RCC_LSI: RCC_CSR |= RCC_CSR_LSION; break; } } void rcc_osc_off(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CR &= ~RCC_CR_PLLON; break; case RCC_MSI: RCC_CR &= ~RCC_CR_MSION; break; case RCC_HSE: RCC_CR &= ~RCC_CR_HSEON; break; case RCC_HSI48: RCC_CRRCR &= ~RCC_CRRCR_HSI48ON; break; case RCC_HSI16: RCC_CR &= ~RCC_CR_HSI16ON; break; case RCC_LSE: RCC_CSR &= ~RCC_CSR_LSEON; break; case RCC_LSI: RCC_CSR &= ~RCC_CSR_LSION; break; } } /*---------------------------------------------------------------------------*/ /** @brief RCC Clear the Oscillator Ready Interrupt Flag * * Clear the interrupt flag that was set when a clock oscillator became ready * to use. * * @param[in] osc Oscillator ID */ void rcc_osc_ready_int_clear(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CICR |= RCC_CICR_PLLRDYC; break; case RCC_HSE: RCC_CICR |= RCC_CICR_HSERDYC; break; case RCC_HSI48: RCC_CICR |= RCC_CICR_HSI48RDYC; break; case RCC_HSI16: RCC_CICR |= RCC_CICR_HSI16RDYC; break; case RCC_MSI: RCC_CICR |= RCC_CICR_MSIRDYC; break; case RCC_LSE: RCC_CICR |= RCC_CICR_LSERDYC; break; case RCC_LSI: RCC_CICR |= RCC_CICR_LSIRDYC; break; } } /*---------------------------------------------------------------------------*/ /** @brief RCC Enable the Oscillator Ready Interrupt * * @param[in] osc Oscillator ID */ void rcc_osc_ready_int_enable(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CIER |= RCC_CIER_PLLRDYIE; break; case RCC_HSE: RCC_CIER |= RCC_CIER_HSERDYIE; break; case RCC_HSI48: RCC_CIER |= RCC_CIER_HSI48RDYIE; break; case RCC_HSI16: RCC_CIER |= RCC_CIER_HSI16RDYIE; break; case RCC_MSI: RCC_CIER |= RCC_CIER_MSIRDYIE; break; case RCC_LSE: RCC_CIER |= RCC_CIER_LSERDYIE; break; case RCC_LSI: RCC_CIER |= RCC_CIER_LSIRDYIE; break; } } /*---------------------------------------------------------------------------*/ /** @brief RCC Disable the Oscillator Ready Interrupt * * @param[in] osc Oscillator ID */ void rcc_osc_ready_int_disable(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CIER &= ~RCC_CIER_PLLRDYIE; break; case RCC_HSE: RCC_CIER &= ~RCC_CIER_HSERDYIE; break; case RCC_HSI48: RCC_CIER &= ~RCC_CIER_HSI48RDYIE; break; case RCC_HSI16: RCC_CIER &= ~RCC_CIER_HSI16RDYIE; break; case RCC_MSI: RCC_CIER &= ~RCC_CIER_MSIRDYIE; break; case RCC_LSE: RCC_CIER &= ~RCC_CIER_LSERDYIE; break; case RCC_LSI: RCC_CIER &= ~RCC_CIER_LSIRDYIE; break; } } /*---------------------------------------------------------------------------*/ /** @brief RCC Read the Oscillator Ready Interrupt Flag * * @param[in] osc Oscillator ID * @returns int. Boolean value for flag set. */ int rcc_osc_ready_int_flag(enum rcc_osc osc) { switch (osc) { case RCC_PLL: return ((RCC_CIFR & RCC_CIFR_PLLRDYF) != 0); break; case RCC_HSE: return ((RCC_CIFR & RCC_CIFR_HSERDYF) != 0); break; case RCC_HSI48: return ((RCC_CIFR & RCC_CIFR_HSI48RDYF) != 0); break; case RCC_HSI16: return ((RCC_CIFR & RCC_CIFR_HSI16RDYF) != 0); break; case RCC_MSI: return ((RCC_CIFR & RCC_CIFR_MSIRDYF) != 0); break; case RCC_LSE: return ((RCC_CIFR & RCC_CIFR_LSERDYF) != 0); break; case RCC_LSI: return ((RCC_CIFR & RCC_CIFR_LSIRDYF) != 0); break; } cm3_assert_not_reached(); } bool rcc_is_osc_ready(enum rcc_osc osc) { switch (osc) { case RCC_PLL: return RCC_CR & RCC_CR_PLLRDY; case RCC_HSE: return RCC_CR & RCC_CR_HSERDY; case RCC_HSI16: return RCC_CR & RCC_CR_HSI16RDY; case RCC_HSI48: return RCC_CRRCR & RCC_CRRCR_HSI48RDY; case RCC_MSI: return RCC_CR & RCC_CR_MSIRDY; case RCC_LSE: return RCC_CSR & RCC_CSR_LSERDY; case RCC_LSI: return RCC_CSR & RCC_CSR_LSIRDY; } return false; } void rcc_wait_for_osc_ready(enum rcc_osc osc) { while (!rcc_is_osc_ready(osc)); } /*---------------------------------------------------------------------------*/ /** @brief RCC Set HSI48 clock source to the RC48 (CRS) */ void rcc_set_hsi48_source_rc48(void) { RCC_CCIPR |= RCC_CCIPR_HSI48SEL; } /*---------------------------------------------------------------------------*/ /** @brief RCC Set HSI48 clock source to the PLL */ void rcc_set_hsi48_source_pll(void) { RCC_CCIPR &= ~RCC_CCIPR_HSI48SEL; } /*---------------------------------------------------------------------------*/ /** @brief RCC Set the Source for the System Clock. * * @param[in] osc Oscillator ID. Only HSE, HSI16, MSI and PLL have effect. */ void rcc_set_sysclk_source(enum rcc_osc osc) { switch (osc) { case RCC_PLL: RCC_CFGR |= RCC_CFGR_SW_PLL; break; case RCC_HSE: RCC_CFGR = (RCC_CFGR & ~RCC_CFGR_SW_MASK) | RCC_CFGR_SW_HSE; break; case RCC_HSI16: RCC_CFGR = (RCC_CFGR & ~RCC_CFGR_SW_MASK) | RCC_CFGR_SW_HSI16; break; case RCC_MSI: RCC_CFGR = (RCC_CFGR & ~RCC_CFGR_SW_MASK) | RCC_CFGR_SW_MSI; break; case RCC_HSI48: case RCC_LSE: case RCC_LSI: break; } } /*---------------------------------------------------------------------------*/ /** @brief RCC Set the PLL Multiplication Factor. * * @note This only has effect when the PLL is disabled. * * @param[in] factor PLL multiplication factor @ref rcc_cfgr_pmf */ void rcc_set_pll_multiplier(uint32_t factor) { uint32_t reg = RCC_CFGR & ~(RCC_CFGR_PLLMUL_MASK << RCC_CFGR_PLLMUL_SHIFT); RCC_CFGR = reg | (factor << RCC_CFGR_PLLMUL_SHIFT); } /*---------------------------------------------------------------------------*/ /** @brief RCC Set the PLL Division Factor. * * @note This only has effect when the PLL is disabled. * * @param[in] factor PLL multiplication factor @ref rcc_cfgr_pdf */ void rcc_set_pll_divider(uint32_t factor) { uint32_t reg = RCC_CFGR & ~(RCC_CFGR_PLLDIV_MASK << RCC_CFGR_PLLDIV_SHIFT); RCC_CFGR = reg | (factor << RCC_CFGR_PLLDIV_SHIFT); } /** * Set the pll source. * @param pllsrc RCC_CFGR_PLLSRC_HSI16_CLK or RCC_CFGR_PLLSRC_HSE_CLK */ void rcc_set_pll_source(uint32_t pllsrc) { uint32_t reg32; reg32 = RCC_CFGR; reg32 &= ~(RCC_CFGR_PLLSRC_HSE_CLK << 16); RCC_CFGR = (reg32 | (pllsrc<<16)); } /*---------------------------------------------------------------------------*/ /** @brief RCC Set the APB1 Prescale Factor. * * @note The APB1 clock frequency must not exceed 32MHz. * * @param[in] ppre APB prescale factor @ref rcc_cfgr_apb1pre */ void rcc_set_ppre1(uint32_t ppre) { uint32_t reg = RCC_CFGR & ~(RCC_CFGR_PPRE1_MASK << RCC_CFGR_PPRE1_SHIFT); RCC_CFGR = reg | (ppre << RCC_CFGR_PPRE1_SHIFT); } /*---------------------------------------------------------------------------*/ /** @brief RCC Set the APB2 Prescale Factor. * * @note The APB2 clock frequency must not exceed 32MHz. * * @param[in] ppre APB prescale factor @ref rcc_cfgr_apb2pre */ void rcc_set_ppre2(uint32_t ppre) { uint32_t reg = RCC_CFGR & ~(RCC_CFGR_PPRE2_MASK << RCC_CFGR_PPRE2_SHIFT); RCC_CFGR = reg | (ppre << RCC_CFGR_PPRE2_SHIFT); } /*---------------------------------------------------------------------------*/ /** @brief RCC Set the AHB Prescale Factor. * * @param[in] hpre Unsigned int32. AHB prescale factor @ref rcc_cfgr_ahbpre */ void rcc_set_hpre(uint32_t hpre) { uint32_t reg = RCC_CFGR & ~(RCC_CFGR_HPRE_MASK << RCC_CFGR_HPRE_SHIFT); RCC_CFGR = reg | (hpre << RCC_CFGR_HPRE_SHIFT); } /*---------------------------------------------------------------------------*/ /** @brief Set the range of the MSI oscillator * * @param msi_range desired range @ref rcc_icscr_msirange */ void rcc_set_msi_range(uint32_t msi_range) { uint32_t reg32 = RCC_ICSCR & ~(RCC_ICSCR_MSIRANGE_MASK << RCC_ICSCR_MSIRANGE_SHIFT); RCC_ICSCR = reg32 | (msi_range << RCC_ICSCR_MSIRANGE_SHIFT); } /*---------------------------------------------------------------------------*/ /** @brief Set the LPTIM1 clock source * * @param lptim1_sel peripheral clock source @ref rcc_ccpipr_lptim1sel */ void rcc_set_lptim1_sel(uint32_t lptim1_sel) { RCC_CCIPR &= ~(RCC_CCIPR_LPTIM1SEL_MASK << RCC_CCIPR_LPTIM1SEL_SHIFT); RCC_CCIPR |= (lptim1_sel << RCC_CCIPR_LPTIM1SEL_SHIFT); } /*---------------------------------------------------------------------------*/ /** @brief Set the LPUART1 clock source * * @param lpuart1_sel periphral clock source @ref rcc_ccpipr_lpuart1sel */ void rcc_set_lpuart1_sel(uint32_t lpuart1_sel) { RCC_CCIPR &= ~(RCC_CCIPR_LPUARTxSEL_MASK << RCC_CCIPR_LPTIM1SEL_SHIFT); RCC_CCIPR |= (lpuart1_sel << RCC_CCIPR_LPTIM1SEL_SHIFT); } /*---------------------------------------------------------------------------*/ /** @brief Set the USART1 clock source * * @param usart1_sel periphral clock source @ref rcc_ccpipr_usart1sel */ void rcc_set_usart1_sel(uint32_t usart1_sel) { RCC_CCIPR &= ~(RCC_CCIPR_USARTxSEL_MASK << RCC_CCIPR_USART1SEL_SHIFT); RCC_CCIPR |= (usart1_sel << RCC_CCIPR_USART1SEL_SHIFT); } /*---------------------------------------------------------------------------*/ /** @brief Set the USART2 clock source * * @param usart2_sel periphral clock source @ref rcc_ccpipr_usartxsel */ void rcc_set_usart2_sel(uint32_t usart2_sel) { RCC_CCIPR &= ~(RCC_CCIPR_USARTxSEL_MASK << RCC_CCIPR_USART2SEL_SHIFT); RCC_CCIPR |= (usart2_sel << RCC_CCIPR_USART2SEL_SHIFT); } /*---------------------------------------------------------------------------*/ /** @brief Set the peripheral clock source * @param periph peripheral of desire, eg XXX_BASE * @param sel peripheral clock source */ void rcc_set_peripheral_clk_sel(uint32_t periph, uint32_t sel) { uint8_t shift; uint32_t mask; switch (periph) { case LPTIM1_BASE: shift = RCC_CCIPR_LPTIM1SEL_SHIFT; mask = RCC_CCIPR_LPTIM1SEL_MASK; break; case I2C3_BASE: shift = RCC_CCIPR_I2C3SEL_SHIFT; mask = RCC_CCIPR_I2CxSEL_MASK; break; case I2C1_BASE: shift = RCC_CCIPR_I2C1SEL_SHIFT; mask = RCC_CCIPR_I2CxSEL_MASK; break; case LPUART1_BASE: shift = RCC_CCIPR_LPUART1SEL_SHIFT; mask = RCC_CCIPR_LPUARTxSEL_MASK; break; case USART2_BASE: shift = RCC_CCIPR_USART2SEL_SHIFT; mask = RCC_CCIPR_USARTxSEL_MASK; break; case USART1_BASE: shift = RCC_CCIPR_USART1SEL_SHIFT; mask = RCC_CCIPR_USARTxSEL_MASK; break; default: return; } uint32_t reg32 = RCC_CCIPR & ~(mask << shift); RCC_CCIPR = reg32 | (sel << shift); } /* Helper to calculate the frequency of a clksel based clock. */ static uint32_t rcc_uart_i2c_clksel_freq_hz(uint32_t apb_clk, uint8_t shift) { uint8_t clksel = (RCC_CCIPR >> shift) & RCC_CCIPR_I2CxSEL_MASK; uint8_t hpre = (RCC_CFGR >> RCC_CFGR_HPRE_SHIFT) & RCC_CFGR_HPRE_MASK; switch (clksel) { case RCC_CCIPR_USARTxSEL_PCLK: return apb_clk; case RCC_CCIPR_USARTxSEL_SYSCLK: return rcc_ahb_frequency * rcc_get_div_from_hpre(hpre); case RCC_CCIPR_USARTxSEL_HSI: return 16000000U; } cm3_assert_not_reached(); } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the USART at base specified. * @param usart Base address of USART to get clock frequency for. */ uint32_t rcc_get_usart_clk_freq(uint32_t usart) { if (usart == LPUART1_BASE) { return rcc_uart_i2c_clksel_freq_hz(rcc_apb1_frequency, RCC_CCIPR_LPUART1SEL_SHIFT); } else if (usart == USART1_BASE) { return rcc_uart_i2c_clksel_freq_hz(rcc_apb2_frequency, RCC_CCIPR_USART1SEL_SHIFT); } else { return rcc_uart_i2c_clksel_freq_hz(rcc_apb1_frequency, RCC_CCIPR_USART2SEL_SHIFT); } } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the Timer at base specified. * @param timer Base address of TIM to get clock frequency for. */ uint32_t rcc_get_timer_clk_freq(uint32_t timer) { /* Handle APB1 timers, and apply multiplier if necessary. */ if (timer >= TIM2_BASE && timer <= TIM7_BASE) { uint8_t ppre1 = (RCC_CFGR >> RCC_CFGR_PPRE1_SHIFT) & RCC_CFGR_PPRE1_MASK; return (ppre1 == RCC_CFGR_PPRE1_NODIV) ? rcc_apb1_frequency : 2 * rcc_apb1_frequency; } else { uint8_t ppre2 = (RCC_CFGR >> RCC_CFGR_PPRE2_SHIFT) & RCC_CFGR_PPRE2_MASK; return (ppre2 == RCC_CFGR_PPRE2_NODIV) ? rcc_apb2_frequency : 2 * rcc_apb2_frequency; } } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the I2C device at base specified. * @param i2c Base address of I2C to get clock frequency for. */ uint32_t rcc_get_i2c_clk_freq(uint32_t i2c) { if (i2c == I2C1_BASE) { return rcc_uart_i2c_clksel_freq_hz(rcc_apb1_frequency, RCC_CCIPR_I2C1SEL_SHIFT); } else if (i2c == I2C3_BASE) { return rcc_uart_i2c_clksel_freq_hz(rcc_apb1_frequency, RCC_CCIPR_I2C3SEL_SHIFT); } else { return rcc_apb1_frequency; } } /*---------------------------------------------------------------------------*/ /** @brief Get the peripheral clock speed for the SPI device at base specified. * @param spi Base address of SPI device to get clock frequency for (e.g. SPI1_BASE). */ uint32_t rcc_get_spi_clk_freq(uint32_t spi) { if (spi == SPI1_BASE) { return rcc_apb2_frequency; } else { return rcc_apb1_frequency; } } /** @brief RCC Setup PLL and use it as Sysclk source. * * @param[in] clock full struct with desired parameters * */ void rcc_clock_setup_pll(const struct rcc_clock_scale *clock) { /* Turn on the appropriate source for the PLL */ if (clock->pll_source == RCC_CFGR_PLLSRC_HSE_CLK) { rcc_osc_on(RCC_HSE); rcc_wait_for_osc_ready(RCC_HSE); } else { rcc_osc_on(RCC_HSI16); rcc_wait_for_osc_ready(RCC_HSI16); } rcc_set_hpre(clock->hpre); rcc_set_ppre1(clock->ppre1); rcc_set_ppre2(clock->ppre2); rcc_periph_clock_enable(RCC_PWR); pwr_set_vos_scale(clock->voltage_scale); rcc_osc_off(RCC_PLL); while (rcc_is_osc_ready(RCC_PLL)); flash_prefetch_enable(); flash_set_ws(clock->flash_waitstates); /* Set up the PLL */ rcc_set_pll_multiplier(clock->pll_mul); rcc_set_pll_divider(clock->pll_div); rcc_set_pll_source(clock->pll_source); rcc_osc_on(RCC_PLL); rcc_wait_for_osc_ready(RCC_PLL); rcc_set_sysclk_source(RCC_PLL); /* Set the peripheral clock frequencies used. */ rcc_ahb_frequency = clock->ahb_frequency; rcc_apb1_frequency = clock->apb1_frequency; rcc_apb2_frequency = clock->apb2_frequency; } /**@}*/