1
0
mirror of git://projects.qi-hardware.com/cae-tools.git synced 2025-01-10 19:00:15 +02:00
cae-tools/cameo/area.c
2012-03-18 13:16:26 -03:00

309 lines
6.0 KiB
C

/*
* area.c - Area fill
*
* Written 2012 by Werner Almesberger
* Copyright 2012 Werner Almesberger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <stdio.h>
#include <stddef.h>
#include <math.h>
#include <assert.h>
#include "util.h"
#include "path.h"
#include "area.h"
#define EPSILON 0.0001
static int bbox(const struct path *path,
double *xa, double *ya, double *xb, double *yb)
{
const struct point *p = path->first;
if (!p)
return 0;
*xa = *xb = p->x;
*ya = *yb = p->y;
while (p) {
if (p->x < *xa)
*xa = p->x;
if (p->x > *xb)
*xb = p->x;
if (p->y < *ya)
*ya = p->y;
if (p->y > *yb)
*yb = p->y;
p = p->next;
}
return 1;
}
/*
* @@@ this is a bit too simple. E.g., it would report A as being inside B
* in this case:
*
* +---+
* +---+ | |
* | A | | |
* +---+ | |
* | B |
* +--------+ |
* | |
* +------------+
*/
static int is_inside(const struct path *a, const struct path *b)
{
double xa, ya, xb, yb;
const struct point *p;
if (!bbox(b, &xa, &ya, &xb, &yb))
return 0;
for (p = a->first; p; p = p->next)
if (p->x < xa || p->x > xb ||
p->y < ya || p->y > yb)
return 0;
return 1;
}
/*
* Solve
*
* ax+na*bx = cx+nb*dx
* ay+na*by = cy+nb*dy
*
* which is
*
* na*bx + nb*-dx = cx-ax
* na*by + nb*-dy = cy-ay
*
* which we the solve with Cramer's rule:
* http://en.wikipedia.org/wiki/Cramer's_rule
*/
static int intersect(double ax, double ay, double bx, double by,
double cx, double cy, double dx, double dy, double *na, double *nb)
{
double det;
det = dx*by-bx*dy;
if (fabs(det) < EPSILON)
return 0;
*na = (dx*(cy-ay)-dy*(cx-ax))/det;
*nb = (bx*(cy-ay)-by*(cx-ax))/det;
return 1;
}
/*
* Solve
*
* (ax+n*bx-cx)^2+(ay+n*by-cy)^2 = r^2 for n
*
* http://en.wikipedia.org/wiki/Quadratic_equation
*/
static int touch(double ax, double ay, double bx, double by,
double cx, double cy, double r, double *n)
{
double dx = cx-ax;
double dy = cy-ay;
double a = bx*bx+by*by;
double b = -2*bx*dx-2*by*dy;
double c = dx*dx+dy*dy-r*r;
double d, n0, n1;
d = b*b-4*a*c;
if (d < 0)
return 0;
d = sqrt(d);
n0 = (-b-d)/2/a;
n1 = (-b+d)/2/a;
if (n0 > 0) {
*n = n0;
return 1;
}
if (n1 > 0) {
*n = n1;
return 1;
}
return 0;
}
static int hit_segment(double fx, double fy, double tx, double ty,
const struct point *a, const struct point *b, double r, double *n)
{
double dx, dy, d;
double px, py;
double na, nb;
printf(" seg (%g,%g)+(%g,%g) -> (%g,%g)-(%g,%g)\n",
fx, fy, tx, ty, a->x, a->y, b->x, b->y);
tx -= fx;
ty -= fy;
dx = b->x-a->x;
dy = b->y-a->y;
d = hypot(dx, dy);
px = a->x-dy/d*r;
py = a->y+dx/d*r;
if (!intersect(fx, fy, tx, ty, px, py, dx, dy, &na, &nb))
return 0;
printf("\tna %g (%g) nb %g (%g)\n", na, fx+tx*na, nb, fx+tx*nb);
if (nb <= 0) {
if (!touch(fx, fy, tx, ty, a->x, a->y, r, &na))
return 0;
}
if (nb >= 1) {
if (!touch(fx, fy, tx, ty, b->x, b->y, r, &na))
return 0;
}
if (na <= 0 || na >= 1)
return 0;
*n = na;
return 1;
}
static int hit_path(double fx, double fy, double tx, double ty,
const struct path *path, int inside, double r, double *x)
{
const struct point *p;
int left;
double nx, tmp;
int found = 0;
left = path_tool_is_left(path);
if (inside)
left = !left;
for (p = path->first; p != path->last; p = p->next) {
if (hit_segment(fx, fy, tx, ty,
left ? p : p->next, left ? p->next : p, r, &tmp)) {
if (!found || nx > tmp)
nx = tmp;
found = 1;
}
}
if (found)
*x = fx+nx*(tx-fx);
return found;
}
static const struct path **subordinates(const struct path *paths,
const struct path *path)
{
const struct path **sub, **w, **a, **b;;
const struct path *p;
int n = 0;
for (p = paths; p; p = p->next)
n++;
sub = alloc_size(sizeof(struct path *)*n);
w = sub;
for (p = paths; p; p = p->next)
if (p != path && is_inside(p, path) && !is_inside(path, p))
*w++ = p;
*w = NULL;
for (a = sub; a != w; a++)
for (b = sub; b != w; b++)
if (a != b && is_inside(*a, *b)) {
*a = *w--;
*w = NULL;
a--;
break;
}
return sub;
}
static void do_line(const struct path *path, const struct path **sub,
double xa, double xb, double y, double r_tool, struct path **res)
{
const struct path *last = path;
const struct path **s;
struct path *new;
double x, next;
printf(" y=%g\n", y);
if (!hit_path(xa-3*r_tool, y, xb, y, last, 1, r_tool, &x))
return;
while (1) {
printf(" x=%g\n", x);
next = xb;
last = NULL;
if (hit_path(x, y, xb, y, path, 1, r_tool, &next))
last = path;
for (s = sub; *s; s++)
if (hit_path(x, y, next, y, *s, 0, r_tool, &next))
last = *s;
new = path_new(r_tool, "");
path_add(new, x, y, path->first->z);
path_add(new, next, y, path->first->z);
new->next = *res;
*res = new;
if (!last)
return;
if (!hit_path(next+EPSILON, y, xb, y, last, last == path,
r_tool, &x))
return;
}
}
static void fill_path(const struct path *paths, const struct path *path,
double r_tool, double overlap, struct path **res)
{
const struct path **sub, **s;
const struct path **sub2, **s2;
double xa, ya, xb, yb;
int n, i;
if (!bbox(path, &xa, &ya, &xb, &yb))
return;
sub = subordinates(paths, path);
xa += r_tool;
ya += r_tool;
xb -= r_tool;
yb -= r_tool;
n = ceil((yb-ya)/(2*r_tool-overlap));
printf("x[%g:%g] y[%g:%g] n=%d\n", xa, xb, ya, yb, n);
for (i = 0; i <= n; i++)
do_line(path, sub, xa, xb, ya+(yb-ya)*((double) i/n), r_tool,
res);
for (s = sub; *s; s++) {
sub2 = subordinates(paths, *s);
for (s2 = sub2; *s2; s2++)
fill_path(paths, *s2, r_tool, overlap, res);
free(sub2);
}
free(sub);
}
struct path *area(const struct path *path, double r_tool, double overlap)
{
struct path *res = NULL;
if (!path)
return NULL;
fill_path(path, path_find_leftmost(path), r_tool, overlap, &res);
return res;
}