mirror of
git://projects.qi-hardware.com/ben-scans.git
synced 2024-11-22 08:08:26 +02:00
98b6050e83
- solidify/project.c (read_face_data, save_face_data): fx/fy represent a tangent, not a sine - solidify/overlap.c (merge_matrix): corrected shrinkage formula to use tangent instead of sine
488 lines
10 KiB
C
488 lines
10 KiB
C
/*
|
|
* overlap.c - Overlap two parallel faces
|
|
*
|
|
* Written 2010 by Werner Almesberger
|
|
* Copyright 2010 by Werner Almesberger
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*/
|
|
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
#include <limits.h>
|
|
#include <gtk/gtk.h>
|
|
|
|
#include "util.h"
|
|
#include "face.h"
|
|
#include "solid.h"
|
|
#include "style.h"
|
|
#include "overlap.h"
|
|
|
|
|
|
#define UNDEF_F HUGE_VAL
|
|
|
|
|
|
static int has_osd;
|
|
|
|
|
|
static int sx(const struct solid *s)
|
|
{
|
|
return (s->a->sx > s->b->sx ? s->a->sx : s->b->sx)+2*OVERLAP_BORDER;
|
|
}
|
|
|
|
|
|
static int sy(const struct solid *s)
|
|
{
|
|
return (s->a->sy > s->b->sy ? s->a->sy : s->b->sy)+2*OVERLAP_BORDER;
|
|
}
|
|
|
|
|
|
static double r_center(const struct solid *s)
|
|
{
|
|
return hypot(sx(s), sy(s))/OVERLAP_CENTER_DIV;
|
|
}
|
|
|
|
|
|
static double ramp(int z0, double w0, int z1, double w1)
|
|
{
|
|
if (z0 != UNDEF && z1 != UNDEF)
|
|
return z0*w0+z1*w1;
|
|
if (z0 == UNDEF && z0 == UNDEF)
|
|
return UNDEF_F;
|
|
if (z0 == UNDEF && w0 < w1)
|
|
return z1;
|
|
if (z1 == UNDEF && w0 > w1)
|
|
return z0;
|
|
return UNDEF_F;
|
|
}
|
|
|
|
|
|
static double zmix(struct face *f, double x, double y)
|
|
{
|
|
int xa, xb, ya, yb;
|
|
double zx0, zx1;
|
|
|
|
xa = floor(x);
|
|
xb = xa+1;
|
|
ya = floor(y);
|
|
yb = ya+1;
|
|
|
|
zx0 = ramp(
|
|
get_bounded(f->a, xa, ya), yb-y,
|
|
get_bounded(f->a, xa, yb), y-ya);
|
|
zx1 = ramp(
|
|
get_bounded(f->a, xb, ya), yb-y,
|
|
get_bounded(f->a, xb, yb), y-ya);
|
|
|
|
return ramp(zx0, xb-x, zx1, x-xa);
|
|
}
|
|
|
|
|
|
/*
|
|
* Coordinate transformations, on the example of the x coordinate:
|
|
*
|
|
* - the x coordinate runs from 0 to sx(s)-1
|
|
* - since we work relative to the screen center, this becomes x-sx(s)/2
|
|
* This is what we perform the coordinate transform on.
|
|
* - our model runs from min_x to max_x. Its center is at cx.
|
|
*/
|
|
|
|
static void point(const struct solid *s, int x, int y, guchar *p,
|
|
const struct matrix *ma, const struct matrix *mb)
|
|
{
|
|
double za, zb, z;
|
|
double xaf, xbf, yaf, ybf;
|
|
|
|
matrix_map(x, y, ma, &xaf, &yaf);
|
|
matrix_map(x, y, mb, &xbf, &ybf);
|
|
|
|
za = zmix(s->a, xaf, yaf);
|
|
zb = zmix(s->b, xbf, ybf);
|
|
|
|
if (za == UNDEF_F && zb == UNDEF_F)
|
|
return;
|
|
|
|
if (za == UNDEF_F) {
|
|
z = 128.0*(zb-s->b->a->min_z)/(s->b->a->max_z-s->b->a->min_z);
|
|
if (z < 0)
|
|
z = 0;
|
|
if (z > 255)
|
|
z = 255;
|
|
p[0] = 255;
|
|
p[1] = z;
|
|
p[2] = z;
|
|
return;
|
|
}
|
|
if (zb == UNDEF_F) {
|
|
z = 128.0*(za-s->a->a->min_z)/(s->a->a->max_z-s->a->a->min_z);
|
|
if (z < 0)
|
|
z = 0;
|
|
if (z > 255)
|
|
z = 255;
|
|
p[0] = z;
|
|
p[1] = 255;
|
|
p[2] = z;
|
|
return;
|
|
}
|
|
|
|
z = za;
|
|
za -= face_z0(s->a, xaf, yaf);
|
|
zb -= face_z0(s->b, xbf, ybf);
|
|
|
|
if (za+zb < -s->dist) {
|
|
p[0] = 0;
|
|
p[1] = 0;
|
|
p[2] = 255;
|
|
return;
|
|
}
|
|
|
|
z = 256.0*(z-s->a->a->min_z)/(s->a->a->max_z-s->a->a->min_z);
|
|
if (z < 0)
|
|
z = 0;
|
|
if (z > 255)
|
|
z = 255;
|
|
p[0] = z;
|
|
p[1] = z;
|
|
p[2] = z;
|
|
}
|
|
|
|
|
|
static void merge_matrix(struct matrix *m, const struct solid *s,
|
|
const struct face *f)
|
|
{
|
|
double tm[2][2], tm2[2][2];
|
|
double tv[2];
|
|
double f_x, f_y;
|
|
|
|
/*
|
|
* Finally, we convert to model matrix coordinates.
|
|
*
|
|
* v' = v+c
|
|
*/
|
|
|
|
m->b[0] += f->cx;
|
|
m->b[1] += f->cy;
|
|
|
|
/*
|
|
* Apply shrinkage caused by rotation out of z0.
|
|
* We need to divide by x = cos a. We have f = tan a.
|
|
* With sin^2 a + cos^2 a = 1, we get
|
|
*
|
|
* f = sqrt(1-cos^2 a)/cos a
|
|
* = sqrt(1-x^2)/x
|
|
* f^2 = 1/x^2-1
|
|
* 1/(f^2+1) = x^2
|
|
* cos a = sqrt(1/(f^2+1))
|
|
*/
|
|
|
|
f_x = sqrt(f->fx*f->fx+1);
|
|
f_y = sqrt(f->fy*f->fy+1);
|
|
|
|
m->a[0][0] *= f_x;
|
|
m->a[0][1] *= f_x;
|
|
m->b[0] *= f_x;
|
|
m->a[1][0] *= f_y;
|
|
m->a[1][1] *= f_y;
|
|
m->b[1] *= f_y;
|
|
|
|
/*
|
|
* The transformation matrix f->m describes a transformation of
|
|
* (centered) model coordinates. We therefore have to reverse it:
|
|
*
|
|
* v = v'A+b
|
|
* v-b = v'A
|
|
* (v-b)A^-1 = v'
|
|
* vA^-1-bA^-1 = v'
|
|
*/
|
|
|
|
matrix_invert(f->m.a, tm);
|
|
matrix_multv(f->m.b, tm, tv);
|
|
tv[0] = -tv[0];
|
|
tv[1] = -tv[1];
|
|
|
|
/*
|
|
* Merge with the transformations we have so far:
|
|
*
|
|
* v' = vA1+b1 the transformation we have so far
|
|
* v'' = v'A2+b2 the transformation we apply
|
|
*
|
|
* v'' = (vA1+b1)A2+b2
|
|
* v'' = vA1A2+b1A2+b2
|
|
*/
|
|
|
|
/*
|
|
* So far, the theory. To make it really work, we have to calculate
|
|
* v'' = vA1A2+b1+b2
|
|
* duh ?!?
|
|
*/
|
|
|
|
matrix_mult(m->a, tm, tm2); /* A1A2 */
|
|
matrix_copy(tm2, m->a);
|
|
// matrix_multv(m->b, tm, m->b); /* b1A2 */
|
|
m->b[0] += tv[0]; /* b2 */
|
|
m->b[1] += tv[1];
|
|
|
|
/*
|
|
* Our input is a screen coordinate, its origin is in a corner so we
|
|
* first have to make it center-based:
|
|
*
|
|
* v' = (v-s/2)A+b
|
|
* v' = vA+(b-s/2*A)
|
|
*/
|
|
|
|
tv[0] = sx(s)/2;
|
|
tv[1] = sy(s)/2;
|
|
matrix_multv(tv, m->a, tv);
|
|
m->b[0] -= tv[0];
|
|
m->b[1] -= tv[1];
|
|
}
|
|
|
|
|
|
static void draw_map(GtkWidget *widget, struct solid *s)
|
|
{
|
|
guchar *rgbbuf, *p;
|
|
int x, y;
|
|
struct matrix ma = {
|
|
.a = { { 1, 0 }, { 0, 1 } },
|
|
.b = { 0, 0 },
|
|
};
|
|
struct matrix mb = {
|
|
.a = { { -1, 0 }, { 0, 1 } },
|
|
.b = { 0, 0 },
|
|
};
|
|
|
|
rgbbuf = p = calloc(sx(s)*sy(s), 3);
|
|
if (!rgbbuf) {
|
|
perror("calloc");
|
|
exit(1);
|
|
}
|
|
|
|
merge_matrix(&ma, s, s->a);
|
|
merge_matrix(&mb, s, s->b);
|
|
|
|
for (y = sy(s)-1; y >= 0; y--)
|
|
for (x = 0; x != sx(s) ; x++) {
|
|
point(s, x, y, p, &ma, &mb);
|
|
p += 3;
|
|
}
|
|
gdk_draw_rgb_image(widget->window,
|
|
widget->style->fg_gc[GTK_STATE_NORMAL],
|
|
0, 0, sx(s), sy(s), GDK_RGB_DITHER_MAX, rgbbuf, sx(s)*3);
|
|
free(rgbbuf);
|
|
}
|
|
|
|
|
|
static void draw_image(GtkWidget *widget, struct solid *s, int osd)
|
|
{
|
|
int cx = sx(s)/2;
|
|
int cy = sy(s)/2;
|
|
int p;
|
|
|
|
draw_map(widget, s);
|
|
has_osd = osd;
|
|
if (!osd)
|
|
return;
|
|
draw_circle(widget->window, gc_osd, cx, cy, r_center(s));
|
|
p = r_center(s)/sqrt(2);
|
|
gdk_draw_line(widget->window, gc_osd, cx-p, cy-p, cx+p, cy+p);
|
|
gdk_draw_line(widget->window, gc_osd, cx-p, cy+p, cx+p, cy-p);
|
|
}
|
|
|
|
|
|
/*
|
|
* Rotate such that a point at distance "r" moves one unit. Rotate
|
|
* counter-clockwise for r > 1, clockwise for r < 0.
|
|
*/
|
|
|
|
static void rotate(struct matrix *m, double r)
|
|
{
|
|
struct matrix t;
|
|
double s, c;
|
|
|
|
s = 1/r;
|
|
c = sqrt(1-s*s);
|
|
t.a[0][0] = m->a[0][0]*c-m->a[1][0]*s;
|
|
t.a[0][1] = m->a[0][1]*c-m->a[1][1]*s;
|
|
t.a[1][0] = m->a[1][0]*c+m->a[0][0]*s;
|
|
t.a[1][1] = m->a[1][1]*c+m->a[0][1]*s;
|
|
t.b[0] = m->b[0]*c-m->b[1]*s;
|
|
t.b[1] = m->b[0]*s+m->b[1]*c;
|
|
*m = t;
|
|
}
|
|
|
|
|
|
static void do_shift(struct matrix *m, double dx, double dy)
|
|
{
|
|
m->b[0] += dx;
|
|
m->b[1] += dy;
|
|
}
|
|
|
|
|
|
static void shift(struct matrix *m, int dx, int dy, double dist)
|
|
{
|
|
/*
|
|
* Wheeling "up" in each quadrant shifts in the respective direction,
|
|
* wheeling "down" in the opposite direction.
|
|
*
|
|
* No rule without exception: we treat the "down" quadrant like the
|
|
* "up" quadrant, because it would be extremely counter-intuitive to
|
|
* wheel "up" to move "down".
|
|
*/
|
|
|
|
if (dx > 0 && dy < dx && dy > -dx)
|
|
do_shift(m, dist, 0);
|
|
if (dx < 0 && dy < -dx && dy > dx)
|
|
do_shift(m, -dist, 0);
|
|
if (dy > 0 && dx < dy && dx > -dy)
|
|
do_shift(m, 0, dist);
|
|
if (dy < 0 && dx < -dy && dx > dy)
|
|
do_shift(m, 0, dist); /* exception ! */
|
|
}
|
|
|
|
|
|
static int osd_proximity(const struct solid *s, int dx, int dy)
|
|
{
|
|
double r = hypot(dx, dy);
|
|
double rc = r_center(s);
|
|
|
|
if (fabs(r-rc) < OSD_PROXIMITY)
|
|
return 1;
|
|
if (r > rc)
|
|
return 0;
|
|
if (abs(abs(dx)-abs(dy)) < OSD_PROXIMITY)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
|
|
static gboolean scroll_event(GtkWidget *widget, GdkEventScroll *event,
|
|
gpointer data)
|
|
{
|
|
GtkWidget *darea = gtk_bin_get_child(GTK_BIN(widget));
|
|
struct solid *s = data;
|
|
int dx = event->x-sx(s)/2;
|
|
int dy = event->y-sy(s)/2;
|
|
double r = hypot(dx, dy);
|
|
double rc = r_center(s);
|
|
double rs, rot, dist;
|
|
int center = r < rc;
|
|
int osd = osd_proximity(s, dx, dy);
|
|
|
|
if (r < 1)
|
|
return TRUE;
|
|
|
|
/*
|
|
* rot goes exponentially from SLOWEST_ROT*rs to FASTEST_ROT for
|
|
* r = rc to rs, with rs being half the canvas diagonal.
|
|
*
|
|
* The values are picked such that we achieve sufficient precision at
|
|
* a reasonably large distance from the circle (for accidently entering
|
|
* the circle would change the mode) but can also spin quickly, e.g.,
|
|
* when a 180 degrees rotation is needed.
|
|
*
|
|
* First, normalize to 0 ... 1
|
|
* Then, we start at exp(0) and end at
|
|
* exp(ln(SLOWEST_ROT*rs/FASTEST_ROT)))
|
|
*/
|
|
rs = hypot(sx(s), sy(s))/2;
|
|
rot = (r-rc)/(rs-rc);
|
|
rot = SLOWEST_ROT*rs*exp(-rot*log(SLOWEST_ROT*rs/FASTEST_ROT));
|
|
|
|
/*
|
|
* dist stays at 1 from 0...rc/DIST_STEPS, then linearly goes up to
|
|
* DIST_STEPS from rc/DIST_STEPS...rc
|
|
*/
|
|
dist = r/rc*DIST_STEPS;
|
|
if (dist < 0)
|
|
dist = 1;
|
|
|
|
switch (event->direction) {
|
|
case GDK_SCROLL_UP:
|
|
if (center)
|
|
shift(&s->a->m, dx, dy, dist);
|
|
else
|
|
rotate(&s->a->m, dx > 0 ? rot : -rot);
|
|
draw_image(darea, s, osd);
|
|
break;
|
|
case GDK_SCROLL_DOWN:
|
|
if (center)
|
|
shift(&s->a->m, dx, dy, -dist);
|
|
else
|
|
rotate(&s->a->m, dx > 0 ? -rot : rot);
|
|
draw_image(darea, s, osd);
|
|
break;
|
|
default:
|
|
/* ignore */;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
static gboolean expose_event(GtkWidget *widget, GdkEventExpose *event,
|
|
gpointer user_data)
|
|
{
|
|
draw_image(widget, user_data, has_osd);
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
static gboolean motion_notify_event(GtkWidget *widget, GdkEventMotion *event,
|
|
gpointer data)
|
|
{
|
|
struct solid *s = data;
|
|
int dx = event->x-sx(s)/2;
|
|
int dy = event->y-sy(s)/2;
|
|
int osd = osd_proximity(s, dx, dy);
|
|
|
|
if (osd != has_osd)
|
|
draw_image(widget, s, osd);
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
void overlap(GtkWidget *canvas, struct solid *s)
|
|
{
|
|
GtkWidget *evbox, *darea;
|
|
|
|
evbox = gtk_event_box_new();
|
|
darea = gtk_drawing_area_new();
|
|
|
|
gtk_widget_set_events(darea,
|
|
GDK_EXPOSE | GDK_KEY_PRESS_MASK |
|
|
GDK_BUTTON_PRESS_MASK | GDK_BUTTON_RELEASE_MASK |
|
|
GDK_SCROLL |
|
|
GDK_POINTER_MOTION_MASK);
|
|
|
|
gtk_widget_set_size_request(darea, sx(s), sy(s));
|
|
gtk_container_add(GTK_CONTAINER(canvas), evbox);
|
|
gtk_container_add(GTK_CONTAINER(evbox), darea);
|
|
|
|
draw_image(darea, s, 0);
|
|
|
|
g_signal_connect(G_OBJECT(evbox), "scroll-event",
|
|
G_CALLBACK(scroll_event), s);
|
|
g_signal_connect(G_OBJECT(darea), "expose-event",
|
|
G_CALLBACK(expose_event), s);
|
|
g_signal_connect(G_OBJECT(darea), "motion-notify-event",
|
|
G_CALLBACK(motion_notify_event), s);
|
|
|
|
if (0) {
|
|
int i;
|
|
long t0 = time(NULL);
|
|
gtk_widget_show_all(canvas);
|
|
for (i = 0; i != 1000; i++) {
|
|
rotate(&s->a->m, 100);
|
|
draw_image(darea, s, 0);
|
|
while (gtk_events_pending())
|
|
gtk_main_iteration();
|
|
}
|
|
fprintf(stderr, "%lu\n", time(NULL)-t0);
|
|
}
|
|
|
|
}
|