/* * path.c - 2D path operations * * Written 2011 by Werner Almesberger * Copyright 2011 by Werner Almesberger * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #include #include #include #include #include #include "ptrude.h" #include "path.h" #define alloc_type(t) ((t *) malloc(sizeof(t))) #define stralloc(s) strdup(s) static double deg(double rad) { return rad/M_PI*180.0; } static struct path *alloc_path(void) { struct path *path; path = alloc_type(struct path); path->vertices = NULL; path->last = &path->vertices; return path; } static struct vertex *alloc_vertex(void) { struct vertex *v; v = alloc_type(struct vertex); v->r = 0; v->d = 0; v->tag = NULL; v->next = NULL; v->len = 0; return v; } static void free_vertex(struct vertex *v) { free(v); } void free_path(struct path *path) { struct vertex *v, *next; for (v = path->vertices; v; v = next) { next = v->next; free_vertex(v); } free(path); } static struct vertex *clone_vertex(const struct vertex *v) { struct vertex *new; new = alloc_type(struct vertex); *new = *v; new->next = NULL; return new; } static void append_vertex(struct path *path, struct vertex *v) { *path->last = v; path->last = &v->next; } static struct vertex *add_vertex(struct path *path, double x, double y, double r, double d, const char *tag) { struct vertex *v; v = alloc_vertex(); v->x = x; v->y = y; v->r = r; v->d = d; v->tag = tag; append_vertex(path, v); return v; } double path_set_length(struct path *path) { struct vertex *v; double sum = 0; if (!path->vertices) return 0; for (v = path->vertices; v->next; v = v->next) { v->len = hypot(v->x-v->next->x, v->y-v->next->y); sum += v->len; } v->len = 0; return sum; } static void adjust_length(struct vertex *from, struct vertex *to, double len) { struct vertex *v; double sum, f; if (from == to) return; sum = 0; for (v = from->next; v != to; v = v->next) { v->len = hypot(v->x-v->next->x, v->y-v->next->y); sum += v->len; } f = len/sum; for (v = from->next; v != to; v = v->next) v->len *= f; } /* * "corner" replaces a corner with a ploygon if the corner is too sharp to be * within distance "d" of the bend radius. This may change the point from * where we resume drawing (originally the corner point, "b"). "corner" * therefore returns the new end of the arc. */ static struct vertex *corner(struct path *path, struct vertex *a, const struct vertex *b, const struct vertex *c, double r, double d) { /* points to vectors */ double ax = b->x-a->x; double ay = b->y-a->y; double bx = c->x-b->x; double by = c->y-b->y; /* vector length */ double aa = hypot(ax, ay); double bb = hypot(bx, by); /* dot and cross product */ double dp = ax*bx+ay*by; /* a * b = a*b*cos 2t */ double cp = ax*by-ay*bx; /* |a x b| = a*b*sin 2t */ double dir = copysign(1, cp); /* see corner.fig */ double dd; /* "d" of the given vectors */ double tt; /* tan t */ double s; /* distance between start of arc and corner */ double t2; /* angle, t*2 */ /* see arc.fig */ double p; /* half-angle of border side of border segment */ double q; /* half-angle of connecting segment */ double u; /* length of border side of border segment */ double v; /* half-length of connecting segment */ int n; /* number of connecting segments (0 if none) */ double f; /* scale factor; various uses */ double fa, fb; /* scale factors for first and last vertex */ double ang; /* current angle, for iteration */ double x, y; /* current position; for iteration */ int i; /* segment; for iteration */ struct vertex *v0; /* first vertex of arc */ struct vertex *v1; /* last vertex of arc */ /* * http://en.wikipedia.org/wiki/Dot_product * dp = a*b*cos 2t * * http://en.wikipedia.org/wiki/Cross_product * cp = a*b*sin 2t * * http://en.wikipedia.org/wiki/Tangent_half-angle_formula * tan t = sin 2t/(1+cos 2t) */ tt = cp/(aa*bb+dp); /* * From s = r*tan t */ s = fabs(r*tt); /* * From r^2+s^2 = (r+d)^2 */ dd = hypot(r, s)-r; if (debug) { fprintf(stderr, "a = (%g, %g)-(%g, %g) = (%g, %g); |a| = %g\n", b->x, b->y, a->x, a->y, ax, ay, aa); fprintf(stderr, "b = (%g, %g)-(%g, %g) = (%g, %g); |b| = %g\n", c->x, c->y, b->x, b->y, bx, by, bb); fprintf(stderr, "sin 2t = %g, cos 2t = %g, tan t = %g\n", cp/aa/bb, dp/aa/bb, tt); fprintf(stderr, "r = %g, d = %g, s = %g, dd = %g\n", r, d, s, dd); } /* * We only know how to make a rounded corner if two vectors are * involved. They therefore have to be long enough to accommodate the * entire arc, from beginning to end. Furthermore, we split the * available length in half, one for the inbound arc, the other for the * outbound arc. */ /* * @@@ Our error checking is a bit overzealous and doesn't provide * enough information to debug any problems. Turn errors into warnings * for now. */ if (aa/2 < s) { fprintf(stderr, "first vector is too short (%g/2 < %g)\n", aa, s); // exit(1); } if (bb/2 < s) { fprintf(stderr, "second vector is too short (%g/2 < %g)\n", bb, s); // exit(1); } /* * If the corner is already smooth enough, we just keep what we have. */ if (dd <= d) { v1 = clone_vertex(b); append_vertex(path, v1); return v1; } /* Step 1: determine the total angle (2*t) */ t2 = acos(dp/aa/bb); /* * Step 2: determine the maximum angle of the first and last segment. * * We use * r*cos p = r-d * cos p = 1-d/r */ p = acos(1-d/r); /* * Step 3: determine the maximum angle of intermediate segments (if * there are any). * * We use * (r+d)*cos q = r-d * cos q = r-q/(r+d) */ q = acos((r-d)/(r+d)); if (debug) fprintf(stderr, "t2 = %g, p(max) = %g, q(max) = %g\n", deg(t2), deg(p), deg(q)); /* * Step 4: emit the starting point of the arc */ fa = s/aa; x = b->x-fa*ax; y = b->y-fa*ay; v0 = add_vertex(path, x, y, b->r, b->d, b->tag); v0->len = a->len*(1-fa); /* * Step 5: determine if we need intermediate points. If yes, how many, * and then proceed to add them. */ if (t2 > 2*p) { n = (int) ceil((t2-2*(p+q))/(2*q)); /* * We could evenly distribute the slack and try to pick a * smaller value for d, but that seems difficult. * * A drawback of reducing p would be that we may make the * corner unnecessarily sharp, possibly even turning against * the general direction of the turn. We'd still respect the * bend radius and the tolerance, but the result may look weird * anyway. * * For now, we just center the polygon. */ q = (t2/2-p)/(n+1); if (n) ang = p+q; else { ang = t2/2; /* * @@@ To do: adjust the radius such that we always hug * the r-d circle (see arc.fig) and usually not the * r+d circle. Right now, it's just the opposite. */ } u = tan(p)*(r-d); v = tan(q)*(r-d); f = (u+v)/aa; for (i = 0; i <= n; i++) { x += f*ax*cos(ang-q)-dir*f*ay*sin(ang-q); y += dir*f*ax*sin(ang-q)+f*ay*cos(ang-q); if (debug) fprintf(stderr, " %d/%d: %g %g @ %g\n", i, n, x, y, deg(ang)); add_vertex(path, x, y, 0, 0, NULL); ang += 2*q; f = (2*v)/aa; } } /* * Step 6: emit the finishing point of the arc */ fb = s/bb; v1 = add_vertex(path, b->x+fb*bx, b->y+fb*by, 0, 0, NULL); v1->len = b->len*(1-fb); /* * Step 7: adjust the nominal length of the segments */ adjust_length(v0, v1, a->len*fa+b->len*fb); return v1; } struct path *round_path(const struct path *path, double r, double d) { struct path *new; struct vertex *prev; const struct vertex *v; new = alloc_path(); if (!path->vertices) return new; prev = clone_vertex(path->vertices); append_vertex(new, prev); if (!path->vertices->next) return new; if (prev->r) r = prev->r; if (prev->d) d = prev->d; for (v = path->vertices->next; v->next; v = v->next) { if (v->r) r = v->r; if (v->d) d = v->d; prev = corner(new, prev, v, v->next, r, d); } append_vertex(new, clone_vertex(v)); return new; } static void move_vertex(struct path *path, const struct vertex *v, double nx, double ny, double dist, double r) { struct vertex *new; new = clone_vertex(v); new->x += nx*dist; new->y += ny*dist; new->r = r; append_vertex(path, new); } struct path *stretch_path(const struct path *path, double dist, double r) { struct path *new; /* new path */ const struct vertex *v; /* current vertex (for iteration) */ const struct vertex *a, *b, *c; /* previous, current, next vertex */ double nx, ny; /* 2D normals */ double f; /* factor for normalization */ double tx, ty; /* temporary 2D normals */ new = alloc_path(); a = path->vertices; b = a->next; nx = b->y-a->y; ny = a->x-b->x; f = hypot(nx, ny); if (a->r) r = a->r; move_vertex(new, a, nx/f, ny/f, dist, r); for (v = path->vertices->next; v->next; v = v->next) { double tmp; b = v; c = v->next; tx = b->y-a->y; ty = a->x-b->x; f = hypot(tx, ty); nx = tx/f; ny = ty/f; tmp = f; tx = c->y-b->y; ty = b->x-c->x; f = hypot(tx, ty); nx += tx/f; ny += ty/f; if (b->r) r = b->r; f = hypot(nx, ny); nx /= f; ny /= f; /* * We have this far: * nx, ny = normal on corner, normalized * tmp = |a|, length of vector "a" (A -> B) * dist = the distance by which we stretch * * As shown in stretch.fig, we the length we need is * d' = d/cos(90-t) * * With * http://en.wikipedia.org/wiki/Trigonometric_identities#Symmetry * cos(90-t) = sin t = (n x a)/(|n|*|a|) * * Thus * d' = d/sin(t) - d*(|n|*|a|)/(n x a) * = d/sin(t) - d*|a|/(n x a) */ tmp = dist*tmp/(nx*(b->y-a->y)-ny*(b->x-a->x)); move_vertex(new, b, nx, ny, tmp, r+dist); a = v; } nx = v->y-a->y; ny = a->x-v->x; f = hypot(nx, ny); if (v->r) r = v->r; move_vertex(new, v, nx/f, ny/f, dist, r); return new; } struct path *load_path(FILE *file) { struct path *path; char buf[1100]; /* plenty :) */ char buf2[sizeof(buf)]; char *s; float x, y, tmp; float r = 0, d = 0; const char *tag = NULL; path = alloc_path(); while (fgets(buf, sizeof(buf),file)) { s = strchr(buf, '\n'); if (s) *s = 0; if (sscanf(buf, "#r=%f", &tmp) == 1) { r = tmp; continue; } if (sscanf(buf, "#delta=%f", &tmp) == 1) { d = tmp; continue; } if (sscanf(buf, "#tag=%s", buf2) == 1) { tag = stralloc(buf2); continue; } if (*buf == '#') continue; if (sscanf(buf, "%f %f", &x, &y) != 2) { fprintf(stderr, "can't parse \"%s\"\n", buf); exit(1); } add_vertex(path, x, y, r, d, tag); r = 0; d = 0; tag = NULL; } path_set_length(path); return path; } void save_path(FILE *file, const struct path *path) { const struct vertex *v; for (v = path->vertices; v; v = v->next) { if (v->r) fprintf(file, "#r=%f\n", v->r); if (v->d) fprintf(file, "#delta=%f\n", v->d); if (v->tag) fprintf(file, "#delta=%f\n", v->d); fprintf(file, "%f %f\n", v->x, v->y); } }