1
0
mirror of git://projects.qi-hardware.com/ben-wpan.git synced 2024-12-28 12:40:49 +02:00
ben-wpan/tools/atrf-txrx/atrf-txrx.c
Werner Almesberger 873f80cb4d tools/atrf-txrx/atrf-txrx.c: option -q becomes "quick" and uses aggressive polling
This allows us to capture frames at full speed speed.
2013-07-30 20:16:02 -03:00

945 lines
21 KiB
C

/*
* atrf-txrx/atrf-txrx.c - ben-wpan AT86RF230 TX/RX
*
* Written 2010-2011, 2013 by Werner Almesberger
* Copyright 2010-2011, 2013 Werner Almesberger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <string.h>
#include <math.h>
#include <signal.h>
#include <sys/wait.h>
#include <sys/time.h>
#include "at86rf230.h"
#include "atrf.h"
#include "misctxrx.h"
#include "cwtest.h"
#include "pcap.h"
/*
* According to IEEE 802.15.4-2003 section E.2.6, channel 15 is the only
* channel that falls into the 802.11 guard bands in North America an Europe.
*/
#define DEFAULT_CHANNEL 15 /* channel 15, 2425 MHz */
#define DEFAULT_TRIM 8 /* trim range is 0-15, see also ECN0002 */
/*
* Transmit power, dBm. IEEE 802.15.4-2003 section E.3.1.3 specifies a transmit
* power of 0 dBm for IEEE 802.15.4. We assume an antenna gain of 3 dB or
* better.
*/
#define DEFAULT_POWER -3.2 /* transmit power, dBm */
struct ping {
uint32_t seq; /* sequence number from originator, > 0 */
uint32_t ack; /* last sequence number received, 0 if none */
uint8_t pad[117]; /* pad to 127 bytes */
uint16_t crc;
} __attribute__((__packed__));
enum rx_res {
rx_exit,
rx_good,
rx_bad,
rx_timeout,
};
enum mode {
mode_msg,
mode_hmac,
mode_per,
mode_ping,
mode_rtt,
mode_rtt_hmac,
mode_cont_tx,
};
static volatile int run = 1;
static bool quick = 0;
/* ----- Helper functions -------------------------------------------------- */
/*
* mhz: 0 disable CLKM
* >0 output specified clock
*/
static struct atrf_dsc *init_txrx(const char *driver, int trim, unsigned mhz)
{
struct atrf_dsc *dsc;
dsc = atrf_open(driver);
if (!dsc)
exit(1);
atrf_reset_rf(dsc);
atrf_reg_write(dsc, REG_TRX_STATE, TRX_CMD_TRX_OFF);
#if 1 // def HAVE_USB /* @@@ yeah, ugly */
atrf_reg_write(dsc, REG_XOSC_CTRL,
(XTAL_MODE_INT << XTAL_MODE_SHIFT) | trim);
#else
atrf_reg_write(dsc, REG_XOSC_CTRL, XTAL_MODE_EXT << XTAL_MODE_SHIFT);
#endif
if (!atrf_set_clkm(dsc, mhz))
if (mhz) {
atrf_close(dsc);
exit(1);
}
/* We want to see all interrupts, not only the ones we're expecting. */
atrf_reg_write(dsc, REG_IRQ_MASK, 0xff);
flush_interrupts(dsc);
if (atrf_identify(dsc) == atrf_at86rf231)
wait_for_interrupt(dsc, IRQ_CCA_ED_DONE, IRQ_CCA_ED_DONE, 1);
/* according to table 7-1, 37 us max */
return dsc;
}
static void set_channel(struct atrf_dsc *dsc, int channel)
{
atrf_reg_write(dsc, REG_PHY_CC_CCA, (1 << CCA_MODE_SHIFT) | channel);
}
static void set_rate(struct atrf_dsc *dsc, uint8_t rate)
{
if (!rate)
return;
switch (atrf_identify(dsc)) {
case atrf_at86rf230:
fprintf(stderr, "AT86RF230 only supports 250 kbps\n");
break;
case atrf_at86rf231:
atrf_reg_write(dsc, REG_TRX_CTRL_2, rate);
break;
default:
abort();
}
}
/* ----- Message transmit/receive ------------------------------------------ */
static void receive_message(struct atrf_dsc *dsc, int hex)
{
uint8_t buf[MAX_PSDU+1]; /* PSDU+LQI */
int n, ok, i;
uint8_t ed, lqi;
fprintf(stderr, "Ready.\n");
wait_for_interrupt(dsc, IRQ_TRX_END,
IRQ_TRX_END | IRQ_RX_START | IRQ_AMI, 0);
if (!run)
return;
n = atrf_buf_read(dsc, buf, sizeof(buf));
if (n < 0)
exit(1);
if (n < 3) {
fprintf(stderr, "%d bytes received\n", n);
exit(1);
}
ed = atrf_reg_read(dsc, REG_PHY_ED_LEVEL);
ok = !!(atrf_reg_read(dsc, REG_PHY_RSSI) & RX_CRC_VALID);
lqi = buf[n-1];
fprintf(stderr, "%d bytes payload, CRC %s, LQI %u, ED %d dBm\n",
n-3, ok ? "OK" : "BAD", lqi, -91+ed);
if (hex) {
for (i = 0; i != n-3; i++)
printf("%s%02x", i ? " " : "", buf[i]);
} else {
for (i = 0; i != n-3; i++)
putchar(buf[i] < ' ' || buf[i] > '~' ? '?' : buf[i]);
}
putchar('\n');
}
static void write_pcap_hdr(FILE *file)
{
struct pcap_file_header hdr = {
.magic = PCAP_FILE_MAGIC,
.version_major = 2,
.version_minor = 4,
.thiszone = 0,
.sigfigs = 0,
.snaplen = MAX_PSDU,
.linktype = DLT_IEEE802_15_4
};
if (fwrite(&hdr, sizeof(hdr), 1, file) != 1) {
perror("fwrite");
exit(1);
}
}
static void write_pcap_rec(FILE *file, const struct timeval *tv,
const void *buf, int n)
{
struct pcap_pkthdr hdr = {
.ts_sec = tv->tv_sec,
.ts_usec = tv->tv_usec,
.caplen = n,
.len = n
};
if (fwrite(&hdr, sizeof(hdr), 1, file) != 1) {
perror("fwrite");
exit(1);
}
if (fwrite(buf, n, 1, file) != 1) {
perror("fwrite");
exit(1);
}
}
static void receive_pcap(struct atrf_dsc *dsc, const char *name)
{
FILE *file;
uint8_t buf[MAX_PSDU+1]; /* PSDU+LQI */
struct timeval now;
int n;
int count = 0;
file = fopen(name, "w");
if (!file) {
perror(name);
exit(1);
}
write_pcap_hdr(file);
while (run) {
wait_for_interrupt(dsc,
IRQ_TRX_END,
quick ? 0xff : IRQ_TRX_END | IRQ_RX_START | IRQ_AMI,
quick ? -1 : 0);
if (!run)
break;
gettimeofday(&now, NULL);
n = atrf_buf_read(dsc, buf, sizeof(buf));
if (n < 0)
exit(1);
if (n < 2) {
fprintf(stderr, "%d bytes received\n", n);
continue;
}
write_pcap_rec(file, &now, buf, n-1);
if (!quick)
(void) write(2, ".", 1);
count++;
}
if (fclose(file) == EOF) {
perror(name);
exit(1);
}
fprintf(stderr, "%sreceived %d message%s\n", count ? "\n" : "",
count, count == 1 ? "" : "s");
}
static void receive(struct atrf_dsc *dsc, const char *name, int hex)
{
atrf_reg_write(dsc, REG_TRX_STATE, TRX_CMD_RX_ON);
/*
* 180 us, according to AVR2001 section 4.2. We time out after
* nominally 200 us.
*/
wait_for_interrupt(dsc, IRQ_PLL_LOCK, IRQ_PLL_LOCK, 1);
if (name)
receive_pcap(dsc, name);
else
receive_message(dsc, hex);
}
static int dehex(uint8_t *buf, const char *s)
{
uint8_t *p;
int nibbles = 0;
uint8_t v = 0, nibble;
char cvt[2] = "?";
char *end;
for (p = buf; *s; s++) {
if (strchr(" \t,.:-", *s)) {
if (nibbles)
*p++ = v;
nibbles = 0;
continue;
}
cvt[0] = *s;
nibble = strtoul(cvt, &end, 16);
if (*end) {
fprintf(stderr, "invalid hex character \"%c\"\n", *s);
exit(1);
}
if (nibbles) {
*p++ = v << 4 | nibble;
nibbles = 0;
} else {
v = nibble;
nibbles++;
}
}
if (nibbles)
*p++ = v;
return p-buf;
}
static void transmit(struct atrf_dsc *dsc, const char *msg, int hex, int times)
{
uint8_t buf[MAX_PSDU];
int len;
atrf_reg_write(dsc, REG_TRX_STATE, TRX_CMD_PLL_ON);
/*
* 180 us, according to AVR2001 section 4.3. We time out after
* nominally 200 us.
*/
wait_for_interrupt(dsc, IRQ_PLL_LOCK, IRQ_PLL_LOCK, 1);
/*
* We need to copy the message to append the CRC placeholders.
*/
if (hex) {
len = dehex(buf, msg);
} else {
strcpy((void *) buf, msg);
len = strlen(msg);
}
atrf_buf_write(dsc, buf, len+2);
while (run && times--) {
/* @@@ should wait for clear channel */
atrf_reg_write(dsc, REG_TRX_STATE, TRX_CMD_TX_START);
/* wait up to 10 ms (nominally) */
wait_for_interrupt(dsc, IRQ_TRX_END,
IRQ_TRX_END | IRQ_PLL_LOCK, 10);
}
}
static void receive_hmac(struct atrf_dsc *dsc)
{
uint8_t buf[MAX_PSDU];
uint8_t lqi;
int n, i;
atrf_rx_mode(dsc, 1);
n = atrf_rx(dsc, buf, sizeof(buf), 0, &lqi);
atrf_rx_mode(dsc, 0);
if (n < 2) {
fprintf(stderr, "%d bytes received\n", n);
exit(1);
}
for (i = 0; i != n-2; i++)
putchar(buf[i] < ' ' || buf[i] > '~' ? '?' : buf[i]);
putchar('\n');
}
static void transmit_hmac(struct atrf_dsc *dsc, const char *msg)
{
atrf_rx_mode(dsc, 1);
atrf_tx(dsc, msg, strlen(msg));
atrf_rx_mode(dsc, 0);
}
/* ----- PER test ---------------------------------------------------------- */
static void transmit_pattern(struct atrf_dsc *dsc, double pause_s, int times)
{
uint8_t buf[MAX_PSDU];
uint8_t n = 0;
int us = fmod(pause_s, 1)*1000000;
atrf_reg_write(dsc, REG_TRX_STATE, TRX_CMD_PLL_ON);
/*
* 180 us, according to AVR2001 section 4.3. We time out after
* nominally 200 us.
*/
wait_for_interrupt(dsc, IRQ_PLL_LOCK, IRQ_PLL_LOCK, 1);
while (run) {
memset(buf, n, sizeof(buf));
atrf_buf_write(dsc, buf, sizeof(buf));
atrf_reg_write(dsc, REG_TRX_STATE, TRX_CMD_TX_START);
/* wait up to 10 ms (nominally) */
wait_for_interrupt(dsc, IRQ_TRX_END,
IRQ_TRX_END | IRQ_PLL_LOCK, 10);
if (pause_s >= 1)
sleep(pause_s);
if (us)
usleep(us);
if (times && !--times)
break;
n++;
}
}
/* ----- Ping -------------------------------------------------------------- */
static void ping_tx(struct atrf_dsc *dsc, const struct ping *pck)
{
atrf_reg_write(dsc, REG_TRX_STATE, TRX_CMD_PLL_ON);
/*
* 180 us, according to AVR2001 section 4.3. We time out after
* nominally 200 us.
*/
wait_for_interrupt(dsc, IRQ_PLL_LOCK, IRQ_PLL_LOCK, 1);
atrf_buf_write(dsc, pck, sizeof(*pck));
atrf_reg_write(dsc, REG_TRX_STATE, TRX_CMD_TX_START);
/* wait up to 10 ms (nominally) */
wait_for_interrupt(dsc, IRQ_TRX_END,
IRQ_TRX_END | IRQ_PLL_LOCK, 10);
}
static enum rx_res ping_rx(struct atrf_dsc *dsc, struct ping *pck, int wait_ms)
{
uint8_t irq;
int n;
atrf_reg_write(dsc, REG_TRX_STATE, TRX_CMD_RX_ON);
irq = wait_for_interrupt(dsc, IRQ_TRX_END,
IRQ_TRX_END | IRQ_RX_START | IRQ_PLL_LOCK, wait_ms);
if (!run)
return rx_exit;
if (!irq)
return rx_timeout;
n = atrf_buf_read(dsc, pck, sizeof(*pck));
if (n < 0)
exit(1);
if (n != sizeof(*pck)) {
fprintf(stderr, "%d bytes received\n", n);
return rx_bad;
}
return atrf_reg_read(dsc, REG_PHY_RSSI) & RX_CRC_VALID ?
rx_good : rx_bad;
}
static void ping(struct atrf_dsc *dsc, double max_wait_s, int master)
{
static int first = 1;
struct ping tx_pck = {
.seq = 0,
.ack = 0,
};
struct ping rx_pck;
enum rx_res res;
while (run) {
tx_pck.seq++;
if (master || !first) {
ping_tx(dsc, &tx_pck);
if (!run)
break;
}
first = 0;
res = ping_rx(dsc, &rx_pck, master ? max_wait_s*1000 : 0);
switch (res) {
case rx_good:
tx_pck.ack = rx_pck.seq;
if (tx_pck.seq == rx_pck.ack)
write(2, ".", 1);
else
write(2, "*", 1);
break;
case rx_bad:
write(2, "-", 1);
break;
case rx_timeout:
write(2, "+", 1);
break;
case rx_exit:
return;
default:
abort();
}
}
}
/* ----- Round-trip time --------------------------------------------------- */
static void rtt_slave(struct atrf_dsc *dsc)
{
uint8_t buf[MAX_PSDU];
int n;
while (run) {
atrf_reg_write(dsc, REG_TRX_STATE, TRX_CMD_RX_ON);
wait_for_interrupt(dsc, IRQ_TRX_END,
IRQ_TRX_END | IRQ_RX_START | IRQ_PLL_LOCK | IRQ_AMI, 0);
if (!run)
break;
n = atrf_buf_read(dsc, buf, sizeof(buf));
if (n < 0)
exit(1);
if (n < 2) {
fprintf(stderr, "%d bytes received\n", n);
continue;
}
atrf_reg_write(dsc, REG_TRX_STATE, TRX_CMD_PLL_ON);
atrf_buf_write(dsc, buf, n);
atrf_reg_write(dsc, REG_TRX_STATE, TRX_CMD_TX_START);
wait_for_interrupt(dsc, IRQ_TRX_END,
IRQ_TRX_END | IRQ_PLL_LOCK, 10);
}
}
static void rtt_slave_hmac(struct atrf_dsc *dsc)
{
uint8_t buf[MAX_PSDU];
int n;
atrf_rx_mode(dsc, 1);
while (run) {
n = atrf_rx(dsc, buf, sizeof(buf), 0, NULL);
if (n < 0)
exit(1);
atrf_tx(dsc, buf, n-2);
}
atrf_rx_mode(dsc, 0);
}
static void rtt_master(struct atrf_dsc *dsc, int packets, int size)
{
uint8_t buf[size+2]; /* +CRC */
struct timeval t0, t1;
uint8_t irq;
int first = 1;
double min = 0, max = 0, sum = 0, sum2 = 0, d;
int lost = 0, n;
int i;
memset(buf, 0, size+2);
for (i = 0; i != packets; i++) {
atrf_reg_write(dsc, REG_TRX_STATE, TRX_CMD_PLL_ON);
atrf_buf_write(dsc, buf, size+2);
gettimeofday(&t0, NULL);
atrf_reg_write(dsc, REG_TRX_STATE, TRX_CMD_TX_START);
/* prepare transition to RX_ON while still sending */
while ((atrf_reg_read(dsc, REG_TRX_STATUS) & TRX_STATUS_MASK)
== TRX_STATUS_TRANSITION);
atrf_reg_write(dsc, REG_TRX_STATE, TRX_CMD_RX_ON);
/* wait for transmission to end */
wait_for_interrupt(dsc, IRQ_TRX_END,
IRQ_TRX_END | IRQ_RX_START | IRQ_PLL_LOCK | IRQ_AMI, 1);
/* wait for reception */
irq = wait_for_interrupt(dsc, IRQ_TRX_END,
IRQ_TRX_END | IRQ_RX_START | IRQ_PLL_LOCK | IRQ_AMI, 1000);
if (irq) {
gettimeofday(&t1, NULL);
d = t1.tv_sec-t0.tv_sec+(t1.tv_usec-t0.tv_usec)*1e-6;
sum += d;
sum2 += d*d;
if (first || d < min)
min = d;
if (first || d > max)
max = d;
first = 0;
n = atrf_buf_read(dsc, buf, size);
if (n != size)
fprintf(stderr, "%d bytes received\n", n);
} else {
lost++;
}
}
n = packets-lost;
printf("%d sent, %d received, %d lost (%g%%)\n",
packets, n, lost, lost*100.0/packets);
if (n)
printf("rtt min/avg/max = %.3f/%.3f/%.3f ms, mdev = %.3f ms\n",
min*1000.0, sum*1000.0/n, max*1000.0,
sqrt((sum2-sum*sum/n)/n)*1000.0);
}
/* ----- Continuous wave test ---------------------------------------------- */
static int test_mode(struct atrf_dsc *dsc, uint8_t cont_tx, const char *cmd)
{
int status = 0;
cw_test_begin(dsc, cont_tx);
if (cmd)
status = system(cmd);
else {
while (run)
sleep(1);
}
cw_test_end(dsc);
return status;
}
/* ----- Command-line processing ------------------------------------------- */
static void die(int sig)
{
run = 0;
}
static void usage(const char *name)
{
fprintf(stderr,
"usage: %s [common_options] [-x] [message [repetitions]]\n"
" %s [common_options] -H [message]\n"
" %s [common_options] -E pause_s [repetitions]\n"
" %s [common_options] -P [max_wait_s]\n"
" %s [common_options] -R [-H|packets size]\n"
" %s [common_options] -T offset [command]\n\n"
" text message mode:\n"
" -x message consists of hex bytes, optionally separated by\n"
" ' ', '.', ',', ':', or '-'\n"
" message message string to send (if absent, receive)\n"
" repetitions number of times the message is sent (default 1)\n\n"
" text message mode (hard MAC):\n"
" -H use hard MAC mode\n"
" message message string to send (if absent, receive)\n\n"
" PER test mode (transmit only):\n"
" -E pause_s seconds to pause between frames (floating-point)\n"
" repetitions number of messages to send (default: infinite)\n\n"
" Ping-pong mode:\n"
" -P exchange packets between two stations\n"
" max_wait_s generate a new packet if no response is received (master)\n\n"
" Round-trip time measurement:\n"
" -R send/receive RTT measurement packets\n"
" packets number of packets to send (master)\n"
" size size of packets in bytes\n\n"
" constant wave test mode (transmit only):\n"
" -T offset test mode. offset is the frequency offset of the constant\n"
" wave in MHz: -2, -0.5, or +0.5\n"
" command shell command to run while transmitting (default: wait for\n"
" SIGINT instead)\n\n"
" common options: [-c channel|-f freq] [-C mhz] [-d driver[:arg]] [-o file]\n"
" [-p power] [-q] [-r rate] [-t trim]\n"
" -c channel channel number, 11 to 26 (default %d)\n"
" -C mhz output clock at 1, 2, 4, 8, or 16 MHz (default: off)\n"
" -d driver[:arg]\n"
" use the specified driver (default: %s)\n"
" -f freq frequency in MHz, 2405 to 2480 (default %d)\n"
" -o file write received data to a file in pcap format\n"
" -p power transmit power, -17.2 to 3.0 dBm (default %.1f)\n"
" -q quick and quiet - suppress progress reports and warnings,\n"
" poll aggressively (currently only used when capturing)\n"
" -r rate data rate, 250k, 500k, 1M, or 2M (default: 250k)\n"
" -t trim trim capacitor, 0 to 15 (default %d)\n"
, name, name, name, name, name, name,
DEFAULT_CHANNEL, atrf_default_driver_name(),
2405+5*(DEFAULT_CHANNEL-11), DEFAULT_POWER,
DEFAULT_TRIM);
exit(1);
}
static void set_mode(enum mode *mode, enum mode new)
{
if (*mode == mode_msg) {
*mode = new;
return;
}
if ((*mode == mode_hmac && new == mode_rtt) ||
(*mode == mode_rtt && new == mode_hmac)) {
*mode = mode_rtt_hmac;
return;
}
fprintf(stderr, "multiple mode selections\n");
exit(1);
}
int main(int argc, char *const *argv)
{
enum mode mode = mode_msg;
const char *driver = NULL;
int channel = DEFAULT_CHANNEL;
double power = DEFAULT_POWER;
uint8_t rate = OQPSK_DATA_RATE_250;
int trim = DEFAULT_TRIM, times = 1, bytes;
uint8_t cont_tx = 0;
double pause_s = 0;
int hex = 0;
char *end;
int c, freq;
unsigned clkm = 0;
int status = 0;
const char *pcap_file = NULL;
struct atrf_dsc *dsc;
while ((c = getopt(argc, argv, "c:C:d:E:f:Ho:p:Pqr:Rt:T:x")) != EOF)
switch (c) {
case 'c':
channel = strtoul(optarg, &end, 0);
if (*end)
usage(*argv);
if (channel < 11 || channel > 26)
usage(*argv);
break;
case 'C':
clkm = strtol(optarg, &end, 0);
if (*end)
usage(*argv);
if (!clkm)
usage(*argv);
break;
case 'd':
driver = optarg;
break;
case 'E':
set_mode(&mode, mode_per);
pause_s = strtof(optarg, &end);
if (*end)
usage(*argv);
break;
case 'f':
freq = strtoul(optarg, &end, 0);
if (*end)
usage(*argv);
if (freq % 5)
usage(*argv);
channel = (freq-2405)/5+11;
if (channel < 11 || channel > 26)
usage(*argv);
break;
case 'H':
set_mode(&mode, mode_hmac);
break;
case 'o':
pcap_file = optarg;
break;
case 'p':
power = strtod(optarg, &end);
if (*end)
usage(*argv);
break;
case 'P':
set_mode(&mode, mode_ping);
break;
case 'q':
quick = 1;
break;
case 'r':
if (!strcmp(optarg, "250k"))
rate = OQPSK_DATA_RATE_250;
else if (!strcmp(optarg, "500k"))
rate = OQPSK_DATA_RATE_500;
else if (!strcmp(optarg, "1M"))
rate = OQPSK_DATA_RATE_1000;
else if (!strcmp(optarg, "2M"))
rate = OQPSK_DATA_RATE_2000;
else
usage(*argv);
break;
case 'R':
set_mode(&mode, mode_rtt);
break;
case 't':
trim = strtoul(optarg, &end, 0);
if (*end)
usage(*argv);
if (trim > 15)
usage(*argv);
break;
case 'T':
set_mode(&mode, mode_cont_tx);
if (!strcmp(optarg, "-2"))
cont_tx = CONT_TX_M2M;
else if (!strcmp(optarg, "-0.5"))
cont_tx = CONT_TX_M500K;
else if (!strcmp(optarg, "+0.5"))
cont_tx = CONT_TX_P500K;
else
usage(*argv);
break;
case 'x':
hex = 1;
break;
default:
usage(*argv);
}
signal(SIGINT, die);
switch (argc-optind) {
case 0:
dsc = init_txrx(driver, trim, clkm);
set_channel(dsc, channel);
set_rate(dsc, rate);
switch (mode) {
case mode_msg:
receive(dsc, pcap_file, hex);
break;
case mode_hmac:
receive_hmac(dsc);
break;
case mode_per:
set_power_dBm(dsc, power, 0);
transmit_pattern(dsc, pause_s, 0);
break;
case mode_ping:
set_power_dBm(dsc, power, 1);
ping(dsc, pause_s, 0);
break;
case mode_rtt:
set_power_dBm(dsc, power, 1);
rtt_slave(dsc);
break;
case mode_rtt_hmac:
set_power_dBm(dsc, power, 1);
rtt_slave_hmac(dsc);
break;
case mode_cont_tx:
set_power_dBm(dsc, power, 0);
status = test_mode(dsc, cont_tx, NULL);
break;
default:
abort();
}
break;
case 2:
switch (mode) {
case mode_msg:
case mode_hmac:
break;
case mode_per:
case mode_ping:
case mode_rtt_hmac:
case mode_cont_tx:
usage(*argv);
case mode_rtt:
times = strtoul(argv[optind], &end, 0);
if (*end)
usage(*argv);
bytes = strtoul(argv[optind+1], &end, 0);
if (*end)
usage(*argv);
dsc = init_txrx(driver, trim, clkm);
set_channel(dsc, channel);
set_rate(dsc, rate);
set_power_dBm(dsc, power, 1);
rtt_master(dsc, times, bytes);
goto done;
default:
abort();
}
times = strtoul(argv[optind+1], &end, 0);
if (*end)
usage(*argv);
/* fall through */
case 1:
dsc = init_txrx(driver, trim, clkm);
set_channel(dsc, channel);
set_rate(dsc, rate);
switch (mode) {
case mode_msg:
set_power_dBm(dsc, power, 1);
transmit(dsc, argv[optind], hex, times);
break;
case mode_hmac:
set_power_dBm(dsc, power, 1);
transmit_hmac(dsc, argv[optind]);
break;
case mode_per:
times = strtoul(argv[optind], &end, 0);
if (*end)
usage(*argv);
set_power_dBm(dsc, power, 0);
transmit_pattern(dsc, pause_s, times);
break;
case mode_ping:
pause_s = strtof(argv[optind], &end);
if (*end)
usage(*argv);
set_power_dBm(dsc, power, 1);
ping(dsc, pause_s, 1);
break;
case mode_rtt:
case mode_rtt_hmac:
usage(*argv);
break;
case mode_cont_tx:
set_power_dBm(dsc, power, 0);
status = test_mode(dsc, cont_tx, argv[optind]);
break;
default:
abort();
}
break;
default:
usage(*argv);
}
done:
atrf_close(dsc);
if (status) {
if (WIFEXITED(status))
return WEXITSTATUS(status);
if (WIFSIGNALED(status))
raise(WTERMSIG(status));
fprintf(stderr, "unexpected exit status %d\n", status);
abort();
}
return 0;
}