mirror of
git://projects.qi-hardware.com/nanomap.git
synced 2024-11-29 09:49:21 +02:00
660 lines
21 KiB
C
660 lines
21 KiB
C
|
/*
|
||
|
Copyright 2010 Christian Vetter veaac.fdirct@gmail.com
|
||
|
|
||
|
This file is part of MoNav.
|
||
|
|
||
|
MoNav is free software: you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Public License as published by
|
||
|
the Free Software Foundation, either version 3 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
MoNav is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License
|
||
|
along with MoNav. If not, see <http://www.gnu.org/licenses/>.
|
||
|
*/
|
||
|
|
||
|
#ifndef CONTRACTOR_H_INCLUDED
|
||
|
#define CONTRACTOR_H_INCLUDED
|
||
|
#include <vector>
|
||
|
#include <omp.h>
|
||
|
#include <limits>
|
||
|
#include "utils/qthelpers.h"
|
||
|
#include "dynamicgraph.h"
|
||
|
#include "binaryheap.h"
|
||
|
#include "utils/config.h"
|
||
|
|
||
|
class Contractor {
|
||
|
|
||
|
public:
|
||
|
|
||
|
struct Witness {
|
||
|
NodeID source;
|
||
|
NodeID target;
|
||
|
NodeID middle;
|
||
|
};
|
||
|
|
||
|
private:
|
||
|
|
||
|
struct _EdgeData {
|
||
|
unsigned distance;
|
||
|
unsigned originalEdges : 29;
|
||
|
bool shortcut : 1;
|
||
|
bool forward : 1;
|
||
|
bool backward : 1;
|
||
|
union {
|
||
|
NodeID middle; // shortcut
|
||
|
unsigned id; // original edge
|
||
|
};
|
||
|
} data;
|
||
|
|
||
|
struct _HeapData {
|
||
|
};
|
||
|
|
||
|
typedef DynamicGraph< _EdgeData > _DynamicGraph;
|
||
|
typedef BinaryHeap< NodeID, NodeID, unsigned, _HeapData > _Heap;
|
||
|
typedef _DynamicGraph::InputEdge _ImportEdge;
|
||
|
|
||
|
struct _ThreadData {
|
||
|
_Heap heap;
|
||
|
std::vector< _ImportEdge > insertedEdges;
|
||
|
std::vector< Witness > witnessList;
|
||
|
std::vector< NodeID > neighbours;
|
||
|
_ThreadData( NodeID nodes ): heap( nodes ) {
|
||
|
}
|
||
|
};
|
||
|
|
||
|
struct _PriorityData {
|
||
|
int depth;
|
||
|
NodeID bias;
|
||
|
_PriorityData() {
|
||
|
depth = 0;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
struct _ContractionInformation {
|
||
|
int edgesDeleted;
|
||
|
int edgesAdded;
|
||
|
int originalEdgesDeleted;
|
||
|
int originalEdgesAdded;
|
||
|
_ContractionInformation() {
|
||
|
edgesAdded = edgesDeleted = originalEdgesAdded = originalEdgesDeleted = 0;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
struct _NodePartitionor {
|
||
|
bool operator()( std::pair< NodeID, bool > nodeData ) {
|
||
|
return !nodeData.second;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
struct _LogItem {
|
||
|
unsigned iteration;
|
||
|
NodeID nodes;
|
||
|
double contraction;
|
||
|
double independent;
|
||
|
double inserting;
|
||
|
double removing;
|
||
|
double updating;
|
||
|
|
||
|
_LogItem() {
|
||
|
iteration = nodes = contraction = independent = inserting = removing = updating = 0;
|
||
|
}
|
||
|
|
||
|
double GetTotalTime() const {
|
||
|
return contraction + independent + inserting + removing + updating;
|
||
|
}
|
||
|
|
||
|
void PrintStatistics() const {
|
||
|
qDebug( "%d\t%d\t%lf\t%lf\t%lf\t%lf\t%lf", iteration, nodes, independent, contraction, inserting, removing, updating );
|
||
|
}
|
||
|
};
|
||
|
|
||
|
class _LogData {
|
||
|
public:
|
||
|
|
||
|
std::vector < _LogItem > iterations;
|
||
|
|
||
|
unsigned GetNIterations() {
|
||
|
return ( unsigned ) iterations.size();
|
||
|
}
|
||
|
|
||
|
_LogItem GetSum() const {
|
||
|
_LogItem sum;
|
||
|
sum.iteration = ( unsigned ) iterations.size();
|
||
|
|
||
|
for ( int i = 0, e = ( int ) iterations.size(); i < e; ++i ) {
|
||
|
sum.nodes += iterations[i].nodes;
|
||
|
sum.contraction += iterations[i].contraction;
|
||
|
sum.independent += iterations[i].independent;
|
||
|
sum.inserting += iterations[i].inserting;
|
||
|
sum.removing += iterations[i].removing;
|
||
|
sum.updating += iterations[i].updating;
|
||
|
}
|
||
|
|
||
|
return sum;
|
||
|
}
|
||
|
|
||
|
void PrintHeader() const {
|
||
|
qDebug( "Iteration\tNodes\tIndependent\tContraction\tInserting\tRemoving\tUpdating" );
|
||
|
}
|
||
|
|
||
|
void PrintSummary() const {
|
||
|
PrintHeader();
|
||
|
GetSum().PrintStatistics();
|
||
|
}
|
||
|
|
||
|
void Print() const {
|
||
|
PrintHeader();
|
||
|
for ( int i = 0, e = ( int ) iterations.size(); i < e; ++i )
|
||
|
iterations[i].PrintStatistics();
|
||
|
}
|
||
|
|
||
|
void Insert( const _LogItem& data ) {
|
||
|
iterations.push_back( data );
|
||
|
}
|
||
|
|
||
|
};
|
||
|
|
||
|
public:
|
||
|
|
||
|
template< class InputEdge >
|
||
|
Contractor( int nodes, const std::vector< InputEdge >& inputEdges ) {
|
||
|
std::vector< _ImportEdge > edges;
|
||
|
edges.reserve( 2 * inputEdges.size() );
|
||
|
int skippedLargeEdges = 0;
|
||
|
for ( typename std::vector< InputEdge >::const_iterator i = inputEdges.begin(), e = inputEdges.end(); i != e; ++i ) {
|
||
|
_ImportEdge edge;
|
||
|
edge.source = i->source;
|
||
|
edge.target = i->target;
|
||
|
edge.data.distance = std::max( i->distance * 10.0 + 0.5, 1.0 );
|
||
|
if ( edge.data.distance > 24 * 60 * 60 * 10 ) {
|
||
|
skippedLargeEdges++;
|
||
|
continue;
|
||
|
}
|
||
|
edge.data.shortcut = false;
|
||
|
edge.data.id = i - inputEdges.begin();
|
||
|
edge.data.forward = true;
|
||
|
edge.data.backward = i->bidirectional;
|
||
|
edge.data.originalEdges = 1;
|
||
|
|
||
|
if ( edge.data.distance < 1 ) {
|
||
|
qDebug() << edge.source << edge.target << edge.data.forward << edge.data.backward << edge.data.distance << edge.data.id << i->distance;
|
||
|
}
|
||
|
|
||
|
if ( edge.source == edge.target ) {
|
||
|
_loops.push_back( edge );
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
edges.push_back( edge );
|
||
|
std::swap( edge.source, edge.target );
|
||
|
edge.data.forward = i->bidirectional;
|
||
|
edge.data.backward = true;
|
||
|
edges.push_back( edge );
|
||
|
}
|
||
|
if ( skippedLargeEdges != 0 )
|
||
|
qDebug( "Skipped %d edges with too large edge weight", skippedLargeEdges );
|
||
|
std::sort( edges.begin(), edges.end() );
|
||
|
|
||
|
_graph = new _DynamicGraph( nodes, edges );
|
||
|
|
||
|
std::vector< _ImportEdge >().swap( edges );
|
||
|
}
|
||
|
|
||
|
~Contractor() {
|
||
|
delete _graph;
|
||
|
}
|
||
|
|
||
|
void Run() {
|
||
|
const NodeID numberOfNodes = _graph->GetNumberOfNodes();
|
||
|
_LogData log;
|
||
|
|
||
|
int maxThreads = omp_get_max_threads();
|
||
|
std::vector < _ThreadData* > threadData;
|
||
|
for ( int threadNum = 0; threadNum < maxThreads; ++threadNum ) {
|
||
|
threadData.push_back( new _ThreadData( numberOfNodes ) );
|
||
|
}
|
||
|
qDebug( "%d nodes, %d edges", numberOfNodes, _graph->GetNumberOfEdges() );
|
||
|
qDebug( "using %d threads", maxThreads );
|
||
|
|
||
|
NodeID levelID = 0;
|
||
|
NodeID iteration = 0;
|
||
|
std::vector< std::pair< NodeID, bool > > remainingNodes( numberOfNodes );
|
||
|
std::vector< double > nodePriority( numberOfNodes );
|
||
|
std::vector< _PriorityData > nodeData( numberOfNodes );
|
||
|
|
||
|
//initialize the variables
|
||
|
#pragma omp parallel for schedule ( guided )
|
||
|
for ( int x = 0; x < ( int ) numberOfNodes; ++x )
|
||
|
remainingNodes[x].first = x;
|
||
|
std::random_shuffle( remainingNodes.begin(), remainingNodes.end() );
|
||
|
for ( int x = 0; x < ( int ) numberOfNodes; ++x )
|
||
|
nodeData[remainingNodes[x].first].bias = x;
|
||
|
|
||
|
qDebug( "Initialise Elimination PQ... " );
|
||
|
_LogItem statistics0;
|
||
|
statistics0.updating = _Timestamp();
|
||
|
statistics0.iteration = 0;
|
||
|
#pragma omp parallel
|
||
|
{
|
||
|
_ThreadData* data = threadData[omp_get_thread_num()];
|
||
|
#pragma omp for schedule ( guided )
|
||
|
for ( int x = 0; x < ( int ) numberOfNodes; ++x ) {
|
||
|
nodePriority[x] = _Evaluate( data, &nodeData[x], x );
|
||
|
}
|
||
|
}
|
||
|
qDebug( "done" );
|
||
|
|
||
|
statistics0.updating = _Timestamp() - statistics0.updating;
|
||
|
log.Insert( statistics0 );
|
||
|
|
||
|
log.PrintHeader();
|
||
|
statistics0.PrintStatistics();
|
||
|
|
||
|
while ( levelID < numberOfNodes ) {
|
||
|
_LogItem statistics;
|
||
|
statistics.iteration = iteration++;
|
||
|
const int last = ( int ) remainingNodes.size();
|
||
|
|
||
|
//determine independent node set
|
||
|
double timeLast = _Timestamp();
|
||
|
#pragma omp parallel
|
||
|
{
|
||
|
_ThreadData* const data = threadData[omp_get_thread_num()];
|
||
|
#pragma omp for schedule ( guided )
|
||
|
for ( int i = 0; i < last; ++i ) {
|
||
|
const NodeID node = remainingNodes[i].first;
|
||
|
remainingNodes[i].second = _IsIndependent( nodePriority, nodeData, data, node );
|
||
|
}
|
||
|
}
|
||
|
_NodePartitionor functor;
|
||
|
const std::vector < std::pair < NodeID, bool > >::const_iterator first = stable_partition( remainingNodes.begin(), remainingNodes.end(), functor );
|
||
|
const int firstIndependent = first - remainingNodes.begin();
|
||
|
statistics.nodes = last - firstIndependent;
|
||
|
statistics.independent += _Timestamp() - timeLast;
|
||
|
timeLast = _Timestamp();
|
||
|
|
||
|
//contract independent nodes
|
||
|
#pragma omp parallel
|
||
|
{
|
||
|
_ThreadData* const data = threadData[omp_get_thread_num()];
|
||
|
#pragma omp for schedule ( guided ) nowait
|
||
|
for ( int position = firstIndependent ; position < last; ++position ) {
|
||
|
NodeID x = remainingNodes[position].first;
|
||
|
_Contract< false > ( data, x );
|
||
|
nodePriority[x] = -1;
|
||
|
}
|
||
|
std::sort( data->insertedEdges.begin(), data->insertedEdges.end() );
|
||
|
}
|
||
|
statistics.contraction += _Timestamp() - timeLast;
|
||
|
timeLast = _Timestamp();
|
||
|
|
||
|
#pragma omp parallel
|
||
|
{
|
||
|
_ThreadData* const data = threadData[omp_get_thread_num()];
|
||
|
#pragma omp for schedule ( guided ) nowait
|
||
|
for ( int position = firstIndependent ; position < last; ++position ) {
|
||
|
NodeID x = remainingNodes[position].first;
|
||
|
_DeleteIncommingEdges( data, x );
|
||
|
}
|
||
|
}
|
||
|
statistics.removing += _Timestamp() - timeLast;
|
||
|
timeLast = _Timestamp();
|
||
|
|
||
|
//insert new edges
|
||
|
for ( int threadNum = 0; threadNum < maxThreads; ++threadNum ) {
|
||
|
_ThreadData& data = *threadData[threadNum];
|
||
|
for ( int i = 0; i < ( int ) data.insertedEdges.size(); ++i ) {
|
||
|
const _ImportEdge& edge = data.insertedEdges[i];
|
||
|
_graph->InsertEdge( edge.source, edge.target, edge.data );
|
||
|
}
|
||
|
std::vector< _ImportEdge >().swap( data.insertedEdges );
|
||
|
}
|
||
|
statistics.inserting += _Timestamp() - timeLast;
|
||
|
timeLast = _Timestamp();
|
||
|
|
||
|
//update priorities
|
||
|
#pragma omp parallel
|
||
|
{
|
||
|
_ThreadData* const data = threadData[omp_get_thread_num()];
|
||
|
#pragma omp for schedule ( guided ) nowait
|
||
|
for ( int position = firstIndependent ; position < last; ++position ) {
|
||
|
NodeID x = remainingNodes[position].first;
|
||
|
_UpdateNeighbours( &nodePriority, &nodeData, data, x );
|
||
|
}
|
||
|
}
|
||
|
statistics.updating += _Timestamp() - timeLast;
|
||
|
timeLast = _Timestamp();
|
||
|
|
||
|
//output some statistics
|
||
|
statistics.PrintStatistics();
|
||
|
//qDebug( wxT( "Printed" ) );
|
||
|
|
||
|
//remove contracted nodes from the pool
|
||
|
levelID += last - firstIndependent;
|
||
|
remainingNodes.resize( firstIndependent );
|
||
|
std::vector< std::pair< NodeID, bool > >( remainingNodes ).swap( remainingNodes );
|
||
|
log.Insert( statistics );
|
||
|
}
|
||
|
|
||
|
for ( int threadNum = 0; threadNum < maxThreads; threadNum++ ) {
|
||
|
_witnessList.insert( _witnessList.end(), threadData[threadNum]->witnessList.begin(), threadData[threadNum]->witnessList.end() );
|
||
|
delete threadData[threadNum];
|
||
|
}
|
||
|
|
||
|
log.PrintSummary();
|
||
|
qDebug( "Total Time: %lf s", log.GetSum().GetTotalTime() );
|
||
|
|
||
|
}
|
||
|
|
||
|
template< class Edge >
|
||
|
void GetEdges( std::vector< Edge >* edges ) {
|
||
|
NodeID numberOfNodes = _graph->GetNumberOfNodes();
|
||
|
for ( NodeID node = 0; node < numberOfNodes; ++node ) {
|
||
|
for ( _DynamicGraph::EdgeIterator edge = _graph->BeginEdges( node ), endEdges = _graph->EndEdges( node ); edge != endEdges; ++edge ) {
|
||
|
const NodeID target = _graph->GetTarget( edge );
|
||
|
const _EdgeData& data = _graph->GetEdgeData( edge );
|
||
|
Edge newEdge;
|
||
|
newEdge.source = node;
|
||
|
newEdge.target = target;
|
||
|
newEdge.data.distance = data.distance;
|
||
|
newEdge.data.shortcut = data.shortcut;
|
||
|
if ( data.shortcut )
|
||
|
newEdge.data.middle = data.middle;
|
||
|
else
|
||
|
newEdge.data.id = data.id;
|
||
|
newEdge.data.forward = data.forward;
|
||
|
newEdge.data.backward = data.backward;
|
||
|
edges->push_back( newEdge );
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template< class Edge >
|
||
|
void GetLoops( std::vector< Edge >* edges ) {
|
||
|
for ( unsigned i = 0; i < _loops.size(); i++ ) {
|
||
|
Edge newEdge;
|
||
|
newEdge.source = _loops[i].source;
|
||
|
newEdge.target = _loops[i].target;
|
||
|
newEdge.data.distance = _loops[i].data.distance;
|
||
|
newEdge.data.shortcut = _loops[i].data.shortcut;
|
||
|
newEdge.data.id = _loops[i].data.id;
|
||
|
newEdge.data.forward = _loops[i].data.forward;
|
||
|
newEdge.data.backward = _loops[i].data.backward;
|
||
|
edges->push_back( newEdge );
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void GetWitnessList( std::vector< Witness >& list ) {
|
||
|
list = _witnessList;
|
||
|
}
|
||
|
|
||
|
private:
|
||
|
|
||
|
double _Timestamp() {
|
||
|
static Timer timer;
|
||
|
return ( double ) timer.elapsed() / 1000;
|
||
|
}
|
||
|
|
||
|
bool _ConstructCH( _DynamicGraph* _graph );
|
||
|
|
||
|
void _Dijkstra( const unsigned maxDistance, const int maxNodes, _ThreadData* const data ){
|
||
|
|
||
|
_Heap& heap = data->heap;
|
||
|
|
||
|
int nodes = 0;
|
||
|
while ( heap.Size() > 0 ) {
|
||
|
const NodeID node = heap.DeleteMin();
|
||
|
const unsigned distance = heap.GetKey( node );
|
||
|
if ( nodes++ > maxNodes )
|
||
|
return;
|
||
|
//Destination settled?
|
||
|
if ( distance > maxDistance )
|
||
|
return;
|
||
|
|
||
|
//iterate over all edges of node
|
||
|
for ( _DynamicGraph::EdgeIterator edge = _graph->BeginEdges( node ), endEdges = _graph->EndEdges( node ); edge != endEdges; ++edge ) {
|
||
|
const _EdgeData& data = _graph->GetEdgeData( edge );
|
||
|
if ( !data.forward )
|
||
|
continue;
|
||
|
const NodeID to = _graph->GetTarget( edge );
|
||
|
const unsigned toDistance = distance + data.distance;
|
||
|
|
||
|
//New Node discovered -> Add to Heap + Node Info Storage
|
||
|
if ( !heap.WasInserted( to ) )
|
||
|
heap.Insert( to, toDistance, _HeapData() );
|
||
|
|
||
|
//Found a shorter Path -> Update distance
|
||
|
else if ( toDistance < heap.GetKey( to ) ) {
|
||
|
heap.DecreaseKey( to, toDistance );
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
double _Evaluate( _ThreadData* const data, _PriorityData* const nodeData, NodeID node ){
|
||
|
_ContractionInformation stats;
|
||
|
|
||
|
//perform simulated contraction
|
||
|
_Contract< true > ( data, node, &stats );
|
||
|
|
||
|
// Result will contain the priority
|
||
|
double result;
|
||
|
if ( stats.edgesDeleted == 0 || stats.originalEdgesDeleted == 0 )
|
||
|
result = 1 * nodeData->depth;
|
||
|
else
|
||
|
result = 2 * ((( double ) stats.edgesAdded ) / stats.edgesDeleted ) + 1 * ((( double ) stats.originalEdgesAdded ) / stats.originalEdgesDeleted ) + 1 * nodeData->depth;
|
||
|
assert( result >= 0 );
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
|
||
|
template< bool Simulate > bool _Contract( _ThreadData* const data, NodeID node, _ContractionInformation* const stats = NULL ) {
|
||
|
_Heap& heap = data->heap;
|
||
|
//std::vector< Witness >& witnessList = data->witnessList;
|
||
|
int insertedEdgesSize = data->insertedEdges.size();
|
||
|
std::vector< _ImportEdge >& insertedEdges = data->insertedEdges;
|
||
|
|
||
|
for ( _DynamicGraph::EdgeIterator inEdge = _graph->BeginEdges( node ), endInEdges = _graph->EndEdges( node ); inEdge != endInEdges; ++inEdge ) {
|
||
|
const _EdgeData& inData = _graph->GetEdgeData( inEdge );
|
||
|
const NodeID source = _graph->GetTarget( inEdge );
|
||
|
if ( Simulate ) {
|
||
|
assert( stats != NULL );
|
||
|
stats->edgesDeleted++;
|
||
|
stats->originalEdgesDeleted += inData.originalEdges;
|
||
|
}
|
||
|
if ( !inData.backward )
|
||
|
continue;
|
||
|
|
||
|
heap.Clear();
|
||
|
heap.Insert( source, 0, _HeapData() );
|
||
|
if ( node != source )
|
||
|
heap.Insert( node, inData.distance, _HeapData() );
|
||
|
unsigned maxDistance = 0;
|
||
|
|
||
|
for ( _DynamicGraph::EdgeIterator outEdge = _graph->BeginEdges( node ), endOutEdges = _graph->EndEdges( node ); outEdge != endOutEdges; ++outEdge ) {
|
||
|
const _EdgeData& outData = _graph->GetEdgeData( outEdge );
|
||
|
if ( !outData.forward )
|
||
|
continue;
|
||
|
const NodeID target = _graph->GetTarget( outEdge );
|
||
|
const unsigned pathDistance = inData.distance + outData.distance;
|
||
|
maxDistance = std::max( maxDistance, pathDistance );
|
||
|
if ( !heap.WasInserted( target ) )
|
||
|
heap.Insert( target, pathDistance, _HeapData() );
|
||
|
else if ( pathDistance < heap.GetKey( target ) )
|
||
|
heap.DecreaseKey( target, pathDistance );
|
||
|
}
|
||
|
|
||
|
if ( Simulate )
|
||
|
_Dijkstra( maxDistance, 500, data );
|
||
|
else
|
||
|
_Dijkstra( maxDistance, 1000, data );
|
||
|
|
||
|
for ( _DynamicGraph::EdgeIterator outEdge = _graph->BeginEdges( node ), endOutEdges = _graph->EndEdges( node ); outEdge != endOutEdges; ++outEdge ) {
|
||
|
const _EdgeData& outData = _graph->GetEdgeData( outEdge );
|
||
|
if ( !outData.forward )
|
||
|
continue;
|
||
|
const NodeID target = _graph->GetTarget( outEdge );
|
||
|
const int pathDistance = inData.distance + outData.distance;
|
||
|
const int distance = heap.GetKey( target );
|
||
|
|
||
|
if ( pathDistance <= distance ) {
|
||
|
if ( Simulate ) {
|
||
|
assert( stats != NULL );
|
||
|
stats->edgesAdded += 2;
|
||
|
stats->originalEdgesAdded += 2 * ( outData.originalEdges + inData.originalEdges );
|
||
|
} else {
|
||
|
_ImportEdge newEdge;
|
||
|
newEdge.source = source;
|
||
|
newEdge.target = target;
|
||
|
newEdge.data.distance = pathDistance;
|
||
|
newEdge.data.forward = true;
|
||
|
newEdge.data.backward = false;
|
||
|
newEdge.data.middle = node;
|
||
|
newEdge.data.shortcut = true;
|
||
|
newEdge.data.originalEdges = outData.originalEdges + inData.originalEdges;
|
||
|
insertedEdges.push_back( newEdge );
|
||
|
std::swap( newEdge.source, newEdge.target );
|
||
|
newEdge.data.forward = false;
|
||
|
newEdge.data.backward = true;
|
||
|
insertedEdges.push_back( newEdge );
|
||
|
}
|
||
|
}
|
||
|
/*else if ( !Simulate ) {
|
||
|
Witness witness;
|
||
|
witness.source = source;
|
||
|
witness.target = target;
|
||
|
witness.middle = node;
|
||
|
witnessList.push_back( witness );
|
||
|
}*/
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if ( !Simulate ) {
|
||
|
for ( int i = insertedEdgesSize, iend = insertedEdges.size(); i < iend; i++ ) {
|
||
|
bool found = false;
|
||
|
for ( int other = i + 1 ; other < iend ; ++other ) {
|
||
|
if ( insertedEdges[other].source != insertedEdges[i].source )
|
||
|
continue;
|
||
|
if ( insertedEdges[other].target != insertedEdges[i].target )
|
||
|
continue;
|
||
|
if ( insertedEdges[other].data.distance != insertedEdges[i].data.distance )
|
||
|
continue;
|
||
|
if ( insertedEdges[other].data.shortcut != insertedEdges[i].data.shortcut )
|
||
|
continue;
|
||
|
insertedEdges[other].data.forward |= insertedEdges[i].data.forward;
|
||
|
insertedEdges[other].data.backward |= insertedEdges[i].data.backward;
|
||
|
found = true;
|
||
|
break;
|
||
|
}
|
||
|
if ( !found )
|
||
|
insertedEdges[insertedEdgesSize++] = insertedEdges[i];
|
||
|
}
|
||
|
insertedEdges.resize( insertedEdgesSize );
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool _DeleteIncommingEdges( _ThreadData* const data, NodeID node ) {
|
||
|
std::vector< NodeID >& neighbours = data->neighbours;
|
||
|
neighbours.clear();
|
||
|
|
||
|
//find all neighbours
|
||
|
for ( _DynamicGraph::EdgeIterator e = _graph->BeginEdges( node ) ; e < _graph->EndEdges( node ) ; ++e ) {
|
||
|
const NodeID u = _graph->GetTarget( e );
|
||
|
if ( u == node )
|
||
|
continue;
|
||
|
neighbours.push_back( u );
|
||
|
}
|
||
|
//eliminate duplicate entries ( forward + backward edges )
|
||
|
std::sort( neighbours.begin(), neighbours.end() );
|
||
|
neighbours.resize( std::unique( neighbours.begin(), neighbours.end() ) - neighbours.begin() );
|
||
|
|
||
|
for ( int i = 0, e = ( int ) neighbours.size(); i < e; ++i ) {
|
||
|
const NodeID u = neighbours[i];
|
||
|
_graph->DeleteEdgesTo( u, node );
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool _UpdateNeighbours( std::vector< double >* priorities, std::vector< _PriorityData >* const nodeData, _ThreadData* const data, NodeID node ) {
|
||
|
std::vector< NodeID >& neighbours = data->neighbours;
|
||
|
neighbours.clear();
|
||
|
|
||
|
//find all neighbours
|
||
|
for ( _DynamicGraph::EdgeIterator e = _graph->BeginEdges( node ) ; e < _graph->EndEdges( node ) ; ++e ) {
|
||
|
const NodeID u = _graph->GetTarget( e );
|
||
|
if ( u == node )
|
||
|
continue;
|
||
|
neighbours.push_back( u );
|
||
|
( *nodeData )[u].depth = std::max(( *nodeData )[node].depth + 1, ( *nodeData )[u].depth );
|
||
|
}
|
||
|
//eliminate duplicate entries ( forward + backward edges )
|
||
|
std::sort( neighbours.begin(), neighbours.end() );
|
||
|
neighbours.resize( std::unique( neighbours.begin(), neighbours.end() ) - neighbours.begin() );
|
||
|
|
||
|
for ( int i = 0, e = ( int ) neighbours.size(); i < e; ++i ) {
|
||
|
const NodeID u = neighbours[i];
|
||
|
( *priorities )[u] = _Evaluate( data, &( *nodeData )[u], u );
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
bool _IsIndependent( const std::vector< double >& priorities, const std::vector< _PriorityData >& nodeData, _ThreadData* const data, NodeID node ) {
|
||
|
const double priority = priorities[node];
|
||
|
|
||
|
std::vector< NodeID >& neighbours = data->neighbours;
|
||
|
neighbours.clear();
|
||
|
|
||
|
for ( _DynamicGraph::EdgeIterator e = _graph->BeginEdges( node ) ; e < _graph->EndEdges( node ) ; ++e ) {
|
||
|
const NodeID target = _graph->GetTarget( e );
|
||
|
const double targetPriority = priorities[target];
|
||
|
assert( targetPriority >= 0 );
|
||
|
//found a neighbour with lower priority?
|
||
|
if ( priority > targetPriority )
|
||
|
return false;
|
||
|
//tie breaking
|
||
|
if ( priority == targetPriority && nodeData[node].bias < nodeData[target].bias )
|
||
|
return false;
|
||
|
neighbours.push_back( target );
|
||
|
}
|
||
|
|
||
|
std::sort( neighbours.begin(), neighbours.end() );
|
||
|
neighbours.resize( std::unique( neighbours.begin(), neighbours.end() ) - neighbours.begin() );
|
||
|
|
||
|
//examine all neighbours that are at most 2 hops away
|
||
|
for ( std::vector< NodeID >::const_iterator i = neighbours.begin(), lastNode = neighbours.end(); i != lastNode; ++i ) {
|
||
|
const NodeID u = *i;
|
||
|
|
||
|
for ( _DynamicGraph::EdgeIterator e = _graph->BeginEdges( u ) ; e < _graph->EndEdges( u ) ; ++e ) {
|
||
|
const NodeID target = _graph->GetTarget( e );
|
||
|
|
||
|
const double targetPriority = priorities[target];
|
||
|
assert( targetPriority >= 0 );
|
||
|
//found a neighbour with lower priority?
|
||
|
if ( priority > targetPriority )
|
||
|
return false;
|
||
|
//tie breaking
|
||
|
if ( priority == targetPriority && nodeData[node].bias < nodeData[target].bias )
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
|
||
|
_DynamicGraph* _graph;
|
||
|
std::vector< Witness > _witnessList;
|
||
|
std::vector< _ImportEdge > _loops;
|
||
|
};
|
||
|
|
||
|
#endif // CONTRACTOR_H_INCLUDED
|