mirror of
git://projects.qi-hardware.com/nn-usb-fpga.git
synced 2025-01-10 08:30:17 +02:00
197 lines
6.4 KiB
VHDL
197 lines
6.4 KiB
VHDL
|
---------------------------------------------------------------------
|
||
|
-- TITLE: Memory Controller
|
||
|
-- AUTHOR: Steve Rhoads (rhoadss@yahoo.com)
|
||
|
-- DATE CREATED: 1/31/01
|
||
|
-- FILENAME: mem_ctrl.vhd
|
||
|
-- PROJECT: Plasma CPU core
|
||
|
-- COPYRIGHT: Software placed into the public domain by the author.
|
||
|
-- Software 'as is' without warranty. Author liable for nothing.
|
||
|
-- DESCRIPTION:
|
||
|
-- Memory controller for the Plasma CPU.
|
||
|
-- Supports Big or Little Endian mode.
|
||
|
---------------------------------------------------------------------
|
||
|
library ieee;
|
||
|
use ieee.std_logic_1164.all;
|
||
|
use work.mlite_pack.all;
|
||
|
|
||
|
entity mem_ctrl is
|
||
|
port(clk : in std_logic;
|
||
|
reset_in : in std_logic;
|
||
|
pause_in : in std_logic;
|
||
|
nullify_op : in std_logic;
|
||
|
address_pc : in std_logic_vector(31 downto 2);
|
||
|
opcode_out : out std_logic_vector(31 downto 0);
|
||
|
|
||
|
address_in : in std_logic_vector(31 downto 0);
|
||
|
mem_source : in mem_source_type;
|
||
|
data_write : in std_logic_vector(31 downto 0);
|
||
|
data_read : out std_logic_vector(31 downto 0);
|
||
|
pause_out : out std_logic;
|
||
|
|
||
|
address_next : out std_logic_vector(31 downto 2);
|
||
|
byte_we_next : out std_logic_vector(3 downto 0);
|
||
|
|
||
|
address : out std_logic_vector(31 downto 2);
|
||
|
byte_we : out std_logic_vector(3 downto 0);
|
||
|
data_w : out std_logic_vector(31 downto 0);
|
||
|
data_r : in std_logic_vector(31 downto 0));
|
||
|
end; --entity mem_ctrl
|
||
|
|
||
|
architecture logic of mem_ctrl is
|
||
|
--"00" = big_endian; "11" = little_endian
|
||
|
constant ENDIAN_MODE : std_logic_vector(1 downto 0) := "00";
|
||
|
signal opcode_reg : std_logic_vector(31 downto 0);
|
||
|
signal next_opcode_reg : std_logic_vector(31 downto 0);
|
||
|
signal address_reg : std_logic_vector(31 downto 2);
|
||
|
signal byte_we_reg : std_logic_vector(3 downto 0);
|
||
|
|
||
|
signal mem_state_reg : std_logic;
|
||
|
constant STATE_ADDR : std_logic := '0';
|
||
|
constant STATE_ACCESS : std_logic := '1';
|
||
|
|
||
|
begin
|
||
|
|
||
|
mem_proc: process(clk, reset_in, pause_in, nullify_op,
|
||
|
address_pc, address_in, mem_source, data_write,
|
||
|
data_r, opcode_reg, next_opcode_reg, mem_state_reg,
|
||
|
address_reg, byte_we_reg)
|
||
|
variable address_var : std_logic_vector(31 downto 2);
|
||
|
variable data_read_var : std_logic_vector(31 downto 0);
|
||
|
variable data_write_var : std_logic_vector(31 downto 0);
|
||
|
variable opcode_next : std_logic_vector(31 downto 0);
|
||
|
variable byte_we_var : std_logic_vector(3 downto 0);
|
||
|
variable mem_state_next : std_logic;
|
||
|
variable pause_var : std_logic;
|
||
|
variable bits : std_logic_vector(1 downto 0);
|
||
|
begin
|
||
|
byte_we_var := "0000";
|
||
|
pause_var := '0';
|
||
|
data_read_var := ZERO;
|
||
|
data_write_var := ZERO;
|
||
|
mem_state_next := mem_state_reg;
|
||
|
opcode_next := opcode_reg;
|
||
|
|
||
|
case mem_source is
|
||
|
when MEM_READ32 =>
|
||
|
data_read_var := data_r;
|
||
|
|
||
|
when MEM_READ16 | MEM_READ16S =>
|
||
|
if address_in(1) = ENDIAN_MODE(1) then
|
||
|
data_read_var(15 downto 0) := data_r(31 downto 16);
|
||
|
else
|
||
|
data_read_var(15 downto 0) := data_r(15 downto 0);
|
||
|
end if;
|
||
|
if mem_source = MEM_READ16 or data_read_var(15) = '0' then
|
||
|
data_read_var(31 downto 16) := ZERO(31 downto 16);
|
||
|
else
|
||
|
data_read_var(31 downto 16) := ONES(31 downto 16);
|
||
|
end if;
|
||
|
|
||
|
when MEM_READ8 | MEM_READ8S =>
|
||
|
bits := address_in(1 downto 0) xor ENDIAN_MODE;
|
||
|
case bits is
|
||
|
when "00" => data_read_var(7 downto 0) := data_r(31 downto 24);
|
||
|
when "01" => data_read_var(7 downto 0) := data_r(23 downto 16);
|
||
|
when "10" => data_read_var(7 downto 0) := data_r(15 downto 8);
|
||
|
when others => data_read_var(7 downto 0) := data_r(7 downto 0);
|
||
|
end case;
|
||
|
if mem_source = MEM_READ8 or data_read_var(7) = '0' then
|
||
|
data_read_var(31 downto 8) := ZERO(31 downto 8);
|
||
|
else
|
||
|
data_read_var(31 downto 8) := ONES(31 downto 8);
|
||
|
end if;
|
||
|
|
||
|
when MEM_WRITE32 =>
|
||
|
data_write_var := data_write;
|
||
|
byte_we_var := "1111";
|
||
|
|
||
|
when MEM_WRITE16 =>
|
||
|
data_write_var := data_write(15 downto 0) & data_write(15 downto 0);
|
||
|
if address_in(1) = ENDIAN_MODE(1) then
|
||
|
byte_we_var := "1100";
|
||
|
else
|
||
|
byte_we_var := "0011";
|
||
|
end if;
|
||
|
|
||
|
when MEM_WRITE8 =>
|
||
|
data_write_var := data_write(7 downto 0) & data_write(7 downto 0) &
|
||
|
data_write(7 downto 0) & data_write(7 downto 0);
|
||
|
bits := address_in(1 downto 0) xor ENDIAN_MODE;
|
||
|
case bits is
|
||
|
when "00" =>
|
||
|
byte_we_var := "1000";
|
||
|
when "01" =>
|
||
|
byte_we_var := "0100";
|
||
|
when "10" =>
|
||
|
byte_we_var := "0010";
|
||
|
when others =>
|
||
|
byte_we_var := "0001";
|
||
|
end case;
|
||
|
|
||
|
when others =>
|
||
|
end case;
|
||
|
|
||
|
if mem_source = MEM_FETCH then --opcode fetch
|
||
|
address_var := address_pc;
|
||
|
opcode_next := data_r;
|
||
|
mem_state_next := STATE_ADDR;
|
||
|
else
|
||
|
if mem_state_reg = STATE_ADDR then
|
||
|
if pause_in = '0' then
|
||
|
address_var := address_in(31 downto 2);
|
||
|
mem_state_next := STATE_ACCESS;
|
||
|
pause_var := '1';
|
||
|
else
|
||
|
address_var := address_pc;
|
||
|
byte_we_var := "0000";
|
||
|
end if;
|
||
|
else --STATE_ACCESS
|
||
|
if pause_in = '0' then
|
||
|
address_var := address_pc;
|
||
|
opcode_next := next_opcode_reg;
|
||
|
mem_state_next := STATE_ADDR;
|
||
|
byte_we_var := "0000";
|
||
|
else
|
||
|
address_var := address_in(31 downto 2);
|
||
|
byte_we_var := "0000";
|
||
|
end if;
|
||
|
end if;
|
||
|
end if;
|
||
|
|
||
|
if nullify_op = '1' and pause_in = '0' then
|
||
|
opcode_next := ZERO; --NOP after beql
|
||
|
end if;
|
||
|
|
||
|
if reset_in = '1' then
|
||
|
mem_state_reg <= STATE_ADDR;
|
||
|
opcode_reg <= ZERO;
|
||
|
next_opcode_reg <= ZERO;
|
||
|
address_reg <= ZERO(31 downto 2);
|
||
|
byte_we_reg <= "0000";
|
||
|
elsif rising_edge(clk) then
|
||
|
if pause_in = '0' then
|
||
|
address_reg <= address_var;
|
||
|
byte_we_reg <= byte_we_var;
|
||
|
mem_state_reg <= mem_state_next;
|
||
|
opcode_reg <= opcode_next;
|
||
|
if mem_state_reg = STATE_ADDR then
|
||
|
next_opcode_reg <= data_r;
|
||
|
end if;
|
||
|
end if;
|
||
|
end if;
|
||
|
|
||
|
opcode_out <= opcode_reg;
|
||
|
data_read <= data_read_var;
|
||
|
pause_out <= pause_var;
|
||
|
|
||
|
address_next <= address_var;
|
||
|
byte_we_next <= byte_we_var;
|
||
|
|
||
|
address <= address_reg;
|
||
|
byte_we <= byte_we_reg;
|
||
|
data_w <= data_write_var;
|
||
|
|
||
|
end process; --data_proc
|
||
|
|
||
|
end; --architecture logic
|