mirror of
git://projects.qi-hardware.com/nn-usb-fpga.git
synced 2025-01-10 07:00:14 +02:00
659 lines
50 KiB
Plaintext
659 lines
50 KiB
Plaintext
|
\chapter{Dise<73>o de Sistemas Embebidos}
|
|||
|
|
|||
|
\section{Definici<63>n}
|
|||
|
|
|||
|
Un Sistema Embebidos es un sistema de prop<6F>sito espec<65>fico en el cual, el computador es encapsulado completamente por el dispositivo que el controla. A diferencia de los computadores de prop<6F>sito general, un Sistema Embebido realiza tareas pre-definidas, lo cual permite su optimizaci<63>n, reduciendo el tama<6D>o y costo del producto \cite{Wik}
|
|||
|
|
|||
|
\section{Caracter<65>sticas}
|
|||
|
|
|||
|
\begin{itemize}
|
|||
|
\item Los sistemas embebidos son dise<73>ados para una aplicaci<63>n
|
|||
|
espec\'{\i}fica, es decir, estos sistemas realizan un grupo de funciones
|
|||
|
previamente definidasm y una vez el sistema es dise<73>ado, no se puede cambiar
|
|||
|
su funcionalidad. Por ejemplo, el control de un asensor siempre realizar\'a
|
|||
|
las mismas acciones durante su vida \'util.
|
|||
|
\item Debido a su interacci<63>n con el entorno los ES deben cumplir
|
|||
|
esctr<74>ctamente restricciones temporales. El t\'ermino {\textit{Sistemas
|
|||
|
de Tiempo Real}} es utilizado para enfatizar este aspecto.
|
|||
|
\item Los Sistemas Embebidos son heterog\'eneos, es decir, est\'an
|
|||
|
compuestos por componentes Hardware y Software. Los componentes Hardware,
|
|||
|
como ASICs y Dispositivos L\'ogicos Programables (PLD) proporcionan la
|
|||
|
velocidad de ejecuci\'on y el cosumo de potencia necesarios en algunas
|
|||
|
aplicaciones.
|
|||
|
\item Los Sitemas Embebidos tienen grandes requerimientos en t\'erminos de
|
|||
|
confiabilidad. Errores en aplicaciones como la aviaci\'on y el
|
|||
|
automovilismo, pueden tener consecuencias desastrosas.
|
|||
|
\end{itemize}
|
|||
|
|
|||
|
\section{Arquitectura}
|
|||
|
|
|||
|
Una arquitectura t<>pica para un Sistema Embebido se muestra en la Figura \ref{es_arch}; La cual integra un componente hardware, implementado ya sea en un PLD (CPLD, FPGA) o en un ASIC, conocido con el nombre de perif<69>ricos y un componente software (procesador o DSP) cap<61>z de ejecutar software, la parte del procesador est<73> dividida en la CPU (En algunos casos posee una cach<63>) y las unidades de Memoria.
|
|||
|
|
|||
|
|
|||
|
\begin{figure}
|
|||
|
\begin{center} \includegraphics[scale=.6]{./images/ES_Architecture} \end{center}
|
|||
|
\caption{Arquitectura de un Sistema Embebido}\label{es_arch}
|
|||
|
\end{figure}
|
|||
|
|
|||
|
|
|||
|
Al momento de dise<73>ar un Sistema Embebido encontramos las siguientes opciones:
|
|||
|
\begin{itemize}
|
|||
|
\item Componente HW y SW Integrado en un dispositivo semiconductor (SoC): En la actualidad existen muchas compa<70><61>as que fabrican procesadores de 32 bits integrados a una gran variedad de perif<69>ricos, lo cual simplifica el dise<73>o y reduce costos (menos componentes y menos <20>rea de circuito impreso) \footnote{http://www.sharpsma.com, http://www.atmel.com, http://www.cirrus.com, http://www.samsung.com, http://www.freescale.com, etc}.
|
|||
|
|
|||
|
\item Componente SW en un SoC y componente HW en una FPGA: Cuando no existen en el mercado SoC con la cantidad de perif<69>ricos requerida para una determinada aplicaci<63>n, es necesario recurrir a la utilizaci<63>n de dispositivos comerciales que implementen dicha operaci<63>n, en algunas ocaciones el perif<69>rico puede relizar funciones muy espec<65>ficas de modo que no existe en el mercado, la soluci<63>n es entonces implementar estos dispositivos en una FPGA, tambi<62>n se recomienda la utilizaci<63>n de FPGAs en sistemas que requieren una gran cantidad y variedad de perif<69>ricos ya que reduce la complejidad y costo del sistema.
|
|||
|
|
|||
|
\item Componente SW y HW en una FPGA: Esta es tal vez la opci<63>n m<>s econ<6F>mica y flexible, pero la de menor desempe<70>o, ya que al utilizar los recursos l<>gicos de la FPGA para la implementaci<63>n del procesador (softcore) la lngitud de los caminos de interconexi<78>n entre los bloques l<>gicos aumentan el retardo de las se<73>ales . Los procesadores \textit{softcore} m<>s populares en la actualidad son:
|
|||
|
|
|||
|
\begin{itemize}
|
|||
|
\item Microblaze de Xilinx\footnote{http://www.xilinx.com}
|
|||
|
\item Leon de Gaisler Research \footnote{http://www.gaisler.com/}
|
|||
|
\item LatticeMico32 de Lattice Semiconductors\footnote{http://www.latticesemi.com}
|
|||
|
\item OpenRisc \footnote{http://www.opencores.com}
|
|||
|
\end{itemize}
|
|||
|
|
|||
|
\end{itemize}
|
|||
|
|
|||
|
|
|||
|
\section{Metodolog<6F>a de Dise<73>o}
|
|||
|
|
|||
|
La Figura \ref{des_flow}, muestra un diagrama de flujo gen<65>rico para dise<73>o para sistemas embebidos {\cite{Cor05}}
|
|||
|
|
|||
|
\begin{figure}
|
|||
|
\begin{center} \includegraphics[scale=.55]{./images/design_flow} \end{center}
|
|||
|
\caption{Flujo de Dise<73>o de un Sistema Embebido}\label{des_flow}
|
|||
|
\end{figure}
|
|||
|
|
|||
|
|
|||
|
El proceso comienza con la {\textit{especificaci\'on del sistema}}, en este punto se describe la funcionalidad y se definen las restricciones f\'{\i}sicas, el\'ectricas y econ\'omicas. Esta especificaci\'on debe ser muy general y no deben existir dependencias (tecnol\'ogicas, metodol\'ogicas) de ning\'un tipo, se suele utilizar lenguajes de alto nivel, como UML, C++. La especificaci\'on puede ser verificada a trav\'es de una serie de pasos de an\'alisis cuyo objetivo es determinar la validez de los algor\'{\i}tmos seleccionados, por ejemplo, determinar si el algoritmo siempre termina, los resultados satisfacen las especificaciones. Desde el punto de vista de la re-utilizaci\'on, algunas partes del funcionamiento global deben tomarse de una librer\'{\i}a de algor\'{\i}tmos existentes.
|
|||
|
|
|||
|
Una vez definidas las especificaciones del sistema se debe realizar un modelamiento que permita extraer de estas la funcionalidad. El modelamiento es crucial en el dise<73>o ya que de \'el depende el paso existoso de la especificaci\'on a la implementaci\'on. Es importante definir que modelo matem\'atico debe soportar el entorno de dise<73>o. Los modelos m\'as utilizados son: M\'aquinas de estados finitos, diagramas de flujos de datos, Sistemad de Eventos Discretos y Redes de Petri. Cada modelo posee propiedades matem\'aticas que pueden explotarse de forma eficiente para responder preguntas sobre la funcionalidad del sistema sin llevar a cabo dispendiosas tareas de verificaci\'on. \ Todo modelo obtenido debe ser verificado para comprobar que cumple con las restricciones del sistema.
|
|||
|
|
|||
|
Una vez se ha obtenido el modelo del sistema se procede a determinar su {\textit{arquitectura}}, esto es, el n\'umero y tipo de componentes y su inter-conexi\'on. Este paso no es m\'as que una exploraci\'on del espacio de dise<73>o en b\'usqueda de soluciones que permitan la implementaci\'on de una funcionalidad dada, y puede realizarse con varios criterios en mente: Costos, confiabilidad, viabilidad comercial.
|
|||
|
|
|||
|
Utilizando como base la arquitectura obtenida en el paso anterior las tareas del modelo del sistemas son mapeadas dentro de los componentes. Esto es,
|
|||
|
asignaci\'on de funciones a los componentes de la arquitectura. Existen dos opciones a la hora de implementar las tareas o procesos:
|
|||
|
\begin{enumerate}
|
|||
|
\item Implementaci\'on Software: La tarea se va a ejecutar en un procesador.
|
|||
|
\item Implementaci\'on Hardware: La tarea se va a ejecutar en un dispositivo l<>gico programable.
|
|||
|
\end{enumerate}
|
|||
|
|
|||
|
Para cumplir las especificaciones del sistema algunas tareas deben ser implementadas en Hardware, esto con el f\'{\i}n de no ocupar al procesador en tareas c\'{\i}clicas, un ejemplo t\'{\i}pico de estas tareas es la generaci\'on de bases de tiempos. La decisi\'on de que tareas se implementan en SW y que tareas se implementan en HW recibe el nombre de {\textit{particionamiento}}, esta selecci\'on es fuertemente dependiente de restricciones econ\'omicas y temporales.
|
|||
|
|
|||
|
Las tareas Software deben compartir los recursos que existan en el sistema (procesador y memoria), por lo tanto se deben hacer decisiones sobre el orden de ejecuci\'on y la prioridad de estas. Este proceso recibe el nombre de {\textit{planificaci\'on}}. En este punto del dise<73>o el modelo debe incluir informaci\'on sobre el mapeo, el particionamiento y la planificaci\'on del sistema.
|
|||
|
|
|||
|
Las siguientes fases corresponden a la implementaci\'on del modelo, para esto las tareas hardware deben ser llevadas al dispositivo elegido (ASIC o FPGA) y
|
|||
|
se debe obtener el $''$ejecutable$''$ de las tareas software, este proceso recibe el nombre de {\textit{s\'{\i}ntesis}} HW y SW respectivamente, as\'{\i}
|
|||
|
mismo se deben sintetizar los mecanismos de comunicaci\'on.
|
|||
|
|
|||
|
El proceso de prototipado consiste en la realizaci\'on f\'{\i}sica del sistema, finalmente el sistema f\'{\i}sico debe someterse a pruebas para verificar que se cumplen con las especificaciones iniciales.
|
|||
|
|
|||
|
Como puede verse en el flujo de dise<73>o existen realimentaciones, estas realimentaciones permiten depurar el resultado de pasos anteriores en el caso de no cumplirse las especificaciones iniciales
|
|||
|
|
|||
|
|
|||
|
\section{Herramientas de Dise<73>o Software}
|
|||
|
|
|||
|
En el mercado existe una gran variedad de herramientas de desarrollo para Sistemas Embebidos, sin embargo, en este estudio nos centraremos en el uso de las herramientas de libre distribuci<63>n; esta elecci<63>n se debe a que la mayor<6F>a de los productos comerciales utilizan el toolchain de GNU\footnote{http://www.gnu.org} internamente y proporcionan un entorno gr<67>fico para su f<>cil manejo. Otro factor considerado a la hora de realizar nuestra elecci<63>n es el econ<6F>mico, ya que la mayor<6F>a de los productos comerciales son costosos y poseen soporte limitado. Por otro lado, el toolchain de GNU es utilizado ampliamente en el medio de los dise<73>adores de sistemas embebidos y se encuentra un gran soporte en m<>ltiples foros de discusi<73>n (ver Figura \ref{tools}).
|
|||
|
|
|||
|
\begin{figure}
|
|||
|
\begin{center} \includegraphics[scale=.7]{./images/embedded-linux-tool-trends-sm} \end{center}
|
|||
|
\caption{Tendencia de utilizaci<63>n de herramientas de desarrollo}\label{tools}
|
|||
|
\end{figure}
|
|||
|
|
|||
|
\subsection{Componentes del \textit{GNU toolchain} }
|
|||
|
|
|||
|
\subsubsection{GNU binutils\cite{A1}}
|
|||
|
Son una colecci<63>n de utilidades para archivos binarios y estan compuestas por:
|
|||
|
|
|||
|
\begin{itemize}
|
|||
|
\item \textbf{addr2line} Convierte direcciones de un programa en nombres de archivos y n<>meros de l<>nea. Dada una direcci<63>n y un ejecutable, usa la informaci<63>n de depuraci<63>n en el ejecutabe para determinar que nombre de atchivo y n<>mero de lpinea est<73> asociado con la direcci<63>n dada.
|
|||
|
\item \textbf{ar} Esta utilidad crea, modifica y extrae desde ficheros. Un fichero es una colecci<63>n de otros archivos en una estructura que hace posible obtener los archivos individuales miembros del archivo.
|
|||
|
\item \textbf{as} Utilidad que compila la salida del compilador de C (GCC).
|
|||
|
\item \textbf{c++filt} Este program realiza un mapeo inverso: Decodifica nombres de bajo-nivel en nombres a nivel de usuario, de tal forma que el linker pueda mantener estas funciones sobrecargadas (overloaded) ``from clashing''.
|
|||
|
\item \textbf{gasp} GNU Assembler Macro Preprocessor
|
|||
|
\item \textbf{ld} El \textit{linker} GNU combina un n<>mero de objetos y ficheros, re-localiza sus datos y los relaciona con referencias. Normalmente el <20>ltimo paso en la construcci<63>n de un nuevo programa compilado es el llamado a ld.
|
|||
|
\item \textbf{nm} Realiza un listado de s<>mbolos de archivos tipo objeto.
|
|||
|
\item \textbf{objcopy} Copia los contenidos de un archivo tipo objeto a otro. \textit{objcopy} utiliza la librer<65>a GNU BFD para leer y escribir el archivo tipo objeto. Permite esccribibr el archivo destino en un formato diferente al del archivo fuente.
|
|||
|
\item \textbf{objdump} Despliega informaci<63>n sobre archivos tipo objeto.
|
|||
|
\item \textbf{ranlib} Genera un <20>ndice de contenidos de un fichero, y lo almacena en <20>l.
|
|||
|
\item \textbf{readelf} Interpreta encabezados de un archivo ELF.
|
|||
|
\item \textbf{size} Lista el tama<6D>o de las secciones y el tama<6D>o total de un archivo tipo objeto.
|
|||
|
\item \textbf{strings} Imprime las secuencias de caracteres imprimibles de almenos 4 caracteres de longitud.
|
|||
|
\item \textbf{strip} Elimina todos los s<>mbolos de un archivo tipo objeto.
|
|||
|
|
|||
|
\end{itemize}
|
|||
|
|
|||
|
\subsubsection{GNU Compiler Collection\cite{Wik}}
|
|||
|
El \textit{GNU Compiler Collection} normalmente llamado GCC, es un grupo de compiladores de lenguajes de programaci<63>n producido por el proyecto GNU. Es el compilador standard para el software libre de los sistemas operativos basados en Unix y algunos propietarios como Mac OS de Apple.
|
|||
|
|
|||
|
\subsubsection{Lenguajes}
|
|||
|
GCC soporta los siguientes lenguajes:
|
|||
|
\begin{itemize}
|
|||
|
\item \textbf{ADA}
|
|||
|
\item \textbf{C}
|
|||
|
\item \textbf{C++}
|
|||
|
\item \textbf{Fortran}
|
|||
|
\item \textbf{Java}
|
|||
|
\item \textbf{Objective-C}
|
|||
|
\item \textbf{Objective-C++}
|
|||
|
\end{itemize}
|
|||
|
|
|||
|
\subsubsection{Arquitecturas}
|
|||
|
\begin{itemize}
|
|||
|
\item \textbf{Alpha}
|
|||
|
\item \textbf{ARM}
|
|||
|
\item \textbf{Atmel AVR}
|
|||
|
\item \textbf{Blackfin}
|
|||
|
\item \textbf{H8/300}
|
|||
|
\item \textbf{System/370, System/390}
|
|||
|
\item \textbf{IA-32 (x86) and x86-64}
|
|||
|
\item \textbf{IA-64 i.e. the "Itanium"}
|
|||
|
\item \textbf{Motorola 68000}
|
|||
|
\item \textbf{Motorola 88000}
|
|||
|
\item \textbf{MIPS}
|
|||
|
\item \textbf{PA-RISC}
|
|||
|
\item \textbf{PDP-11}
|
|||
|
\item \textbf{PowerPC}
|
|||
|
\item \textbf{SuperH}
|
|||
|
\item \textbf{SPARC}
|
|||
|
\item \textbf{VAX}
|
|||
|
\item \textbf{Renesas R8C/M16C/M32C}
|
|||
|
\item \textbf{MorphoSys}
|
|||
|
\end{itemize}
|
|||
|
Como puede verse GCC soporta una gran cantidad de lenguajes de programaci<63>n, sin embargo, en el presente estudio solo lo utilizaremos como herramienta de compilaci<63>n para C y C++. Una caracter<65>stica de resaltar de GCC es la gran cantidad de plataformas que soporta, esto lo hace una herramienta Universal para el desarrollo de sistemas embebidos, el c<>digo escrito en una plataforma (en un lenguaje de alto nivel) puede ser implementado en otra sin mayores cambios, esto elimina la dependencia entre el c<>digo fuente y el HW\footnote{Esto recibe el nombre de re-utilizaci<63>n de c<>digo}, lo cual no ocurre al utilizar lenguaje ensamblador.
|
|||
|
|
|||
|
Por otro lado, el tiempo requerido para realizar aplicaciones utilizando C o C++ disminuye, ya que no es necesario aprender las instrucciones en assembler de una plataforma determinada; adem<65>s, la disponibilidad de librer<65>as de m<>ltiples prop<6F>sitos reduce a<>n m<>s los tiempos de desarrollo, permitiendo de esta forma tener bajos tiempos \textit{time to market} y reducir de forma considerable el costo del desarrollo. Una consecuencia de esto se refleja en el n<>mero de desarrolladores en un grupo de trabajo, en la actualidad casi el 60\% de las empresas desarrolladoras de dispositivos embebidos tiene grupos con menos de 10 desarrolladores \ref{group}.
|
|||
|
|
|||
|
|
|||
|
\begin{figure}
|
|||
|
\begin{center} \includegraphics[scale=.2]{./images/vdc_embedded_dev_company_size} \end{center}
|
|||
|
\caption{N<>mero promedio de desarrolladores por compa<70><61>a. Fuente Venture Development Corp}\label{group}
|
|||
|
\end{figure}
|
|||
|
|
|||
|
\subsubsection{GNU Debugger}
|
|||
|
El depurador oficial de GNU (GDB), es un depurador que al igual que GCC tiene soporte para m<>ltiples lenguajes y plataformas. GDB permite al usuario monitorear y modificar las variables internas del programa y hacer llamado a funciones de forma independiente a la ejecuci<63>n normal del mismo. Adem<65>s, permite establecer sesiones remotas utilizando el puerto serie o TCP/IP. Aunque GDB no posee una interfaz gr<67>fica, se han desarrollado varios front-ends como DDD o GDB/Insight. A continuaci<63>n se muestra un ejemplo de una sesi<73>n con gdb.
|
|||
|
|
|||
|
\footnotesize
|
|||
|
\begin{lstlisting}[firstnumber=40]
|
|||
|
GNU gdb Red Hat Linux (6.3.0.0-1.21rh)
|
|||
|
Copyright 2004 Free Software Foundation, Inc.
|
|||
|
GDB is free software, covered by the GNU General Public License, and you are
|
|||
|
welcome to change it and/or distribute copies of it under certain conditions.
|
|||
|
Type "show copying" to see the conditions.
|
|||
|
There is absolutely no warranty for GDB. Type "show warranty" for details.
|
|||
|
This GDB was configured as "i386-redhat-linux-gnu"...Using host libthread_db
|
|||
|
library "/lib/libthread_db.so.1".
|
|||
|
|
|||
|
(gdb) run
|
|||
|
Starting program: /home/sam/programming/crash
|
|||
|
Reading symbols from shared object read from target memory...done.
|
|||
|
Loaded system supplied DSO at 0xc11000
|
|||
|
This program will demonstrate gdb
|
|||
|
|
|||
|
Program received signal SIGSEGV, Segmentation fault.
|
|||
|
0x08048428 in function_2 (x=24) at crash.c:22
|
|||
|
22 return *y;
|
|||
|
(gdb) edit
|
|||
|
(gdb) shell gcc crash.c -o crash -gstabs+
|
|||
|
(gdb) run
|
|||
|
The program being debugged has been started already.
|
|||
|
Start it from the beginning? (y or n) y
|
|||
|
warning: cannot close "shared object read from target memory": File in wrong format
|
|||
|
`/home/sam/programming/crash' has changed; re-reading symbols.
|
|||
|
Starting program: /home/sam/programming/crash
|
|||
|
Reading symbols from shared object read from target memory...done.
|
|||
|
Loaded system supplied DSO at 0xa3e000
|
|||
|
This program will demonstrate gdb
|
|||
|
24
|
|||
|
Program exited normally.
|
|||
|
(gdb) quit
|
|||
|
\end{lstlisting}
|
|||
|
|
|||
|
|
|||
|
|
|||
|
\subsubsection{C Libraries}
|
|||
|
Adicionalmente es necesario contar con una librer<65>a que proporcione las librer<65>as standard de C: stdio, stdlib, math; las m<>s utilizadas en sistemas embebidos son:
|
|||
|
|
|||
|
\begin{itemize}
|
|||
|
\item \textbf{glibc\footnote{http://www.gnu.org/software/libc/}} Es la librer<65>a C oficial del proyecto GNU. Uno de los inconvenientes al trabajar con esta librer<65>a en sistemas embebidos es que genera ejecutables de mayor tama<6D>o que los generados a partir de otras librer<65>as, lo cual no la hace muy atractiva para este tipo de aplicaciones.
|
|||
|
\item \textbf{uClibc\footnote{http://uclibc.org/}} Es una librer<65>a dise<73>ada especialmente para sistemas embebidos, es mucho m<>s peque<75>a que \textbf{glibc}.
|
|||
|
\item \textbf{newlib\footnote{http://sources.redhat.com/newlib/}} Al igual que \textbf{uClibc}, est<73> dise<73>ada para sistemas embebidos. El t<>pico ``Hello, world!'' ocupa menos de 30k en un entorno basado en newlib, mientras que en uno basado en glibc, puede ocupar 380k \cite{BG}.
|
|||
|
\item \textbf{diet libc\footnote{http://www.fefe.de/dietlibc/}} Es una versi<73>n de \textit{libc} optimizada en tama<6D>o, puede ser utilizada para crear ejecutables est<73>ticamente enlazados para linux en plataformas alpha, arm, hppa, ia64, i386, mips, s390, sparc, sparc64, ppc y x86\_64.
|
|||
|
\end{itemize}
|
|||
|
|
|||
|
|
|||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|||
|
% SECCION Obtenci<63>n y utilizaci<63>n del GNU toolchain
|
|||
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|||
|
|
|||
|
\section{Desarrollo Software}
|
|||
|
|
|||
|
El primer paso en nuestro estudio consiste en tener una cadena de herramientas funcional que soporte la familia de procesadores a utilizar. La arquitectura sobre la cual realizaremos nuestro estudio inicial es la ARM (Advanced Risc Machines), ya que la m<>s utilizada en la actualidad por los dise<73>adores de sistemas embebidos (ver figura \ref{arch}) y se encuentran disponibles una gran variedad de herramientas para esta arquitectura. Sin embargo, lo contenido en esta secci<63>n es aplicable a cualquier familia de procesadores soportada por la cadena de herrmientas GNU. Existen dos formas de obtener la cadena de herramientas GNU:
|
|||
|
|
|||
|
\begin{figure}
|
|||
|
\begin{center} \includegraphics[scale=.8]{./images/embedded-processor-trends-sm} \end{center}
|
|||
|
\caption{Tendencia del mercado de procesadores para sistemas embebidos. Fuente:\cite{Lin05} }\label{arch}
|
|||
|
\end{figure}
|
|||
|
|
|||
|
\begin{enumerate}
|
|||
|
\item Utilizar una distribuci<63>n precompilada: Esta es la via m<>s r<>pida, sin embargo, hay que tener cuidado al momento de instalarlas, ya que debe hacerse en un directorio con el mismo \textit{path} con el que fueron creadas. por ejemplo \textit{/usr/local/gnutools}; si esto no se cumple, las herramientas no funcionar<61>n de forma adecuada.
|
|||
|
\item Utilizar un script de compilaci<63>n: Existen disponibles en la red una serie de \textit{scripts} que permiten descargar, configurar, compilar e instalar la cadena de herramientas, la ventaja de utilizar este m<>todo es que es posible elegir las versiones de las herramientas instaladas, al igual que el directorio de instalaci<63>n. En este estudio utilizaremos los \textit{scripts} creados por Dan Kegel \cite{DK06}.
|
|||
|
\end{enumerate}
|
|||
|
|
|||
|
\subsection{Flujo de dise<73>o software}
|
|||
|
|
|||
|
En la figura \ref{toolchain_flow} se ilustra la secuencia de pasos que se realizan desde la creaci<63>n de un archivo de texto que posee el c<>digo fuente que implementa la funcionalidad de una tarea software utilizando un lenguaje de alto nivel como C o C++, hasta su programaci<63>n en una memoria permanente en la plataforma f<>sica. Los pasos necesarios para crear un archivo que pueda ser programado en dicha memoria son:
|
|||
|
|
|||
|
\begin{figure}
|
|||
|
\begin{center} \includegraphics[scale=.6]{./images/SW_design_flow} \end{center}
|
|||
|
\caption{Tendencia del mercado de procesadores para sistemas embebidos. Fuente:\cite{Lin05} }\label{toolchain_flow}
|
|||
|
\end{figure}
|
|||
|
|
|||
|
|
|||
|
\begin{enumerate}
|
|||
|
\item \textbf{Escritura del c<>digo fuente:} Creaci<63>n del c<>digo fuente en cualquier editor de texto utilizando un lenguaje de alto nivel como C o C++.
|
|||
|
|
|||
|
\item \textbf{Compilaci<63>n:} Utilizando un compilador (GCC en nuestro caso) se crea un \textit{objeto} que contiene las instrucciones en \textit{lenguaje de m<>quina} del procesador a utilizar (uno diferente al que realiza la compilaci<63>n que normalmente es de la familia x86); en este punto el compilador solo busca en los encabezados (\textit{headers}) la definici<63>n de una determinada funci<63>n, esto es, la forma en que debe ser utilizada, el tipo de datos y el n<>mero de par<61>metros con que debe ser invocada, por ejemplo, la funci<63>n \textit{printf} esta declarada en el archivo \textit{stdio.h} como: \textit{ int printf (const char *template, ...)}. Esta declaraci<63>n es utilizada por el compilador para verificar el correcto uso de esta funci<63>n.
|
|||
|
|
|||
|
\item \textbf{Enlazado:} En esta etapa se realizan dos tareas:
|
|||
|
\begin{enumerate}
|
|||
|
\item Se enlazan los archivos tipo objeto del proyecto, junto con librer<65>as precompiladas para el procesador de la plataforma, si una determinada funci<63>n no es definida en ninguna de estas librer<65>as, el \textit{enlazador} generar<61> un error y no se generar<61> el ejecutable.
|
|||
|
\item Se definen las posici<63>nes f<>sicas de las secciones que componen el archivo ejecutable (tipo ELF), esto se realiza a trav<61>s de un link de enlazado en el que se define de forma expl<70>cita su localizaci<63>n.
|
|||
|
\end{enumerate}
|
|||
|
|
|||
|
\item \textbf{Extracci<63>n del archivo de programaci<63>n} En algunas aplicaciones (cuando no se cuenta con un sistema operativo) es necesario extraer las secciones del ejecutable que residen en los medios de almacenamiento no vol<6F>til, que como veremos m<>s adelante representan el conjunto de instrucciones que debe ejecutar el procesador de la plataforma y las constantes del programa. Esto se realiza con la herramiento \textit{objcopy}, la cual, nos permite generar archivos en la mayor<6F>a de los formatos soportados por los programadores de memorias y procesadores, como S19 e Intel Hex.
|
|||
|
|
|||
|
\item \textbf{Descarga del programa a la plataforma}. Dependiendo de la plataforma existen varios m<>todos para descargar el archivo de programaci<63>n a la memoria de la plataforma:
|
|||
|
\begin{enumerate}
|
|||
|
\item Utilizando un \textit{loader}: El \textit{loader} es una aplicaci<63>n que reside en un medio de almacenamiento no vol<6F>til y permite la descarga de archivos utilizando el puerto serie, USB, o una interfaz de red.
|
|||
|
\item Utilizando el puerto JTAG: El puerto JTAG (Joint Test Action Group) proporciona una interfaz capaz de controlar los registros internos del procesador, y de esta forma, acceder a las memorias de la plataforma y ejecutar un programa residente en una determinada posici<63>n de memoria.
|
|||
|
\end{enumerate}
|
|||
|
|
|||
|
\item \textbf{Depuraci<63>n} Una vez se descarga la aplicaci<63>n a la plataforma es necesario someterla a una serie de pruebas con el f<>n de probar su correcto funcionamiento. Esto se puede realizar con el depurador GNU (GDB) y una interfaz de comunicaci<63>n que puede ser un puerto serie, USB o un adaptador de red.
|
|||
|
|
|||
|
\end{enumerate}
|
|||
|
|
|||
|
|
|||
|
\subsection{El formato \textbf{ELF}}
|
|||
|
|
|||
|
El formato ELF (\textit{Executable and Linkable Format}) Es un st<73>ndard para objetos, librer<65>as y ejecutables y es el formato que genera las herramientas GNU. Como puede verse en la figura \ref{elf1} est<73> compuesto por varias secciones (\textit{link view}) o segmentos (\textit{execution view}). Si un programador est<73> interesado en obtener informaci<63>n de secciones sobre tablas de s<>mbolos, c<>digo ejecutable espec<65>fico o informaci<63>n de enlazado din<69>mico debe utilizar \textit{link view}. Pero si busca informaci<63>n sobre segmentos, como por ejemplo, la localizaci<63>n de los segmentos \textit{text} o \textit{data} debe utilizar \textit{execution view}. El encabezado describe el layout del archivo, proporcionando informaci<63>n de la forma de acceder a las secciones \cite{MLH98}.
|
|||
|
|
|||
|
\begin{figure}
|
|||
|
\begin{center} \includegraphics[scale=.4]{./images/ELF_Link_exec1} \end{center}
|
|||
|
\caption{Formato ELF}\label{elf1}
|
|||
|
\end{figure}
|
|||
|
|
|||
|
Las secciones pueden almacenar c<>digo ejecutable, datos, informaci<63>n de enlazado din<69>mico, datos de depuraci<63>n, tablas de s<>mbolos,comentarios, tablas de strings, y notas. Las secciones m<>s importantes son las siguientes:
|
|||
|
|
|||
|
\begin{itemize}
|
|||
|
\item \textbf{.bss} Datos no inicializados. (RAM)
|
|||
|
\item \textbf{.comment} Informaci<63>n de la versi<73>n.
|
|||
|
\item \textbf{.data y .data1} Datos inicializados. (RAM)
|
|||
|
\item \textbf{.debug} Informaci<63>n para depuraci<63>n simb<6D>lica.
|
|||
|
\item \textbf{.dynamic} Informaci<63>n sobre enlace din<69>mico
|
|||
|
\item \textbf{.dynstr} Strings necesarios para el enlacedin<69>mico
|
|||
|
\item \textbf{.dynsym} Tabla de s<>mbolos utilizada para enlace din<69>mico.
|
|||
|
\item \textbf{.fini} C<>digo de terminaci<63>n de proceso.
|
|||
|
\item \textbf{.init} C<>digo de inicializaci<63>n de proceso.
|
|||
|
\item \textbf{.line} Informaci<63>n de n<>mero de l<>nea para depuraci<63>n simb<6D>lica.
|
|||
|
\item \textbf{.rodata y .rodta1} Datos de solo-lectura (ROM)
|
|||
|
\item \textbf{.shstrtab} Nombres de secciones.
|
|||
|
\item \textbf{.symtab} Tabla de s<>mbolos.
|
|||
|
\item \textbf{.text} Instrucciones ejecutables (ROM)
|
|||
|
\end{itemize}
|
|||
|
|
|||
|
Para aclarar un poco este concepto, escribamos una aplicaci<63>n sencilla:
|
|||
|
|
|||
|
\begin{lstlisting}
|
|||
|
#include <stdio.h>
|
|||
|
|
|||
|
int global;
|
|||
|
int global_1 = 1;
|
|||
|
|
|||
|
int main(void)
|
|||
|
{
|
|||
|
int i; // Variable no inicializada
|
|||
|
int j = 2; // Variable inicializada
|
|||
|
for(i=0; i<10; i++){
|
|||
|
printf("Printing %d\n", i*j); // Caracteres constantes
|
|||
|
j = j + 1;
|
|||
|
global = i;
|
|||
|
global_1 = i+j;
|
|||
|
}
|
|||
|
return 0;
|
|||
|
}
|
|||
|
\end{lstlisting}
|
|||
|
|
|||
|
Generemos el objeto compil<69>ndolo con el siguiente comando:
|
|||
|
\textit{arm-none-eabi-gcc -c hello.c}
|
|||
|
|
|||
|
Examinemos que tipo de secciones tiene este ejecutable
|
|||
|
\textit{arm-none-eabi-readelf -S hello.o}
|
|||
|
|
|||
|
\begin{lstlisting}
|
|||
|
Section Headers:
|
|||
|
[Nr] Name Type Addr Off Size ES Flg Lk Inf Al
|
|||
|
[ 0] NULL 00000000 000000 000000 00 0 0 0
|
|||
|
[ 1] .text PROGBITS 00000000 000034 00009c 00 AX 0 0 4
|
|||
|
[ 2] .rel.text REL 00000000 000484 000020 08 9 1 4
|
|||
|
[ 3] .data PROGBITS 00000000 0000d0 000004 00 WA 0 0 4
|
|||
|
[ 4] .bss NOBITS 00000000 0000d4 000000 00 WA 0 0 1
|
|||
|
[ 5] .rodata PROGBITS 00000000 0000d4 000010 00 A 0 0 4
|
|||
|
[ 6] .comment PROGBITS 00000000 0000e4 00004d 00 0 0 1
|
|||
|
[ 7] .ARM.attributes ARM_ATTRIBUTES 00000000 000131 00002e 00 0 0 1
|
|||
|
[ 8] .shstrtab STRTAB 00000000 00015f 000051 00 0 0 1
|
|||
|
[ 9] .symtab SYMTAB 00000000 000368 0000f0 10 10 11 4
|
|||
|
[10] .strtab STRTAB 00000000 000458 00002b 00 0 0 1
|
|||
|
Key to Flags:
|
|||
|
W (write), A (alloc), X (execute), M (merge), S (strings)
|
|||
|
I (info), L (link order), G (group), x (unknown)
|
|||
|
O (extra OS processing required) o (OS specific), p (processor specific)
|
|||
|
\end{lstlisting}
|
|||
|
|
|||
|
La secci<63>n \textit{.text}, como se dijo anteriormente contiene las instrucciones ejecutables, por esta raz<61>n se marca como ejecutable \textit{``X''} en la columna \textit{Flg}. Es posible ver las instrucciones que se ejecutan en esta secci<63>n:
|
|||
|
|
|||
|
\textit{arm-none-eabi-objdump -d -j .text hello.o}
|
|||
|
|
|||
|
\begin{lstlisting}
|
|||
|
00000000 <main>:
|
|||
|
0: e92d4800 stmdb sp!, {fp, lr}
|
|||
|
4: e28db004 add fp, sp, #4 ; 0x4
|
|||
|
8: e24dd008 sub sp, sp, #8 ; 0x8
|
|||
|
c: e3a03002 mov r3, #2 ; 0x2
|
|||
|
10: e50b3008 str r3, [fp, #-8]
|
|||
|
14: e3a03000 mov r3, #0 ; 0x0
|
|||
|
18: e50b300c str r3, [fp, #-12]
|
|||
|
1c: ea000013 b 70 <main+0x70>
|
|||
|
20: e51b200c ldr r2, [fp, #-12]
|
|||
|
24: e51b3008 ldr r3, [fp, #-8]
|
|||
|
28: e0030392 mul r3, r2, r3
|
|||
|
2c: e59f005c ldr r0, [pc, #92] ; 90 <.text+0x90>
|
|||
|
30: e1a01003 mov r1, r3
|
|||
|
34: ebfffffe bl 0 <printf>
|
|||
|
38: e51b3008 ldr r3, [fp, #-8]
|
|||
|
3c: e2833001 add r3, r3, #1 ; 0x1
|
|||
|
40: e50b3008 str r3, [fp, #-8]
|
|||
|
44: e59f2048 ldr r2, [pc, #72] ; 94 <.text+0x94>
|
|||
|
48: e51b300c ldr r3, [fp, #-12]
|
|||
|
4c: e5823000 str r3, [r2]
|
|||
|
50: e51b200c ldr r2, [fp, #-12]
|
|||
|
54: e51b3008 ldr r3, [fp, #-8]
|
|||
|
58: e0822003 add r2, r2, r3
|
|||
|
5c: e59f3034 ldr r3, [pc, #52] ; 98 <.text+0x98>
|
|||
|
60: e5832000 str r2, [r3]
|
|||
|
64: e51b300c ldr r3, [fp, #-12]
|
|||
|
68: e2833001 add r3, r3, #1 ; 0x1
|
|||
|
6c: e50b300c str r3, [fp, #-12]
|
|||
|
70: e51b300c ldr r3, [fp, #-12]
|
|||
|
74: e3530009 cmp r3, #9 ; 0x9
|
|||
|
78: daffffe8 ble 20 <main+0x20>
|
|||
|
7c: e3a03000 mov r3, #0 ; 0x0
|
|||
|
80: e1a00003 mov r0, r3
|
|||
|
84: e24bd004 sub sp, fp, #4 ; 0x4
|
|||
|
88: e8bd4800 ldmia sp!, {fp, lr}
|
|||
|
8c: e12fff1e bx lr
|
|||
|
\end{lstlisting}
|
|||
|
|
|||
|
La secci<63>n \textit{.data} mantiene las variables inicializadas, y contiene:
|
|||
|
|
|||
|
\textit{arm-none-eabi-objdump -d -j .data hello.o}
|
|||
|
|
|||
|
\begin{lstlisting}
|
|||
|
00000000 <global_1>:
|
|||
|
0: 01 00 00 00
|
|||
|
\end{lstlisting}
|
|||
|
|
|||
|
Como vemos, la secci<63>n \textit{.data} contiene \'unicamente el valor de inicializaci\'on de la variable \textit{global\_1} (1) y no muestra informaci<63>\'on acerca de la variable \textit{j}, esto se debe a que la informaci\'on est\'a en el \textit{stack} del proceso. Si observamos el contenido de la secci<63>n \textit{.text} observamos que esta variable es asignada en tiempo de ejecuci<63>n, en la l<>nea \textit{0c:} se ve la asignaci<63>n de esta variable.
|
|||
|
|
|||
|
\begin{lstlisting}
|
|||
|
0c: e3a03002 mov r3, #2 ; 0x2
|
|||
|
10: e50b3008 str r3, [fp, #-8]
|
|||
|
\end{lstlisting}
|
|||
|
|
|||
|
|
|||
|
La secci<63>n \textit{.bss} mantiene la informaci\'on de las variables no incializadas (En Linux todas las variables no inicializadas, se inicializadan en cero):
|
|||
|
|
|||
|
\textit{arm-none-eabi-objdump -d -j .bss hello}
|
|||
|
|
|||
|
\begin{lstlisting}
|
|||
|
000145c4 <global>:
|
|||
|
145c4: 00000000
|
|||
|
\end{lstlisting}
|
|||
|
|
|||
|
|
|||
|
La secci<63>n \textit{.rodata} mantiene los datos que no cambian durante la ejecuci<63>n del programa, es decir, de solo lectura, si examinamos esta secci<63>n obtenemos:
|
|||
|
|
|||
|
\textit{hexdump -C hello.o | grep -i 000000d0} (la secci<63>n \textit{.rodata} comienza en la posici<63>n de memoria 0xd4)
|
|||
|
|
|||
|
|
|||
|
\begin{lstlisting}
|
|||
|
000000d0 01 00 00 00 50 72 69 6e 74 69 6e 67 20 25 64 0a |....Printing %d.|
|
|||
|
000000e0 00 00 00 00 00 47 43 43 3a 20 28 43 6f 64 65 53 |.....GCC: (CodeS|
|
|||
|
\end{lstlisting}
|
|||
|
|
|||
|
En el contenido de esta secci<63>n aparece la cadena de caracteres \textit{Printing \%d\\n}, es decir, los datos que no cambian durante la ejecuci<63>n.
|
|||
|
|
|||
|
|
|||
|
\subsection{Herramienta de compilaci<63>n make}
|
|||
|
Como pudo verse en la secci<63>n es necesario realizar una serie de pasos para poder descargar una aplicaci<63>n a una plataforma embebida. Debido a que las herramientas GNU solo poseen entrada por consola, es necesario esribir una serie de comandos cada vez que se realiza un cambio en el c<>digo fuente, lo cual resulta poco pr<70>ctico. Para realizar este proceso de forma autom<6F>tica se cre<72> la herramienta \textit{make}, la cual recibe como entrada un archivo que normalmente tiene el nombre \textit{Makefile} o \textit{makefile} y determina que archivos han sido modificados desde la <20>ltima compilaci<63>n y ejecuta los comandos necesarios para recompilarlos. Un ejemplo de este tipo de archivo se muestra a continuaci<63>n:
|
|||
|
|
|||
|
\begin{lstlisting}[numbers=left]
|
|||
|
SHELL = /bin/sh
|
|||
|
|
|||
|
basetoolsdir = /home/at91/gcc-3.4.5-glibc-2.3.6/arm-softfloat-linux-gnu
|
|||
|
bindir = ${basetoolsdir}/bin
|
|||
|
libdir = ${basetoolsdir}/lib/gcc/arm-softfloat-linux-gnu/3.4.5
|
|||
|
|
|||
|
CC = arm-softfloat-linux-gnu-gcc
|
|||
|
AS = arm-softfloat-linux-gnu-as
|
|||
|
LD = arm-softfloat-linux-gnu-ld
|
|||
|
OBJCOPY = arm-softfloat-linux-gnu-objcopy
|
|||
|
|
|||
|
CFLAGS =-mcpu=arm920t -I. -Wall
|
|||
|
LDFLAGS =-L${libdir} -l gcc
|
|||
|
|
|||
|
OBJS = \
|
|||
|
main.o \
|
|||
|
debug_io.o \
|
|||
|
at91rm9200_lowlevel.o \
|
|||
|
p_string.o
|
|||
|
|
|||
|
ASFILES = arm_init.o
|
|||
|
|
|||
|
LIBS=${libdir}/
|
|||
|
|
|||
|
all: hello_world
|
|||
|
|
|||
|
hello_world: ${OBJS} ${ASFILES} ${LIBS}
|
|||
|
${LD} -e 0 -o hello_world.elf -T linker.cfg ${ASFILES} ${OBJS} ${LDFLAGS}
|
|||
|
${OBJCOPY} -O binary hello_world.elf hello_world.bin
|
|||
|
|
|||
|
clean:
|
|||
|
rm -f *.o *~ hello_world.*
|
|||
|
|
|||
|
PREPROCESS.c = $(CC) $(CPPFLAGS) $(TARGET_ARCH) -E -Wp,-C,-dD,-dI
|
|||
|
|
|||
|
%.pp : %.c FORCE
|
|||
|
$(PREPROCESS.c) $< > $@
|
|||
|
\end{lstlisting}
|
|||
|
|
|||
|
En las l<>neas 3-5 se definen algunas variables globales que ser<65>n utilizadas a lo largo del archivo; en las l<>neas 7 - 10 se definen las herramientas de compilaci<63>n a utilizar, espec<65>ficamente el compilador C (CC), el ensamblador (AS), el enlazador (LD) y la utilidad objcopy. A partir de la l<>nea 15 se definen los objetos que forman parte del proyecto, en este caso: \textit{main.o, debug\_io.o, at91rm9200\_lowlevel.o y p\_string.o}; en la l<>nea 21 se definen los archivos en assembler que contiene el proyecto, para este ejemplo \textit{arm\_init.o}. Las l<>neas 12 y 13 definen dos variables especiales que se pasan directamente al compilador C (CFLAGS) y al enlazador (LDFLAGS) y definen par<61>metros de comportamiento de estas herramientas.
|
|||
|
|
|||
|
\begin{lstlisting}
|
|||
|
CFLAGS =-mcpu=arm920t -I. -Wall
|
|||
|
\end{lstlisting}
|
|||
|
|
|||
|
El par<61>metro \textit{-mcpu} le indica al compilador C para arquitecturas \textit{ARM} que utilice la familia \textit{arm920}; el par<61>metro \textit{-I} le indica un directorio donde puede buscar los encabezados, en este caso el caracter "." le indica que busque en el mismo sitio donde se encuentran los archivos fuente; el par<61>metro \textit{-Wall} le indica que imprima todos los mensajes de errores y advertencias.
|
|||
|
|
|||
|
\begin{lstlisting}
|
|||
|
LDFLAGS =-L${libdir} -l gcc
|
|||
|
\end{lstlisting}
|
|||
|
|
|||
|
El par<61>metro \textit{-L} le indica al enlazador la ruta del directorio donde se encuentran las librer<65>as, en este ejemplo apunta a la variable textit{libdir} que se encuentra declarado como \textit{\${basetoolsdir}/lib/gcc/arm-softfloat-linux-gnu/3.4.5}; el par<61>metro \textit{-l} le indica al enlazador que debe utilizar la librer<65>a \textit{gcc} que se encuentra en el directorio definido previamente. En realidad el archivo de la librer<65>a tienen el nombre \textit{libgcc.a}, pero como todas las librer<65>as tienen el nombre \textit{libXXXX.a} se eliminan el encabezado y la extensi<73>n del archivo.
|
|||
|
|
|||
|
|
|||
|
En las l<>neas 25, 27 y 31 aparecen unas etiquetas de la forma: \textit{nombre:} estos labels permiten ejecutar de forma independiente el conjunto de instrucciones asociadas a ellas, por ejemplo, si se ejecuta:
|
|||
|
\\ \bigskip
|
|||
|
\textit{make clean}\\ \bigskip
|
|||
|
make ejecutar<61> el comando:\\ \bigskip
|
|||
|
\textit{rm -f *.o *~ hello\_world.*}
|
|||
|
|
|||
|
Observemos los comandos asociados a la etiqueta \textit{hello\_world:} En la misma l<>nea aparecen \textit{\${OBJS} \${ASFILES} \${LIBS}} esto le indica a la herramienta \textit{make} que antes de ejecutar los comandos asociados a este label, debe realizar las acciones necesarias para generar \textit{\${OBJS} \${ASFILES} \${LIBS}} o lo que es lo mismo: \textit{main.o, debug\_io.o, at91rm9200\_lowlevel.o, p\_string.o, arm\_init.o y libgcc.a}. Para esto, \textit{make} tiene predefinidas una serie de reglas para compilar los archivos .c la regla es de la forma:
|
|||
|
|
|||
|
\begin{lstlisting}
|
|||
|
|
|||
|
.c.o:
|
|||
|
$(CC) $(CFLAGS) -c $<
|
|||
|
.c:
|
|||
|
$(CC) $(CFLAGS) $@.c $(LDFLAGS) -o $@
|
|||
|
|
|||
|
\end{lstlisting}
|
|||
|
|
|||
|
Lo cual le indica a la herramienta make que para generar un archivo \textit{.o} a partir de uno \textit{.c} es necesario ejecutar \textit{\$(CC) \$(CFLAGS) -c \$<}; de aqui la importancia de definir bien la variable de entorno \textit{CC} cuando trabajamos con compiladores cruzados\footnote{Un compilador cruzado genera c<>digo para una plataforma diferente en la que se est<73> ejecutando, por ejemplo, genera ejecutables para ARM pero se ejecuta en un x86}. Hasta este punto al ejecutar el comando: \textit{make hello\_world}, \textit{make} realizar<61>a las siguientes operaciones: \\
|
|||
|
|
|||
|
\begin{lstlisting}
|
|||
|
arm-softfloat-linux-gnu-gcc -mcpu=arm920t -I. -Wall -c -o main.o main.c
|
|||
|
arm-softfloat-linux-gnu-gcc -mcpu=arm920t -I. -Wall -c -o debug_io.o debug_io.c
|
|||
|
arm-softfloat-linux-gnu-gcc -mcpu=arm920t -I. -Wall -c -o at91rm9200_lowlevel.o at91rm9200_lowlevel.c
|
|||
|
arm-softfloat-linux-gnu-gcc -mcpu=arm920t -I. -Wall -c -o p_string.o p_string.c
|
|||
|
arm-softfloat-linux-gnu-as -o arm_init.o arm_init.s
|
|||
|
\end{lstlisting}
|
|||
|
|
|||
|
En las l<>neas 28 se realiza el proceso de enlazado; al \textit{enlazador} se le pasan los par<61>metros:
|
|||
|
\begin{itemize}
|
|||
|
\item \textbf{-e 0}: Punto de entrada , utiliza la direcci<63>n de memoria 0 como punto de entrada.
|
|||
|
\item \textbf{-o hello\_world.elf}: Nombre del archivo de salida \textit{hello\_world}
|
|||
|
\item \textbf{-T linker.cfg}: Utilice el archivo de enlace \textit{linker.cfg} para definir las posiciones de memoria de las secciones del ejecutable.
|
|||
|
\item \textbf{\${ASFILES} \${OBJS} \${LDFLAGS}}: Lista de objetos y librer<65>as para crear el ejecutable.
|
|||
|
\end{itemize}
|
|||
|
|
|||
|
|
|||
|
En la l<>nea 29 se utiliza la herramienta \textit{objcopy} para generar un archivo binario (\textit{-O binary}) con la informaci<63>n necesaria para cargar en una memoria no vol<6F>til.
|
|||
|
|
|||
|
|
|||
|
\subsection{Archivo de enlace}
|
|||
|
|
|||
|
Como vimos anteriormente, el enlazador o \textit{linker} es el encargado de agrupar todos los archivos objeto \textit{.o}, y las librer<65>as necesarias para crear el ejecutable, adicionalmente, permite definir donde ser<65>n ubicados los diferentes segmentos del archivo ELF en un archivo de enlace \textit{linker script}. De esta forma podemos ajustar el ejecutable a plataformas con diferentes configuraciones de memoria, lo que proporciona un grado mayor de flexibilidaad de la cadena de herramientas GNU. Cuando se dispone de un sistema operativo como Linux no es necesario definir este archivo, ya que el sistema operativo se encarga del manejo de las diferentes secciones, sin embargo, es necesario tenerlo presente ya que como veremos m<>s adelante existe un momento en el que el sistema operativo no ha sido cargado en la plataforma y las aplicaciones que se ejecuten deben proporcionar esta informaci<63>n. A continuaci<63>n se muestra un ejemplo de este archivo:
|
|||
|
|
|||
|
\begin{lstlisting}
|
|||
|
/* identify the Entry Point (_vec_reset is defined in file crt.s) */
|
|||
|
ENTRY(_vec_reset)
|
|||
|
|
|||
|
/* specify the memory areas */
|
|||
|
MEMORY
|
|||
|
{
|
|||
|
flash : ORIGIN = 0, LENGTH = 256K /* FLASH EPROM */
|
|||
|
ram : ORIGIN = 0x00200000, LENGTH = 64K /* static RAM area */
|
|||
|
}
|
|||
|
|
|||
|
/* define a global symbol _stack_end */
|
|||
|
_stack_end = 0x20FFFC;
|
|||
|
|
|||
|
/* now define the output sections */
|
|||
|
SECTIONS
|
|||
|
{
|
|||
|
. = 0; /* set location counter to address zero */
|
|||
|
.text : /* collect all sections that should go into FLASH after startup */
|
|||
|
{
|
|||
|
*(.text) /* all .text sections (code) */
|
|||
|
*(.rodata) /* all .rodata sections (constants, strings, etc.) */
|
|||
|
*(.rodata*) /* all .rodata* sections (constants, strings, etc.) */
|
|||
|
*(.glue_7) /* all .glue_7 sections (no idea what these are) */
|
|||
|
*(.glue_7t) /* all .glue_7t sections (no idea what these are) */
|
|||
|
_etext = .; /* define a global symbol _etext just after the last code byte */
|
|||
|
} >flash /* put all the above into FLASH */
|
|||
|
|
|||
|
.data : /* collect all initialized .data sections that go into RAM */
|
|||
|
{
|
|||
|
_data = .; /* create a global symbol marking the start of the .data section */
|
|||
|
*(.data) /* all .data sections */
|
|||
|
_edata = .; /* define a global symbol marking the end of the .data section */
|
|||
|
} >ram AT >flash /* put all the above into RAM (but load the LMA initializer copy into FLASH) */
|
|||
|
|
|||
|
.bss : /* collect all uninitialized .bss sections that go into RAM */
|
|||
|
{
|
|||
|
_bss_start = .; /* define a global symbol marking the start of the .bss section */
|
|||
|
*(.bss) /* all .bss sections */
|
|||
|
} >ram /* put all the above in RAM (it will be cleared in the startup code */
|
|||
|
. = ALIGN(4); /* advance location counter to the next 32-bit boundary */
|
|||
|
_bss_end = . ; /* define a global symbol marking the end of the .bss section */
|
|||
|
}
|
|||
|
_end = .; /* define a global symbol marking the end of application RAM */
|
|||
|
\end{lstlisting}
|
|||
|
|
|||
|
En las primeras l<>neas del archivo aparece la declaraci<63>n de las memorias de la plataforma, en este ejemplo tenemos una memoria RAM de 64kB que comienza en la posici<63>n de memoria 0x00200000 y una memoria flash de 256k que comienza en la posici<63>n 0x0. A continuacion se definen las secciones y el lugar donde ser<65>n almacenadas; En este caso, las secciones \textit{.text} (c<>digo ejecutable) y \textit{.rodata} (datos de solo lectura) se almacenan en una memoria no vol<6F>til la flash. Cuando el sistema sea energizado el procesador ejecutar<61> el c<>digo almacenado en su memoria no vol<6F>til. Las secciones \textit{.data} (variables inicializadas) y \textit{.bss} (variables no inicializadas) se almacenar<61>n en la memoria vol<6F>til RAM, ya que el acceso a las memorias no vol<6F>tiles son m<>s lentas y tienen ciclos de lectura/escritura finitos.
|
|||
|
|
|||
|
\section{Herramientas hardware}
|
|||
|
En esta subsecci<63>n se realizar<61> una breve descripci<63>n de los dispositivos semiconductores m<>s utilizados para la implementaci<63>n de dispositivos digitales, esto, con el f<>n de determinar el estado actual de la industria de los semiconductores y entender los componentes b<>sicos con los que se pueden implementar dispositivos digitlaes modernos.
|
|||
|
|
|||
|
\subsubsection{SoC}
|
|||
|
|
|||
|
La Figura \ref{at91rm} muestra la arquitectura de un SoC actual, espec<65>ficamente del AT91RM920 de Atmel. En este diagrama podemos observar el n<>cleo central un procesador ARM920T de 180MHz y los perif<69>ricos asociados a <20>l. En la actualidad podemos encontrar una gran variedad de SoC dise<73>ados para diferentes aplicaciones: Multimedia, Comunicaciones, Asistentes Digitales; los perif<69>ricos incluidos en cada SoC buscan minimizar el n<>mero de componentes externos, y de esta forma reducir los costos. Este SoC en particular fu<66> uno de los primeros que dise<73>o ATMEL y est<73> enfocado a tareas en las que se requiere una conexi<78>n de red. La arquitectura de estos SoC evoluciona muy r<>pido acomod<6F>ndose a los requerimientos de nuevas aplicaciones, b<>sicamente, los cambios se producen en la velocidad del procesador central y la adici<63>n de perif<69>ricos que permiten el control directo de nuevos perif<69>ricos, como por ejemplo, la adici<63>n de controladores de pantallas de cristal l<>quido o salidas de video. Dentro de estos perif<69>ricos encontramos:
|
|||
|
\begin{itemize}
|
|||
|
\item Controlador para memorias: NAND flash, DataFlash, SDRAM, SD/MMC
|
|||
|
\item Puerto USB 2.0 host.
|
|||
|
\item Puerto I2C
|
|||
|
\item Interfaz Ethernet 10/100.
|
|||
|
\item Interfaz high speed USB 2.0
|
|||
|
\item Puertos SPI.
|
|||
|
\item Puertos seriales (RS232).
|
|||
|
\item Soporte JTAG.
|
|||
|
\item Interf<72>z de Bus externo (EBI).
|
|||
|
\item Controlador de LCD.
|
|||
|
\item
|
|||
|
\end{itemize}
|
|||
|
|
|||
|
\begin{figure}
|
|||
|
\begin{center} \includegraphics[scale=.7]{./images/at91rm9200} \end{center}
|
|||
|
\caption{SoC AT91RM9200 fuente: Hoja de Especificaciones AT91RM9200, ATMEL} \label{at91rm}
|
|||
|
\end{figure}
|
|||
|
|
|||
|
Existen una serie de perif<69>ricos que son indispensables en todo Sistema Embebido, los cuales facilitan la programaci<63>n de aplicaciones y la depuraci<63>n de las mismas. A continuaci<63>n se realizar<61> una descripci<63>n de los diferentes perif<69>ricos que se encuentran disponibles en este SoC, indicando los que fueron utilizados en la plataforma de desarrollo.
|
|||
|
|
|||
|
\subsubsection{Memorias Vol<6F>tiles}
|
|||
|
|
|||
|
Como se estudi<64> anteriormente existen secciones del ejecutable que deben ser almacenadas en memorias vol<6F>tiles o en memorias no vol<6F>tiles. Debido a esto la mayor<6F>a de los SoC incluyen perif<69>ricos dedicados a controlar diferentes tipos de memoria, las memorias vol<6F>tiles son utilizadas como memoria de acceso aleatorio (RAM) gracias a su bajo tiempo de accesso y al ilimitado n<>mero de ciclos de lectura/escritura.
|
|||
|
|
|||
|
El tipo de memoria m<>s utilizado en los sistemas embebidos actuales es la memoria SDRAM; la cual est<73> organizada como una matriz de celdas, con un n<>mero de bits dedicados al direccionamiento de las filas y un n<>mero dedicado a direccionar columnas (ver Figura \ref{sdram_basics}).
|
|||
|
|
|||
|
\begin{figure}
|
|||
|
\begin{center} \includegraphics[scale=.6]{./images/sdram_basics} \end{center}
|
|||
|
\caption{Diagrama de Bloques de una memoria SDRAM fuente: Hoja de Especificaciones MT48LC16M16, Micron Technology} \label{sdram_basics}
|
|||
|
\end{figure}
|
|||
|
|
|||
|
Un ejemplo simplificado de una operaci<63>n de lectura es el siguiente: Una posici<63>n de memoria se determina colocando la direcci<63>n de la fila y la de la columna en las l<>neas de direcci<63>n de fila y columna respectivamente, un tiempo despu<70>s el dato almacenado aparecer<65> en el bus de datos. El procesador coloca la direcci<63>n de la fila en el bus de direcciones y despu<70>s activa la se<73>al \textit{RAS} (Row Access Strobe). Despu<70>s de un retardo de tiempo predeterminado para permitir que el circuito de la SDRAM capture la direcci<63>n de la fila, el procesador coloca la direcci<63>n de la columna en el bus de direcciones y activa la se<73>al \textit{CAS} (Column Access Strobe). Una celda de memoria SDRAM esta compuesta por un transistor y un condensador; el transistor suministra la carga y el condensador almacena el estado de cada celda, esta carga en el condensador desaparece con el tiempo, raz<61>n por la cual es necesario recargar estos condensadores peri<72>dicamente, este proceso recibe el nombre de \textit{Refresco}. Un ciclo de refresco es un ciclo especial en el que no se escribe ni se lee informaci<63>n, solo se recargan los condensadores para mantener la informaci<63>n. El perif<69>rico que controla la SDRAM est<73> encargado de garantizar los ciclos de refresco de acuerdo con los requerimientos de la SDRAM \cite{CH06}.
|
|||
|
|
|||
|
\subsubsection{Memorias No Vol<6F>tiles}
|
|||
|
La memorias no vol<6F>tiles almacenan por largos per<65>odos de tiempo informaci<63>n necesaria para la operaci<63>n de un Sistema Embebido, pueden ser vistos como discos duros de estado s<>lido; existen dos tipos de memoria las memorias NOR y las NAND; las dos poseen la capacidad de ser escritas y borradas utilizando control de software, con lo que no es necesario utilizar programadores externos y puedens er modificadas una vez instaladas en el circuito integrado. Una desventaja de estas memorias es que los tiempos de escritura y borrado son muy largos en comparaci<63>n con los requeridos por las memorias RAM.
|
|||
|
|
|||
|
Las memorias NOR poseen buses de datos y direcci<63>n, con lo que es posible acceder de forma f<>cil a cada byte almacenado en ella. Los bits datos pueden ser cambiados de 0 a 1 utilizando el control de software un byte a la vez, sin embargo, para cambiar un bit de 1 a 0 es necesario borrar una serie de unidades de borrado que reciben el nombre de bloques, lo que permite reducir el tiempo de borrado de la memoria. Debido a que el borrado y escritura de una memoria ROM se puede realizar utilizando el control software (ver Figura \ref{nor_prog}) no es necesario contar con un perif<69>rico especializado para su manejo.
|
|||
|
|
|||
|
\begin{figure}
|
|||
|
\begin{center} \includegraphics[scale=.6]{./images/nor_prog} \end{center}
|
|||
|
\caption{Ciclos de escritura y borrado de una memoria flash NOR} \label{nor_prog}
|
|||
|
\end{figure}
|
|||
|
|
|||
|
Las memorias NOR son utilizadas en aplicaciones donde se necesiten altas velocidades de lectura y baja densidad, debido a que los tiempos de escritura y lectura son muy grandes se utilizan como memorias ROM. Las memorias NAND disminuyen los tiempos de escritura y aumentan la capacidad de almacenamiento, ideales para aplicaciones donde se requiera almacenamiento de informaci<63>n. Adicionalmente las memorias NAND consumen menos potencia que las memorias NAND, por esta raz<61>n este tipo de memorias son utilizadas en casi todos los dispositivos de almacenamiento modernos como las memorias SD y las memorias USB, los cuales integran una memoria NAND con un circuito encargado de controlarlas e implementar el protocolo de comunicaci<63>n. A diferencia de las flash tipo NOR, los dispositivos NAND se acceden de forma serial utilizando interfaces complejas; su operaci<63>n se asemeja a un disco duro tradicional. Se accede a la informaci<63>n utilizando bloques (m<>s peque<75>os que los bloques NOR). Los ciclos de escritura de las flash NAND son mayores en un orden de magnitud que los de las memorias NOR.
|
|||
|
|
|||
|
Un problema al momento de trabajar con las memorias tipo NAND es que requieren el uso de un \textit{manejo de bloques defectuosos}, esto es necesario ya que las celdas de memoria pueden da<64>arse de forma espont<6E>nea durante la operaci<63>n normal. Debido a esto se debe tener un determinado n<>mero de bloques que se encargen de almacenar tablas de mapeo para manejar los bloques defectuosos; o puede hacerse un chequeo en cada inicializaci<63>n del sistema de toda la RAM para actualizar esta lista de sectores defectuosos. El algoritmo de ECC (Error-Correcting Code) debe ser cap<61>z de corregir errores tan peque<75>os como un bit de cada 2048 bits, hasta 22 bits de cada 2048. Este algor<6F>tmo es capaz de detectar bloques defectuosos en la fase de programac<61><63>n comparando la informaci<63>n almacenada con la que debe ser almacenada (verificaci<63>n), si encuentra un error marca el bloque como defectuoso y utiliza un bloque sin defactos para almacenar la informaci<63>n.
|
|||
|
|
|||
|
La tabla \ref{flash_comp} resume las principales caracter<65>sticas de los diferentes tipos de memoria flash.
|
|||
|
|
|||
|
\begin{center}
|
|||
|
\begin{table}[ht]
|
|||
|
\begin{tabular}{|l|c|c|c|}
|
|||
|
\hline
|
|||
|
& \textbf{SLC NAND} & \textbf{MLC NAND} & MLC NOR \\ \hline
|
|||
|
Densidad & 512Mbits - 4GBits & 1Gbits - 16GBits & 16MBits - 1GBit \\ \hline
|
|||
|
Velocidad de Lectura & 24MB/s & 18.6MB/s & 103MB/s \\ \hline
|
|||
|
Velocidad de escritura& 8 MB/s & 2.4MB/s & 0,47MB/s \\ \hline
|
|||
|
Tiempo de borrado & 2ms & 2ms & 900ms \\ \hline
|
|||
|
Interfaz & Acceso Indirecto & Acceso Indirecto & Acceso Aleatorio\\ \hline
|
|||
|
Aplicaci<63>n & Almacenamiento & Almacenamiento & Solo lectura \\ \hline
|
|||
|
\end{tabular}
|
|||
|
\caption{Cuadro de comparaci<63>n de las memorias flash NAND y NOR} \label{flash_comp}
|
|||
|
\end{table}
|
|||
|
\end{center}
|
|||
|
|
|||
|
Adicionalmente, se encuentran dispoibles las memorias DATAFLASH, estos dispositivos son b<>sicamente una memoria flash tipo NOR con una interfaz SPI, permite una velocidad de lectura de hasta 66MHz utilizando solamente 4 pines para la comunicaci<63>n con el procesador.
|
|||
|
|