#include #include #include #include #include "path.h" #define alloc_type(t) ((t *) malloc(sizeof(t))) #define stralloc(s) strdup(s) static double deg(double rad) { return rad/M_PI*180.0; } static struct path *alloc_path(void) { struct path *path; path = alloc_type(struct path); path->vertices = NULL; path->last = &path->vertices; return path; } static struct vertex *alloc_vertex(void) { struct vertex *v; v = alloc_type(struct vertex); v->r = 0; v->d = 0; v->tag = NULL; v->next = NULL; return v; } static void free_vertex(struct vertex *v) { free(v); } void free_path(struct path *path) { struct vertex *v, *next; for (v = path->vertices; v; v = next) { next = v->next; free_vertex(v); } free(path); } static struct vertex *clone_vertex(const struct vertex *v) { struct vertex *new; new = alloc_type(struct vertex); *new = *v; new->next = NULL; return new; } static void append_vertex(struct path *path, struct vertex *v) { *path->last = v; path->last = &v->next; } static const struct vertex *add_vertex(struct path *path, double x, double y, double r, double d, const char *tag) { struct vertex *v; v = alloc_vertex(); v->x = x; v->y = y; v->r = r; v->d = d; v->tag = tag; append_vertex(path, v); return v; } static const struct vertex *corner(struct path *path, const struct vertex *a, const struct vertex *b, const struct vertex *c, double r, double d) { double ax = b->x-a->x; double ay = b->y-a->y; double bx = c->x-b->x; double by = c->y-b->y; double aa = hypot(ax, ay); double bb = hypot(bx, by); double dp = ax*bx+ay*by; /* a * b = a*b*cos 2t */ double cp = ax*by-ay*bx; /* |a x b| = a*b*sin 2t */ double dd; /* "d" of the given vectors */ double tt, s; double t2, p, q, ang; double u, v; double f, x, y; int n, i; /* * http://en.wikipedia.org/wiki/Dot_product * dp = a*b*cos 2t * * http://en.wikipedia.org/wiki/Cross_product * cp = a*b*sin 2t * * http://en.wikipedia.org/wiki/Tangent_half-angle_formula * tan t = sin 2t/(1+cos 2t) */ tt = cp/(aa*bb+dp); /* * From s = r*tan t */ s = fabs(r*tt); /* * From r^2+s^2 = (r+d)^2 */ dd = hypot(r, s)-r; fprintf(stderr, "a = (%g, %g)-(%g, %g) = (%g, %g); |a| = %g\n", b->x, b->y, a->x, a->y, ax, ay, aa); fprintf(stderr, "b = (%g, %g)-(%g, %g) = (%g, %g); |b| = %g\n", c->x, c->y, b->x, b->y, bx, by, bb); fprintf(stderr, "sin 2t = %g, cos 2t = %g, tan t = %g\n", cp/aa/bb, dp/aa/bb, tt); fprintf(stderr, "r = %g, d = %g, s = %g, dd = %g\n", r, d, s, dd); /* * We only know how to make a rounded corner if two vectors are * involved. They therefore have to be long enough to accommodate the * entire arc, from beginning to end. Furthermore, we split the * available length in half, one for the inbound arc, the other for the * outbound arc. */ if (aa/2 < s) { fprintf(stderr, "first vector is too short (%g/2 < %g)\n", aa, s); exit(1); } if (bb/2 < s) { fprintf(stderr, "second vector is too short (%g/2 < %g)\n", bb, s); exit(1); } /* * If the corner is already smooth enough, we just keep what we have. */ if (dd <= d) { append_vertex(path, clone_vertex(b)); return b; } /* Step 1: determine the total angle (2*t) */ t2 = acos(dp/aa/bb); /* * Step 2: determine the maximum angle of the first and last segment. * * We use * r*cos p = r-d * cos p = 1-d/r */ p = acos(1-d/r); /* * Step 3: determine the maximum angle of intermediate segments (if * there are any). * * We use * (r+d)*cos q = r-d * cos q = r-q/(r+d) */ q = acos((r-d)/(r+d)); fprintf(stderr, "t2 = %g, p(max) = %g, q(max) = %g\n", deg(t2), deg(p), deg(q)); /* * Step 4: emit the starting point of the arc */ f = s/aa; x = b->x-f*ax; y = b->y-f*ay; add_vertex(path, x, y, b->r, b->d, b->tag); /* * Step 5: determine if we need intermediate points. If yes, how many, * and then proceed to add them. */ if (t2 > 2*p) { n = (int) ceil((t2-2*(p+q))/(2*q)); /* * @@@ We should evenly distribute the slack, but that seems * difficult. For now, we just center the polygon. */ q = (t2/2-p)/(n+1); double dir = copysign(1, cp); #if 0 if (cp < 0) { // t2 = -t2; q = -q; p = -p; } #endif if (n) ang = p+q; else ang = t2/2; u = tan(p)*(r-d); v = tan(q)*(r-d); f = (u+v)/aa; for (i = 0; i <= n; i++) { x += f*ax*cos(ang-q)-dir*f*ay*sin(ang-q); y += dir*f*ax*sin(ang-q)+f*ay*cos(ang-q); fprintf(stderr, " %d/%d: %g %g @ %g\n", i, n, x, y, deg(ang)); add_vertex(path, x, y, 0, 0, NULL); ang += 2*q; f = (2*v)/aa; } } /* * Step 6: emit the finishing point of the arc */ f = s/bb; return add_vertex(path, b->x+f*bx, b->y+f*by, 0, 0, NULL); } struct path *round_path(const struct path *path, double r, double d) { struct path *new; const struct vertex *prev, *v; new = alloc_path(); prev = path->vertices; if (!prev) return new; append_vertex(new, clone_vertex(prev)); if (!prev->next) return new; if (prev->r) r = prev->r; if (prev->d) d = prev->d; for (v = prev->next; v->next; v = v->next) { if (v->r) r = v->r; if (v->d) d = v->d; prev = corner(new, prev, v, v->next, r, d); } append_vertex(new, clone_vertex(v)); return new; } struct path *load_path(FILE *file) { struct path *path; char buf[1100]; /* plenty :) */ char buf2[sizeof(buf)]; char *s; float x, y, tmp; float r = 0, d = 0; const char *tag = NULL; path = alloc_path(); while (fgets(buf, sizeof(buf),file)) { s = strchr(buf, '\n'); if (s) *s = 0; if (sscanf(buf, "#r=%f", &tmp) == 1) { r = tmp; continue; } if (sscanf(buf, "#delta=%f", &tmp) == 1) { d = tmp; continue; } if (sscanf(buf, "#tag=%s", buf2) == 1) { tag = stralloc(buf2); continue; } if (*buf == '#') continue; if (sscanf(buf, "%f %f", &x, &y) != 2) { fprintf(stderr, "can't parse \"%s\"\n", buf); exit(1); } add_vertex(path, x, y, r, d, tag); r = 0; d = 0; tag = NULL; } return path; } void save_path(FILE *file, const struct path *path) { const struct vertex *v; for (v = path->vertices; v; v = v->next) { if (v->r) fprintf(file, "#r=%f\n", v->r); if (v->d) fprintf(file, "#delta=%f\n", v->d); if (v->tag) fprintf(file, "#delta=%f\n", v->d); fprintf(file, "%f %f\n", v->x, v->y); } }