/* * area.c - Area fill * * Written 2012 by Werner Almesberger * Copyright 2012 Werner Almesberger * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ /* * We use the following requirement to simplify toolpath generation: the * outlines must be designed such that the tool can pass along all the * outlines without cutting into anything it's not supposed to. */ #include <stddef.h> #include <math.h> #include <assert.h> #include "util.h" #include "path.h" #include "area.h" #define EPSILON 1e-6 static int bbox(const struct path *path, double *xa, double *ya, double *xb, double *yb) { const struct point *p = path->first; if (!p) return 0; *xa = *xb = p->x; *ya = *yb = p->y; while (p) { if (p->x < *xa) *xa = p->x; if (p->x > *xb) *xb = p->x; if (p->y < *ya) *ya = p->y; if (p->y > *yb) *yb = p->y; p = p->next; } return 1; } /* * @@@ this is a bit too simple. E.g., it would report A as being inside B * in this case: * * +---+ * +---+ | | * | A | | | * +---+ | | * | B | * +--------+ | * | | * +------------+ */ static int is_inside(const struct path *a, const struct path *b) { double xa, ya, xb, yb; const struct point *p; if (!bbox(b, &xa, &ya, &xb, &yb)) return 0; for (p = a->first; p; p = p->next) if (p->x < xa || p->x > xb || p->y < ya || p->y > yb) return 0; return 1; } /* * Solve * * ax+by = e * cx+dy = f * * with Cramer's rule: * http://en.wikipedia.org/wiki/Cramer's_rule */ static int cramer2(double a, double b, double c, double d, double e, double f, double *x, double *y) { double det; det = a*d-b*c; if (fabs(det) < EPSILON) return 0; *x = (e*d-b*f)/det; *y = (a*f-e*c)/det; return 1; } /* * Solve * * ax + na*bx = cx + nb*dx * ay + na*by = cy + nb*dy * * which is * * na*bx + nb*-dx = cx - ax * na*by + nb*-dy = cy - ay */ static int intersect(double ax, double ay, double bx, double by, double cx, double cy, double dx, double dy, double *na, double *nb) { return cramer2(bx, -dx, by, -dy, cx-ax, cy-ay, na, nb); } /* * See above.fig. The equation we solve is * * Q = A+u*(AM) * Q = B+v*(BP) * * equals * * ax + u*(mx-ax) = bx + v*(px-bx) * ay + u*(my-ay) = by + v*(py-by) * * equals * * u*(mx-ax) + v*(bx-px) = bx - ax * u*(my-ay) + v*(by-py) = by - ay * * For BC, the equation becomes * * Q = C+u*(CM) * Q = B+v*(BP) */ static int above(const struct point *a, const struct point *b, const struct point *c, double px, double py) { double ab, bc; double mx, my; double u, v; ab = hypot(a->x-b->x, a->y-b->y); bc = hypot(b->x-c->x, b->y-c->y); if (fabs(ab) < EPSILON || fabs(bc) < EPSILON) return 0; mx = b->x-(b->y-a->y)/ab-(c->y-b->y)/bc; my = b->y+(b->x-a->x)/ab+(c->x-b->x)/bc; if (cramer2(mx-a->x, b->x-px, my-a->y, b->y-py, b->x-a->x, b->y-a->y, &u, &v)) if (u >= 0 && u <= 1 && v >= 0) return 1; if (cramer2(mx-c->x, b->x-px, my-c->y, b->y-py, b->x-c->x, b->y-c->y, &u, &v)) if (u >= 0 && u <= 1 && v >= 0) return 1; return 0; } /* * Solve * * (ax+n*bx-cx)^2+(ay+n*by-cy)^2 = r^2 for n * * http://en.wikipedia.org/wiki/Quadratic_equation */ static int touch_solve(double ax, double ay, double bx, double by, double cx, double cy, double r, int enter, double *n) { double dx = cx-ax; double dy = cy-ay; double a = bx*bx+by*by; /* always positive */ double b = -2*bx*dx-2*by*dy; double c = dx*dx+dy*dy-r*r; double d, tmp; d = b*b-4*a*c; if (d < 0) return 0; d = sqrt(d); tmp = enter ? (-b-d)/2/a : (-b+d)/2/a; if (tmp <= 0 || tmp >= 1) return 0; *n = tmp; return 1; } /* * The points A, B, and C are (if the path is left-handed): * * - A: the beginning of the segment leading into the corner * - B: the corner point * - C: the beginning of the segment leading out of the corner * * If the path is right-handed, we swap A and C, making it left-handed. */ static int touch(double ax, double ay, double bx, double by, const struct point *a, const struct point *b, const struct point *c, double r, int enter, int left, double *n) { double px, py; if (!touch_solve(ax, ay, bx, by, b->x, b->y, r, enter, n)) return 0; px = ax+*n*bx; py = ay+*n*by; return above(a, b, c, px, py) == left; } /* * Here, the points A, B, C, and D are: * * - A: before the beginning of the current segment * - B: the beginning * - C: the end * - D: the next point beyond the end */ static int hit_segment(double fx, double fy, double tx, double ty, const struct point *a, const struct point *b, const struct point *c, const struct point *d, double r, int enter, int left, double *n) { double dx, dy, nx, ny, nn; double px, py; double na, nb; tx -= fx; ty -= fy; dx = c->x-b->x; dy = c->y-b->y; if (left) { nx = dx; ny = dy; } else { nx = -dx; ny = -dy; } /* -dy becomes the x component of the normal vector */ if (enter ? ny < 0 : ny > 0) return 0; nn = hypot(nx, ny); px = b->x-ny/nn*r; py = b->y+nx/nn*r; if (!intersect(fx, fy, tx, ty, px, py, dx, dy, &na, &nb)) return 0; if (nb <= 0) { if (!touch(fx, fy, tx, ty, a, b, c, r, enter, left, &na)) return 0; } if (nb >= 1) { if (!touch(fx, fy, tx, ty, b, c, d, r, enter, left, &na)) return 0; } if (na <= 0 || na >= 1) return 0; *n = na; return 1; } static int hit_path(double fx, double fy, double tx, double ty, const struct path *path, int inside, int enter, double r, double *x) { const struct point *p, *last, *next2; int left; double nx, tmp; int found = 0; /* * @@@ We don't wrap around the ends properly and create a zero-sized * imaginary segment between path->first and path->last. */ left = path_tool_is_left(path); if (inside) left = !left; last = path->last; for (p = path->first; p != path->last; p = p->next) { next2 = p->next->next ? p->next->next : path->first; if (hit_segment(fx, fy, tx, ty, last, p, p->next, next2, r, enter, left, &tmp)) { if (!found || nx > tmp) nx = tmp; found = 1; } last = p; } if (found) *x = fx+nx*(tx-fx); return found; } static const struct path **subordinates(const struct path *paths, const struct path *path, double z) { const struct path **sub, **w, **a, **b;; const struct path *p; int n = 0; for (p = paths; p; p = p->next) if (p->first && p->first->z == z) n++; sub = alloc_size(sizeof(struct path *)*n); w = sub; for (p = paths; p; p = p->next) if (p != path && p->first && p->first->z == z && is_inside(p, path) && !is_inside(path, p)) *w++ = p; *w = NULL; for (a = sub; a != w; a++) for (b = sub; b != w; b++) if (a != b && is_inside(*a, *b)) { *a = *--w; *w = NULL; a--; break; } return sub; } static void do_line(const struct path *path, const struct path **sub, double xa, double xb, double y, double r_tool, double overlap, struct path **res) { const struct path *last = path; const struct path **s; struct path *new; double x, next; if (!hit_path(xa-3*r_tool, y, xb, y, last, 1, 0, r_tool, &x)) return; while (1) { next = xb; last = NULL; if (hit_path(x, y, xb, y, path, 1, 1, r_tool, &next)) last = path; for (s = sub; *s; s++) if (hit_path(x, y, next, y, *s, 0, 1, r_tool, &next)) last = *s; if (next-x > 2*r_tool-2*overlap) { new = path_new(r_tool, ""); path_add(new, x+r_tool-overlap, y, path->first->z); path_add(new, next-r_tool+overlap, y, path->first->z); new->next = *res; *res = new; } if (!last) return; if (!hit_path(next+EPSILON, y, xb, y, last, last == path, 0, r_tool, &x)) return; } } static void add_outline(const struct path *path, int inside, struct path **res) { struct path *new; int left; left = path_tool_is_left(path); new = path_offset(path, inside ? !left : left, 0); new->next = *res; *res = new; } static void fill_path(const struct path *paths, const struct path *path, double z, double r_tool, double overlap, struct path **res) { const struct path **sub, **s; const struct path **sub2, **s2; double xa, ya, xb, yb; int n, i; if (!bbox(path, &xa, &ya, &xb, &yb)) return; sub = subordinates(paths, path, z); xa += r_tool; ya += 3*r_tool-overlap; xb -= r_tool; yb -= 3*r_tool-overlap; n = ceil((yb-ya)/(2*r_tool-overlap)); for (i = 0; i <= n; i++) do_line(path, sub, xa, xb, ya+(yb-ya)*((double) i/n), r_tool, overlap, res); for (s = sub; *s; s++) { sub2 = subordinates(paths, *s, z); for (s2 = sub2; *s2; s2++) fill_path(paths, *s2, z, r_tool, overlap, res); free(sub2); add_outline(*s, 0, res); } free(sub); add_outline(path, 1, res); } struct path *area(const struct path *paths, double overlap) { struct path *res = NULL; double z = HUGE_VAL, best_x, x; const struct path *path, *best; const struct point *p; if (!paths) return NULL; while (1) { best = NULL; best_x = HUGE_VAL; for (path = paths; path; path = path->next) { if (!path->first) continue; if (path->first->z >= z) continue; x = HUGE_VAL; for (p = path->first; p; p = p->next) if (p->x < x) x = p->x; if (best && best->first->z >= path->first->z && x >= best_x) continue; best = path; best_x = x; } if (!best) return res; z = best->first->z; fill_path(paths, best, z, best->r_tool, overlap, &res); } }