1
0
mirror of git://projects.qi-hardware.com/cae-tools.git synced 2024-12-23 20:21:09 +02:00
cae-tools/cameo/area.c

459 lines
9.4 KiB
C

/*
* area.c - Area fill
*
* Written 2012 by Werner Almesberger
* Copyright 2012 Werner Almesberger
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
/*
* We use the following requirement to simplify toolpath generation: the
* outlines must be designed such that the tool can pass along all the
* outlines without cutting into anything it's not supposed to.
*/
#include <stddef.h>
#include <math.h>
#include <assert.h>
#include "util.h"
#include "path.h"
#include "area.h"
#define EPSILON 1e-6
static int bbox(const struct path *path,
double *xa, double *ya, double *xb, double *yb)
{
const struct point *p = path->first;
if (!p)
return 0;
*xa = *xb = p->x;
*ya = *yb = p->y;
while (p) {
if (p->x < *xa)
*xa = p->x;
if (p->x > *xb)
*xb = p->x;
if (p->y < *ya)
*ya = p->y;
if (p->y > *yb)
*yb = p->y;
p = p->next;
}
return 1;
}
/*
* @@@ this is a bit too simple. E.g., it would report A as being inside B
* in this case:
*
* +---+
* +---+ | |
* | A | | |
* +---+ | |
* | B |
* +--------+ |
* | |
* +------------+
*/
static int is_inside(const struct path *a, const struct path *b)
{
double xa, ya, xb, yb;
const struct point *p;
if (!bbox(b, &xa, &ya, &xb, &yb))
return 0;
for (p = a->first; p; p = p->next)
if (p->x < xa || p->x > xb ||
p->y < ya || p->y > yb)
return 0;
return 1;
}
/*
* Solve
*
* ax+by = e
* cx+dy = f
*
* with Cramer's rule:
* http://en.wikipedia.org/wiki/Cramer's_rule
*/
static int cramer2(double a, double b, double c, double d, double e, double f,
double *x, double *y)
{
double det;
det = a*d-b*c;
if (fabs(det) < EPSILON)
return 0;
*x = (e*d-b*f)/det;
*y = (a*f-e*c)/det;
return 1;
}
/*
* Solve
*
* ax + na*bx = cx + nb*dx
* ay + na*by = cy + nb*dy
*
* which is
*
* na*bx + nb*-dx = cx - ax
* na*by + nb*-dy = cy - ay
*/
static int intersect(double ax, double ay, double bx, double by,
double cx, double cy, double dx, double dy, double *na, double *nb)
{
return cramer2(bx, -dx, by, -dy, cx-ax, cy-ay, na, nb);
}
/*
* See above.fig. The equation we solve is
*
* Q = A+u*(AM)
* Q = B+v*(BP)
*
* equals
*
* ax + u*(mx-ax) = bx + v*(px-bx)
* ay + u*(my-ay) = by + v*(py-by)
*
* equals
*
* u*(mx-ax) + v*(bx-px) = bx - ax
* u*(my-ay) + v*(by-py) = by - ay
*
* For BC, the equation becomes
*
* Q = C+u*(CM)
* Q = B+v*(BP)
*/
static int above(const struct point *a, const struct point *b,
const struct point *c, double px, double py)
{
double ab, bc;
double mx, my;
double u, v;
ab = hypot(a->x-b->x, a->y-b->y);
bc = hypot(b->x-c->x, b->y-c->y);
if (fabs(ab) < EPSILON || fabs(bc) < EPSILON)
return 0;
mx = b->x-(b->y-a->y)/ab-(c->y-b->y)/bc;
my = b->y+(b->x-a->x)/ab+(c->x-b->x)/bc;
if (cramer2(mx-a->x, b->x-px, my-a->y, b->y-py, b->x-a->x, b->y-a->y,
&u, &v))
if (u >= 0 && u <= 1 && v >= 0)
return 1;
if (cramer2(mx-c->x, b->x-px, my-c->y, b->y-py, b->x-c->x, b->y-c->y,
&u, &v))
if (u >= 0 && u <= 1 && v >= 0)
return 1;
return 0;
}
/*
* Solve
*
* (ax+n*bx-cx)^2+(ay+n*by-cy)^2 = r^2 for n
*
* http://en.wikipedia.org/wiki/Quadratic_equation
*/
static int touch_solve(double ax, double ay, double bx, double by,
double cx, double cy, double r, int enter, double *n)
{
double dx = cx-ax;
double dy = cy-ay;
double a = bx*bx+by*by; /* always positive */
double b = -2*bx*dx-2*by*dy;
double c = dx*dx+dy*dy-r*r;
double d, tmp;
d = b*b-4*a*c;
if (d < 0)
return 0;
d = sqrt(d);
tmp = enter ? (-b-d)/2/a : (-b+d)/2/a;
if (tmp <= 0 || tmp >= 1)
return 0;
*n = tmp;
return 1;
}
/*
* The points A, B, and C are (if the path is left-handed):
*
* - A: the beginning of the segment leading into the corner
* - B: the corner point
* - C: the beginning of the segment leading out of the corner
*
* If the path is right-handed, we swap A and C, making it left-handed.
*/
static int touch(double ax, double ay, double bx, double by,
const struct point *a, const struct point *b, const struct point *c,
double r, int enter, int left, double *n)
{
double px, py;
if (!touch_solve(ax, ay, bx, by, b->x, b->y, r, enter, n))
return 0;
px = ax+*n*bx;
py = ay+*n*by;
return above(a, b, c, px, py) == left;
}
/*
* Here, the points A, B, C, and D are:
*
* - A: before the beginning of the current segment
* - B: the beginning
* - C: the end
* - D: the next point beyond the end
*/
static int hit_segment(double fx, double fy, double tx, double ty,
const struct point *a, const struct point *b, const struct point *c,
const struct point *d, double r, int enter, int left, double *n)
{
double dx, dy, nx, ny, nn;
double px, py;
double na, nb;
tx -= fx;
ty -= fy;
dx = c->x-b->x;
dy = c->y-b->y;
if (left) {
nx = dx;
ny = dy;
} else {
nx = -dx;
ny = -dy;
}
/* -dy becomes the x component of the normal vector */
if (enter ? ny < 0 : ny > 0)
return 0;
nn = hypot(nx, ny);
px = b->x-ny/nn*r;
py = b->y+nx/nn*r;
if (!intersect(fx, fy, tx, ty, px, py, dx, dy, &na, &nb))
return 0;
if (nb <= 0) {
if (!touch(fx, fy, tx, ty, a, b, c, r, enter, left, &na))
return 0;
}
if (nb >= 1) {
if (!touch(fx, fy, tx, ty, b, c, d, r, enter, left, &na))
return 0;
}
if (na <= 0 || na >= 1)
return 0;
*n = na;
return 1;
}
static int hit_path(double fx, double fy, double tx, double ty,
const struct path *path, int inside, int enter, double r, double *x)
{
const struct point *p, *last, *next2;
int left;
double nx, tmp;
int found = 0;
/*
* @@@ We don't wrap around the ends properly and create a zero-sized
* imaginary segment between path->first and path->last.
*/
left = path_tool_is_left(path);
if (inside)
left = !left;
last = path->last;
for (p = path->first; p != path->last; p = p->next) {
next2 = p->next->next ? p->next->next : path->first;
if (hit_segment(fx, fy, tx, ty, last, p, p->next, next2,
r, enter, left, &tmp)) {
if (!found || nx > tmp)
nx = tmp;
found = 1;
}
last = p;
}
if (found)
*x = fx+nx*(tx-fx);
return found;
}
static const struct path **subordinates(const struct path *paths,
const struct path *path, double z)
{
const struct path **sub, **w, **a, **b;;
const struct path *p;
int n = 0;
for (p = paths; p; p = p->next)
if (p->first && p->first->z == z)
n++;
sub = alloc_size(sizeof(struct path *)*n);
w = sub;
for (p = paths; p; p = p->next)
if (p != path && p->first && p->first->z == z &&
is_inside(p, path) && !is_inside(path, p))
*w++ = p;
*w = NULL;
for (a = sub; a != w; a++)
for (b = sub; b != w; b++)
if (a != b && is_inside(*a, *b)) {
*a = *--w;
*w = NULL;
a--;
break;
}
return sub;
}
static void do_line(const struct path *path, const struct path **sub,
double xa, double xb, double y, double r_tool, double overlap,
struct path **res)
{
const struct path *last = path;
const struct path **s;
struct path *new;
double x, next;
if (!hit_path(xa-3*r_tool, y, xb, y, last, 1, 0, r_tool, &x))
return;
while (1) {
next = xb;
last = NULL;
if (hit_path(x, y, xb, y, path, 1, 1, r_tool, &next))
last = path;
for (s = sub; *s; s++)
if (hit_path(x, y, next, y, *s, 0, 1, r_tool, &next))
last = *s;
if (next-x > 2*r_tool-2*overlap) {
new = path_new(r_tool, "");
path_add(new, x+r_tool-overlap, y, path->first->z);
path_add(new, next-r_tool+overlap, y, path->first->z);
new->next = *res;
*res = new;
}
if (!last)
return;
if (!hit_path(next+EPSILON, y, xb, y, last, last == path, 0,
r_tool, &x))
return;
}
}
static void add_outline(const struct path *path, int inside, struct path **res)
{
struct path *new;
int left;
left = path_tool_is_left(path);
new = path_offset(path, inside ? !left : left, 0);
new->next = *res;
*res = new;
}
static void fill_path(const struct path *paths, const struct path *path,
double z, double r_tool, double overlap, struct path **res)
{
const struct path **sub, **s;
const struct path **sub2, **s2;
double xa, ya, xb, yb;
int n, i;
if (!bbox(path, &xa, &ya, &xb, &yb))
return;
sub = subordinates(paths, path, z);
xa += r_tool;
ya += 3*r_tool-overlap;
xb -= r_tool;
yb -= 3*r_tool-overlap;
n = ceil((yb-ya)/(2*r_tool-overlap));
for (i = 0; i <= n; i++)
do_line(path, sub, xa, xb, ya+(yb-ya)*((double) i/n),
r_tool, overlap, res);
for (s = sub; *s; s++) {
sub2 = subordinates(paths, *s, z);
for (s2 = sub2; *s2; s2++)
fill_path(paths, *s2, z, r_tool, overlap, res);
free(sub2);
add_outline(*s, 0, res);
}
free(sub);
add_outline(path, 1, res);
}
struct path *area(const struct path *paths, double overlap)
{
struct path *res = NULL;
double z = HUGE_VAL, best_x, x;
const struct path *path, *best;
const struct point *p;
if (!paths)
return NULL;
while (1) {
best = NULL;
best_x = HUGE_VAL;
for (path = paths; path; path = path->next) {
if (!path->first)
continue;
if (path->first->z >= z)
continue;
x = HUGE_VAL;
for (p = path->first; p; p = p->next)
if (p->x < x)
x = p->x;
if (best && best->first->z >= path->first->z &&
x >= best_x)
continue;
best = path;
best_x = x;
}
if (!best)
return res;
z = best->first->z;
fill_path(paths, best, z, best->r_tool, overlap, &res);
}
}