1
0
mirror of git://projects.qi-hardware.com/antorcha.git synced 2024-11-01 19:22:47 +02:00
antorcha/tornado/fw/tornado.c
Werner Almesberger 9447541679 tornado/fw/tornado.c: use LED_* to communicate with LED bar; update demo
Instead of a counter, which worked okay with 16 LEDs but is useless with
all 64 of them, we now show a filling/emptying bar. The update speed is
high enough that rotation results in about a quarter-circle pattern.
2012-11-23 10:47:41 -03:00

158 lines
2.4 KiB
C

#include <stdbool.h>
#include <stdint.h>
#define F_CPU 8000000UL
#include <util/delay.h>
#include "io.h"
#define HIGH(port) \
(MASK(port, CARD_nPWR) | \
MASK(port, SW_N) | MASK(port, SW_E) | MASK(port, SW_S) | \
MASK(port, SW_W) | MASK(port, SW_SW))
#define OUTPUTS(port) \
(MASK(port, CARD_nPWR) | MASK(port, CARD_CLK) | \
MASK(port, LED_DS) | MASK(port, LED_LCLK) | MASK(port, LED_SCLK))
#if 0
/*
* @@@ For testing, connect the LED bar via the 8:10 card slot, so that it
* can be disconnected without soldering.
*/
#define SCLK CARD_DAT1
#define LCLK CARD_DAT0
#define DS CARD_CLK
#define VDD CARD_CMD
#else
#define SCLK LED_SCLK
#define LCLK LED_LCLK
#define DS LED_DS
#endif
#define N_LEDS 64
static void send(uint8_t pattern[N_LEDS/8])
{
uint8_t i, j, mask;
for (i = 0; i != N_LEDS/8; i++) {
mask = 1;
for (j = 0; j != 8; j++) {
if (pattern[i] & mask)
SET(DS);
else
CLR(DS);
SET(SCLK);
CLR(SCLK);
mask <<= 1;
}
}
SET(LCLK);
CLR(LCLK);
}
static inline void admux(bool x)
{
ADMUX =
1 << REFS0 | /* Vref is AVcc */
(x ? ADC_X : ADC_Y);
}
static inline void adcsra(bool start)
{
/*
* The ADC needs to run at clkADC <= 200 kHz for full resolution.
* At clkADC = 125 kHz, a conversion takes about 110 us.
*/
ADCSRA =
1 << ADEN | /* enable ADC */
(start ? 1 << ADSC : 0) |
1 << ADIE | /* enable ADC interrupts */
6; /* clkADC = clk/64 -> 125 kHz */
}
static uint16_t adc(bool x)
{
adcsra(0);
admux(x);
adcsra(1);
while (ADCSRA & (1 << ADSC));
return ADC;
}
int main(void)
{
static uint8_t p[N_LEDS/8];
uint8_t mode = 0;
uint16_t n = 0, v;
PORTB = HIGH(B);
PORTC = HIGH(C);
PORTD = HIGH(D);
DDRB = OUTPUTS(B);
DDRC = OUTPUTS(C);
DDRD = OUTPUTS(D);
CLR(CARD_nPWR);
CLR(SCLK);
CLR(LCLK);
OUT(SCLK);
OUT(LCLK);
OUT(DS);
#ifdef VDD
SET(VDD);
OUT(VDD);
#endif
while (1) {
while (!PIN(SW_SW));
if (!PIN(SW_N))
mode = 0;
if (!PIN(SW_E))
mode = 1;
if (!PIN(SW_S))
mode = 2;
switch (mode) {
case 1:
n = adc(0);
p[0] = n;
p[1] = n >> 8;
p[2] = p[3] = p[4] = p[5] = p[6] = p[7] = 0;
send(p);
break;
case 2:
n = adc(1);
p[0] = n;
p[1] = n >> 8;
p[2] = p[3] = p[4] = p[5] = p[6] = p[7] = 0;
send(p);
break;
default:
v = 63-n;
if (n & 64)
p[(v >> 3) & 7] &= ~(1 << (v & 7));
else
p[(v >> 3) & 7] |= 1 << (v & 7);
send(p);
n++;
}
_delay_ms(1);
}
}