1
0
mirror of git://projects.qi-hardware.com/cae-tools.git synced 2025-01-03 19:50:15 +02:00
cae-tools/cameo/ops.c
Werner Almesberger 346899c34c cameo/: new command "purge" to remove corners that add little or on area
Such corners are typically artefacts that can upset later processing stages.
2015-09-28 18:13:02 -03:00

268 lines
6.0 KiB
C

/*
* ops.c - Higher-level toolpath operations
*
* Written 2010-2013, 2015 by Werner Almesberger
* Copyright 2010-2013, 2105 Werner Almesberger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <stddef.h>
#include <stdbool.h>
#include <math.h>
#include "path.h"
#include "shape.h"
#include "ops.h"
static struct path *tool_comp_1(const struct path *path, int inside,
int dog_bone)
{
int left;
left = path_tool_is_left(path);
if (inside)
return path_offset(path, !left, path->notch);
else
return path_offset(path, left, path->notch || dog_bone);
}
struct path *tool_comp_paths(const struct path *paths, int dog_bone,
int all_inside)
{
const struct path *leftmost, *path;
struct path *new = NULL, **anchor = &new;
/*
* We don't have an algorithm (yet) that can detect which paths are
* inside other paths. Therefore, we fake it by looking for the path
* that contains the lowest x coordinate. This ought to be the outer
* boundary of the piece.
*
* Note that this heuristic falls apart when a job consists of
* multiple pieces. In this case, the #%outside hint can be used to
* explicitly tell cameo to treat the path as an outside edge.
*/
if (!paths)
return NULL;
leftmost = path_find_leftmost(paths);
for (path = paths; path; path = path->next)
if (path != leftmost && (all_inside || !path->outside)) {
*anchor = tool_comp_1(path, 1, dog_bone);
anchor = &(*anchor)->next;
}
if (!all_inside)
for (path = paths; path; path = path->next)
if (path != leftmost && path->outside) {
*anchor = tool_comp_1(path, 0, dog_bone);
anchor = &(*anchor)->next;
}
*anchor = tool_comp_1(leftmost, all_inside, dog_bone);
return new;
}
struct path *try_drill(struct path *path, double d_min, double d_max)
{
struct path *new;
if (path->r_tool*2 < d_min || path->r_tool*2 > d_max)
return NULL;
if (!path->first || path->first != path->last)
return NULL;
new = path_new((d_min+d_max)/2, path->id); /* @@@ fishy */
path_add(new, path->first->x, path->first->y, path->first->z);
return new;
}
struct path *try_mill(struct path *path, double diam, double step, int any)
{
if (!any && path->r_tool*2 < diam)
return NULL;
if (!path->first)
return NULL;
if (path->first == path->last)
return circle(path->first->x, path->first->y, path->first->z,
path->r_tool, diam/2, step, path->id);
if (path->first->next == path->last)
return slot(path->first->x, path->first->y,
path->first->next->x, path->first->next->y,
path->first->z, path->r_tool, diam/2, step, path->id);
return NULL;
}
/*
* This isn't a perfect solution for the traveling salesman problem, but it's
* easy to implement and usually produces results that don't look overly
* offensive.
*/
struct path *optimize_paths(struct path *paths)
{
struct path **walk, **best = NULL;
struct path *res = NULL, **anchor = &res;
struct path *curr;
struct point *p;
double best_d = 0, d;
for (walk = &paths; *walk; walk = &(*walk)->next) {
p = (*walk)->first;
if (!p)
continue;
d = hypot(p->x, p->y);
if (!best || d < best_d) {
best = walk;
best_d = d;
}
}
while (best) {
curr = *best;
*anchor = *best;
anchor = &curr->next;
*best = curr->next;
best = NULL;
for (walk = &paths; *walk; walk = &(*walk)->next) {
p = (*walk)->first;
if (!p)
continue;
d = hypot(p->x-curr->last->x, p->y-curr->last->y);
if (!best || d < best_d) {
best = walk;
best_d = d;
}
}
}
return res;
}
struct path *reverse_paths(const struct path *paths)
{
const struct path *path;
struct path *res = NULL, **last = &res;
for (path = paths; path; path = path->next) {
*last = path_reverse(path);
last = &(*last)->next;
}
return res;
}
static int select_path(const struct path *path, double xa, double ya,
double xb, double yb, int inside)
{
const struct point *p;
for (p = path->first; p; p = p->next) {
if (p->x >= xa && p->x <= xb && p->y >= ya && p->y <= yb) {
if (!inside)
return 0;
} else {
if (inside)
return 0;
}
}
return 1;
}
struct path *select_paths(const struct path *paths, double xa, double ya,
double xb, double yb, int inside)
{
struct path *res = NULL, **last = &res;
if (xa > xb)
return select_paths(paths, xb, ya, xa, yb, inside);
if (ya > yb)
return select_paths(paths, xa, yb, xb, ya, inside);
while (paths) {
if (select_path(paths, xa, ya, xb, yb, inside)) {
*last = path_clone(paths);
last = &(*last)->next;
}
paths = paths->next;
}
return res;
}
static double cross_area(double ax, double ay, double az, double bx, double by,
double bz)
{
double x, y, z;
x = ay * bz - by * az;
y = az * bx - ax * bz;
z = ax * by - ay * bx;
return hypot(hypot(x, y), z);
}
struct path *purge_paths(const struct path *paths, double len)
{
const struct path *path;
struct path *p = NULL, **anchor = &p, *new;
struct point *a, *b, *c;
struct point *end;
double area, t;
bool closed;
if (!len)
len = EPSILON_PURGE;
area = len * len;
for (path = paths; path; path = path->next) {
if (!path->first)
continue;
closed = path_is_closed(path);
if (closed) {
end = path->first;
while (end->next != path->last)
end = end->next;
} else {
end = path->last;
}
a = end;
b = path->first;
c = b->next;
if (!c)
continue;
new = path_from(path);
while (1) {
t = cross_area(a->x - b->x, a->y - b->y, a->z - b->z,
c->x - b->x, c->y - b->y, c->z - b->z);
if (t >= area) {
path_add(new, b->x, b->y, b->z);
a = b;
}
b = c;
if (closed) {
c = c == end ? path->first : c->next;
} else {
c = c->next;
}
if (b == path->first || !c)
break;
}
if (new->first) {
if (closed)
path_add(new, new->first->x, new->first->y,
new->first->z);
*anchor = new;
anchor = &new->next;
} else {
path_free(new);
}
}
return p;
}