1
0
mirror of git://projects.qi-hardware.com/nn-usb-fpga.git synced 2024-12-12 23:34:06 +02:00
nn-usb-fpga/plasma/tools/mlite.c

1000 lines
28 KiB
C
Raw Normal View History

2010-04-22 04:01:38 +03:00
/*-------------------------------------------------------------------
-- TITLE: Plasma CPU in software. Executes MIPS(tm) opcodes.
-- AUTHOR: Steve Rhoads (rhoadss@yahoo.com)
-- DATE CREATED: 1/31/01
-- FILENAME: mlite.c
-- PROJECT: Plasma CPU core
-- COPYRIGHT: Software placed into the public domain by the author.
-- Software 'as is' without warranty. Author liable for nothing.
-- DESCRIPTION:
-- Plasma CPU simulator in C code.
-- This file served as the starting point for the VHDL code.
-- Assumes running on a little endian PC.
--------------------------------------------------------------------*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include <assert.h>
//#define ENABLE_CACHE
#define SIMPLE_CACHE
#define MEM_SIZE (1024*1024*2)
#define ntohs(A) ( ((A)>>8) | (((A)&0xff)<<8) )
#define htons(A) ntohs(A)
#define ntohl(A) ( ((A)>>24) | (((A)&0xff0000)>>8) | (((A)&0xff00)<<8) | ((A)<<24) )
#define htonl(A) ntohl(A)
#ifndef WIN32
//Support for Linux
#define putch putchar
#include <termios.h>
#include <unistd.h>
void Sleep(unsigned int value)
{
usleep(value * 1000);
}
int kbhit(void)
{
struct termios oldt, newt;
struct timeval tv;
fd_set read_fd;
tcgetattr(STDIN_FILENO, &oldt);
newt = oldt;
newt.c_lflag &= ~(ICANON | ECHO);
tcsetattr(STDIN_FILENO, TCSANOW, &newt);
tv.tv_sec=0;
tv.tv_usec=0;
FD_ZERO(&read_fd);
FD_SET(0,&read_fd);
if(select(1, &read_fd, NULL, NULL, &tv) == -1)
return 0;
//tcsetattr(STDIN_FILENO, TCSANOW, &oldt);
if(FD_ISSET(0,&read_fd))
return 1;
return 0;
}
int getch(void)
{
struct termios oldt, newt;
int ch;
tcgetattr(STDIN_FILENO, &oldt);
newt = oldt;
newt.c_lflag &= ~(ICANON | ECHO);
tcsetattr(STDIN_FILENO, TCSANOW, &newt);
ch = getchar();
//tcsetattr(STDIN_FILENO, TCSANOW, &oldt);
return ch;
}
#else
//Support for Windows
#include <conio.h>
extern void __stdcall Sleep(unsigned long value);
#endif
#define UART_WRITE 0x20000000
#define UART_READ 0x20000000
#define IRQ_MASK 0x20000010
#define IRQ_STATUS 0x20000020
#define CONFIG_REG 0x20000070
#define MMU_PROCESS_ID 0x20000080
#define MMU_FAULT_ADDR 0x20000090
#define MMU_TLB 0x200000a0
#define IRQ_UART_READ_AVAILABLE 0x001
#define IRQ_UART_WRITE_AVAILABLE 0x002
#define IRQ_COUNTER18_NOT 0x004
#define IRQ_COUNTER18 0x008
#define IRQ_MMU 0x200
#define MMU_ENTRIES 4
#define MMU_MASK (1024*4-1)
typedef struct
{
unsigned int virtualAddress;
unsigned int physicalAddress;
} MmuEntry;
typedef struct {
int r[32];
int pc, pc_next, epc;
unsigned int hi;
unsigned int lo;
int status;
int userMode;
int processId;
int exceptionId;
int faultAddr;
int irqStatus;
int skip;
unsigned char *mem;
int wakeup;
int big_endian;
MmuEntry mmuEntry[MMU_ENTRIES];
} State;
static char *opcode_string[]={
"SPECIAL","REGIMM","J","JAL","BEQ","BNE","BLEZ","BGTZ",
"ADDI","ADDIU","SLTI","SLTIU","ANDI","ORI","XORI","LUI",
"COP0","COP1","COP2","COP3","BEQL","BNEL","BLEZL","BGTZL",
"?","?","?","?","?","?","?","?",
"LB","LH","LWL","LW","LBU","LHU","LWR","?",
"SB","SH","SWL","SW","?","?","SWR","CACHE",
"LL","LWC1","LWC2","LWC3","?","LDC1","LDC2","LDC3"
"SC","SWC1","SWC2","SWC3","?","SDC1","SDC2","SDC3"
};
static char *special_string[]={
"SLL","?","SRL","SRA","SLLV","?","SRLV","SRAV",
"JR","JALR","MOVZ","MOVN","SYSCALL","BREAK","?","SYNC",
"MFHI","MTHI","MFLO","MTLO","?","?","?","?",
"MULT","MULTU","DIV","DIVU","?","?","?","?",
"ADD","ADDU","SUB","SUBU","AND","OR","XOR","NOR",
"?","?","SLT","SLTU","?","DADDU","?","?",
"TGE","TGEU","TLT","TLTU","TEQ","?","TNE","?",
"?","?","?","?","?","?","?","?"
};
static char *regimm_string[]={
"BLTZ","BGEZ","BLTZL","BGEZL","?","?","?","?",
"TGEI","TGEIU","TLTI","TLTIU","TEQI","?","TNEI","?",
"BLTZAL","BEQZAL","BLTZALL","BGEZALL","?","?","?","?",
"?","?","?","?","?","?","?","?"
};
static unsigned int HWMemory[8];
static int mem_read(State *s, int size, unsigned int address)
{
unsigned int value=0, ptr;
s->irqStatus |= IRQ_UART_WRITE_AVAILABLE;
switch(address)
{
case UART_READ:
if(kbhit())
HWMemory[0] = getch();
s->irqStatus &= ~IRQ_UART_READ_AVAILABLE; //clear bit
return HWMemory[0];
case IRQ_MASK:
return HWMemory[1];
case IRQ_MASK + 4:
Sleep(10);
return 0;
case IRQ_STATUS:
if(kbhit())
s->irqStatus |= IRQ_UART_READ_AVAILABLE;
return s->irqStatus;
case MMU_PROCESS_ID:
return s->processId;
case MMU_FAULT_ADDR:
return s->faultAddr;
}
ptr = (unsigned int)s->mem + (address % MEM_SIZE);
if(0x10000000 <= address && address < 0x10000000 + 1024*1024)
ptr += 1024*1024;
switch(size)
{
case 4:
if(address & 3)
printf("Unaligned access PC=0x%x address=0x%x\n", (int)s->pc, (int)address);
assert((address & 3) == 0);
value = *(int*)ptr;
if(s->big_endian)
value = ntohl(value);
break;
case 2:
assert((address & 1) == 0);
value = *(unsigned short*)ptr;
if(s->big_endian)
value = ntohs((unsigned short)value);
break;
case 1:
value = *(unsigned char*)ptr;
break;
default:
printf("ERROR");
}
return(value);
}
static void mem_write(State *s, int size, int unsigned address, unsigned int value)
{
unsigned int ptr;
switch(address)
{
case UART_WRITE:
putch(value);
fflush(stdout);
return;
case IRQ_MASK:
HWMemory[1] = value;
return;
case IRQ_STATUS:
s->irqStatus = value;
return;
case CONFIG_REG:
return;
case MMU_PROCESS_ID:
//printf("processId=%d\n", value);
s->processId = value;
return;
}
if(MMU_TLB <= address && address <= MMU_TLB+MMU_ENTRIES * 8)
{
//printf("TLB 0x%x 0x%x\n", address - MMU_TLB, value);
ptr = (unsigned int)s->mmuEntry + address - MMU_TLB;
*(int*)ptr = value;
s->irqStatus &= ~IRQ_MMU;
return;
}
ptr = (unsigned int)s->mem + (address % MEM_SIZE);
if(0x10000000 <= address && address < 0x10000000 + 1024*1024)
ptr += 1024*1024;
switch(size)
{
case 4:
assert((address & 3) == 0);
if(s->big_endian)
value = htonl(value);
*(int*)ptr = value;
break;
case 2:
assert((address & 1) == 0);
if(s->big_endian)
value = htons((unsigned short)value);
*(short*)ptr = (unsigned short)value;
break;
case 1:
*(char*)ptr = (unsigned char)value;
break;
default:
printf("ERROR");
}
}
#ifdef ENABLE_CACHE
/************* Optional MMU and cache implementation *************/
/* TAG = VirtualAddress | ProcessId | WriteableBit */
unsigned int mmu_lookup(State *s, unsigned int processId,
unsigned int address, int write)
{
int i;
unsigned int compare, tag;
if(processId == 0 || s->userMode == 0)
return address;
//if(address < 0x30000000)
// return address;
compare = (address & ~MMU_MASK) | (processId << 1);
for(i = 0; i < MMU_ENTRIES; ++i)
{
tag = s->mmuEntry[i].virtualAddress;
if((tag & ~1) == compare && (write == 0 || (tag & 1)))
return s->mmuEntry[i].physicalAddress | (address & MMU_MASK);
}
//printf("\nMMUTlbMiss 0x%x PC=0x%x w=%d pid=%d user=%d\n",
// address, s->pc, write, processId, s->userMode);
//printf("m");
s->exceptionId = 1;
s->faultAddr = address & ~MMU_MASK;
s->irqStatus |= IRQ_MMU;
return address;
}
#define CACHE_SET_ASSOC_LN2 0
#define CACHE_SET_ASSOC (1 << CACHE_SET_ASSOC_LN2)
#define CACHE_SIZE_LN2 (13 - CACHE_SET_ASSOC_LN2) //8 KB
#define CACHE_SIZE (1 << CACHE_SIZE_LN2)
#define CACHE_LINE_SIZE_LN2 2 //4 bytes
#define CACHE_LINE_SIZE (1 << CACHE_LINE_SIZE_LN2)
static int cacheData[CACHE_SET_ASSOC][CACHE_SIZE/sizeof(int)];
static int cacheAddr[CACHE_SET_ASSOC][CACHE_SIZE/CACHE_LINE_SIZE];
static int cacheSetNext;
static int cacheMiss, cacheWriteBack, cacheCount;
static void cache_init(void)
{
int set, i;
for(set = 0; set < CACHE_SET_ASSOC; ++set)
{
for(i = 0; i < CACHE_SIZE/CACHE_LINE_SIZE; ++i)
cacheAddr[set][i] = 0xffff0000;
}
}
/* Write-back cache memory tagged by virtual address and processId */
/* TAG = virtualAddress | processId | dirtyBit */
static int cache_load(State *s, unsigned int address, int write)
{
int set, i, pid, miss, offsetAddr, offsetData, offsetMem;
unsigned int addrTagMatch, addrPrevMatch=0;
unsigned int addrPrev;
unsigned int addressPhysical, tag;
++cacheCount;
addrTagMatch = address & ~(CACHE_SIZE-1);
offsetAddr = (address & (CACHE_SIZE-1)) >> CACHE_LINE_SIZE_LN2;
/* Find match */
miss = 1;
for(set = 0; set < CACHE_SET_ASSOC; ++set)
{
addrPrevMatch = cacheAddr[set][offsetAddr] & ~(CACHE_SIZE-1);
if(addrPrevMatch == addrTagMatch)
{
miss = 0;
break;
}
}
/* Cache miss? */
if(miss)
{
++cacheMiss;
set = cacheSetNext;
cacheSetNext = (cacheSetNext + 1) & (CACHE_SET_ASSOC-1);
}
//else if(write || (address >> 28) != 0x1)
//{
// tag = cacheAddr[set][offsetAddr];
// pid = (tag & (CACHE_SIZE-1)) >> 1;
// if(pid != s->processId)
// miss = 1;
//}
if(miss)
{
offsetData = address & (CACHE_SIZE-1) & ~(CACHE_LINE_SIZE-1);
/* Cache line dirty? */
if(cacheAddr[set][offsetAddr] & 1)
{
/* Write back cache line */
tag = cacheAddr[set][offsetAddr];
addrPrev = tag & ~(CACHE_SIZE-1);
addrPrev |= address & (CACHE_SIZE-1);
pid = (tag & (CACHE_SIZE-1)) >> 1;
addressPhysical = mmu_lookup(s, pid, addrPrev, 1); //virtual->physical
if(s->exceptionId)
return 0;
offsetMem = addressPhysical & ~(CACHE_LINE_SIZE-1);
for(i = 0; i < CACHE_LINE_SIZE; i += 4)
mem_write(s, 4, offsetMem + i, cacheData[set][(offsetData + i) >> 2]);
++cacheWriteBack;
}
/* Read cache line */
addressPhysical = mmu_lookup(s, s->processId, address, write); //virtual->physical
if(s->exceptionId)
return 0;
offsetMem = addressPhysical & ~(CACHE_LINE_SIZE-1);
cacheAddr[set][offsetAddr] = addrTagMatch;
for(i = 0; i < CACHE_LINE_SIZE; i += 4)
cacheData[set][(offsetData + i) >> 2] = mem_read(s, 4, offsetMem + i);
}
cacheAddr[set][offsetAddr] |= write;
return set;
}
static int cache_read(State *s, int size, unsigned int address)
{
int set, offset;
int value;
if((address & 0xfe000000) != 0x10000000)
return mem_read(s, size, address);
set = cache_load(s, address, 0);
if(s->exceptionId)
return 0;
offset = (address & (CACHE_SIZE-1)) >> 2;
value = cacheData[set][offset];
if(s->big_endian)
address ^= 3;
switch(size)
{
case 2:
value = (value >> ((address & 2) << 3)) & 0xffff;
break;
case 1:
value = (value >> ((address & 3) << 3)) & 0xff;
break;
}
return value;
}
static void cache_write(State *s, int size, int unsigned address, unsigned int value)
{
int set, offset;
unsigned int mask;
if((address >> 28) != 0x1) // && (s->processId == 0 || s->userMode == 0))
{
mem_write(s, size, address, value);
return;
}
set = cache_load(s, address, 1);
if(s->exceptionId)
return;
offset = (address & (CACHE_SIZE-1)) >> 2;
if(s->big_endian)
address ^= 3;
switch(size)
{
case 2:
value &= 0xffff;
value |= value << 16;
mask = 0xffff << ((address & 2) << 3);
break;
case 1:
value &= 0xff;
value |= (value << 8) | (value << 16) | (value << 24);
mask = 0xff << ((address & 3) << 3);
break;
case 4:
default:
mask = 0xffffffff;
break;
}
cacheData[set][offset] = (value & mask) | (cacheData[set][offset] & ~mask);
}
#define mem_read cache_read
#define mem_write cache_write
#else
static void cache_init(void) {}
#endif
#ifdef SIMPLE_CACHE
//Write through direct mapped 4KB cache
#define CACHE_MISS 0x1ff
static unsigned int cacheData[1024];
static unsigned int cacheAddr[1024]; //9-bit addresses
static int cacheTry, cacheMiss, cacheInit;
static int cache_read(State *s, int size, unsigned int address)
{
int offset;
unsigned int value, value2, address2=address;
if(cacheInit == 0)
{
cacheInit = 1;
for(offset = 0; offset < 1024; ++offset)
cacheAddr[offset] = CACHE_MISS;
}
offset = address >> 20;
if(offset != 0x100 && offset != 0x101)
return mem_read(s, size, address);
++cacheTry;
offset = (address >> 2) & 0x3ff;
if(cacheAddr[offset] != (address >> 12) || cacheAddr[offset] == CACHE_MISS)
{
++cacheMiss;
cacheAddr[offset] = address >> 12;
cacheData[offset] = mem_read(s, 4, address & ~3);
}
value = cacheData[offset];
if(s->big_endian)
address ^= 3;
switch(size)
{
case 2:
value = (value >> ((address & 2) << 3)) & 0xffff;
break;
case 1:
value = (value >> ((address & 3) << 3)) & 0xff;
break;
}
//Debug testing
value2 = mem_read(s, size, address2);
if(value != value2)
printf("miss match\n");
//if((cacheTry & 0xffff) == 0) printf("\n***cache(%d,%d)\n ", cacheMiss, cacheTry);
return value;
}
static void cache_write(State *s, int size, int unsigned address, unsigned int value)
{
int offset;
mem_write(s, size, address, value);
offset = address >> 20;
if(offset != 0x100 && offset != 0x101)
return;
offset = (address >> 2) & 0x3ff;
if(size != 4)
{
cacheAddr[offset] = CACHE_MISS;
return;
}
cacheAddr[offset] = address >> 12;
cacheData[offset] = value;
}
#define mem_read cache_read
#define mem_write cache_write
#endif //SIMPLE_CACHE
/************* End optional cache implementation *************/
void mult_big(unsigned int a,
unsigned int b,
unsigned int *hi,
unsigned int *lo)
{
unsigned int ahi, alo, bhi, blo;
unsigned int c0, c1, c2;
unsigned int c1_a, c1_b;
ahi = a >> 16;
alo = a & 0xffff;
bhi = b >> 16;
blo = b & 0xffff;
c0 = alo * blo;
c1_a = ahi * blo;
c1_b = alo * bhi;
c2 = ahi * bhi;
c2 += (c1_a >> 16) + (c1_b >> 16);
c1 = (c1_a & 0xffff) + (c1_b & 0xffff) + (c0 >> 16);
c2 += (c1 >> 16);
c0 = (c1 << 16) + (c0 & 0xffff);
*hi = c2;
*lo = c0;
}
void mult_big_signed(int a,
int b,
unsigned int *hi,
unsigned int *lo)
{
unsigned int ahi, alo, bhi, blo;
unsigned int c0, c1, c2;
unsigned int c1_a, c1_b;
ahi = a >> 16;
alo = a & 0xffff;
bhi = b >> 16;
blo = b & 0xffff;
c0 = alo * blo;
c1_a = ahi * blo;
c1_b = alo * bhi;
c2 = ahi * bhi;
c2 += (c1_a >> 16) + (c1_b >> 16);
c1 = (c1_a & 0xffff) + (c1_b & 0xffff) + (c0 >> 16);
c2 += (c1 >> 16);
c0 = (c1 << 16) + (c0 & 0xffff);
*hi = c2;
*lo = c0;
}
//execute one cycle of a Plasma CPU
void cycle(State *s, int show_mode)
{
unsigned int opcode;
unsigned int op, rs, rt, rd, re, func, imm, target;
int imm_shift, branch=0, lbranch=2, skip2=0;
int *r=s->r;
unsigned int *u=(unsigned int*)s->r;
unsigned int ptr, epc, rSave;
opcode = mem_read(s, 4, s->pc);
op = (opcode >> 26) & 0x3f;
rs = (opcode >> 21) & 0x1f;
rt = (opcode >> 16) & 0x1f;
rd = (opcode >> 11) & 0x1f;
re = (opcode >> 6) & 0x1f;
func = opcode & 0x3f;
imm = opcode & 0xffff;
imm_shift = (((int)(short)imm) << 2) - 4;
target = (opcode << 6) >> 4;
ptr = (short)imm + r[rs];
r[0] = 0;
if(show_mode)
{
printf("%8.8x %8.8x ", s->pc, opcode);
if(op == 0)
printf("%8s ", special_string[func]);
else if(op == 1)
printf("%8s ", regimm_string[rt]);
else
printf("%8s ", opcode_string[op]);
printf("$%2.2d $%2.2d $%2.2d $%2.2d ", rs, rt, rd, re);
printf("%4.4x", imm);
if(show_mode == 1)
printf(" r[%2.2d]=%8.8x r[%2.2d]=%8.8x", rs, r[rs], rt, r[rt]);
printf("\n");
}
if(show_mode > 5)
return;
epc = s->pc + 4;
if(s->pc_next != s->pc + 4)
epc |= 2; //branch delay slot
s->pc = s->pc_next;
s->pc_next = s->pc_next + 4;
if(s->skip)
{
s->skip = 0;
return;
}
rSave = r[rt];
switch(op)
{
case 0x00:/*SPECIAL*/
switch(func)
{
case 0x00:/*SLL*/ r[rd]=r[rt]<<re; break;
case 0x02:/*SRL*/ r[rd]=u[rt]>>re; break;
case 0x03:/*SRA*/ r[rd]=r[rt]>>re; break;
case 0x04:/*SLLV*/ r[rd]=r[rt]<<r[rs]; break;
case 0x06:/*SRLV*/ r[rd]=u[rt]>>r[rs]; break;
case 0x07:/*SRAV*/ r[rd]=r[rt]>>r[rs]; break;
case 0x08:/*JR*/ s->pc_next=r[rs]; break;
case 0x09:/*JALR*/ r[rd]=s->pc_next; s->pc_next=r[rs]; break;
case 0x0a:/*MOVZ*/ if(!r[rt]) r[rd]=r[rs]; break; /*IV*/
case 0x0b:/*MOVN*/ if(r[rt]) r[rd]=r[rs]; break; /*IV*/
case 0x0c:/*SYSCALL*/ epc|=1; s->exceptionId=1; break;
case 0x0d:/*BREAK*/ epc|=1; s->exceptionId=1; break;
case 0x0f:/*SYNC*/ s->wakeup=1; break;
case 0x10:/*MFHI*/ r[rd]=s->hi; break;
case 0x11:/*FTHI*/ s->hi=r[rs]; break;
case 0x12:/*MFLO*/ r[rd]=s->lo; break;
case 0x13:/*MTLO*/ s->lo=r[rs]; break;
case 0x18:/*MULT*/ mult_big_signed(r[rs],r[rt],&s->hi,&s->lo); break;
case 0x19:/*MULTU*/ mult_big(r[rs],r[rt],&s->hi,&s->lo); break;
case 0x1a:/*DIV*/ s->lo=r[rs]/r[rt]; s->hi=r[rs]%r[rt]; break;
case 0x1b:/*DIVU*/ s->lo=u[rs]/u[rt]; s->hi=u[rs]%u[rt]; break;
case 0x20:/*ADD*/ r[rd]=r[rs]+r[rt]; break;
case 0x21:/*ADDU*/ r[rd]=r[rs]+r[rt]; break;
case 0x22:/*SUB*/ r[rd]=r[rs]-r[rt]; break;
case 0x23:/*SUBU*/ r[rd]=r[rs]-r[rt]; break;
case 0x24:/*AND*/ r[rd]=r[rs]&r[rt]; break;
case 0x25:/*OR*/ r[rd]=r[rs]|r[rt]; break;
case 0x26:/*XOR*/ r[rd]=r[rs]^r[rt]; break;
case 0x27:/*NOR*/ r[rd]=~(r[rs]|r[rt]); break;
case 0x2a:/*SLT*/ r[rd]=r[rs]<r[rt]; break;
case 0x2b:/*SLTU*/ r[rd]=u[rs]<u[rt]; break;
case 0x2d:/*DADDU*/r[rd]=r[rs]+u[rt]; break;
case 0x31:/*TGEU*/ break;
case 0x32:/*TLT*/ break;
case 0x33:/*TLTU*/ break;
case 0x34:/*TEQ*/ break;
case 0x36:/*TNE*/ break;
default: printf("ERROR0(*0x%x~0x%x)\n", s->pc, opcode);
s->wakeup=1;
}
break;
case 0x01:/*REGIMM*/
switch(rt) {
case 0x10:/*BLTZAL*/ r[31]=s->pc_next;
case 0x00:/*BLTZ*/ branch=r[rs]<0; break;
case 0x11:/*BGEZAL*/ r[31]=s->pc_next;
case 0x01:/*BGEZ*/ branch=r[rs]>=0; break;
case 0x12:/*BLTZALL*/r[31]=s->pc_next;
case 0x02:/*BLTZL*/ lbranch=r[rs]<0; break;
case 0x13:/*BGEZALL*/r[31]=s->pc_next;
case 0x03:/*BGEZL*/ lbranch=r[rs]>=0; break;
default: printf("ERROR1\n"); s->wakeup=1;
}
break;
case 0x03:/*JAL*/ r[31]=s->pc_next;
case 0x02:/*J*/ s->pc_next=(s->pc&0xf0000000)|target; break;
case 0x04:/*BEQ*/ branch=r[rs]==r[rt]; break;
case 0x05:/*BNE*/ branch=r[rs]!=r[rt]; break;
case 0x06:/*BLEZ*/ branch=r[rs]<=0; break;
case 0x07:/*BGTZ*/ branch=r[rs]>0; break;
case 0x08:/*ADDI*/ r[rt]=r[rs]+(short)imm; break;
case 0x09:/*ADDIU*/ u[rt]=u[rs]+(short)imm; break;
case 0x0a:/*SLTI*/ r[rt]=r[rs]<(short)imm; break;
case 0x0b:/*SLTIU*/ u[rt]=u[rs]<(unsigned int)(short)imm; break;
case 0x0c:/*ANDI*/ r[rt]=r[rs]&imm; break;
case 0x0d:/*ORI*/ r[rt]=r[rs]|imm; break;
case 0x0e:/*XORI*/ r[rt]=r[rs]^imm; break;
case 0x0f:/*LUI*/ r[rt]=(imm<<16); break;
case 0x10:/*COP0*/
if((opcode & (1<<23)) == 0) //move from CP0
{
if(rd == 12)
r[rt]=s->status;
else
r[rt]=s->epc;
}
else //move to CP0
{
s->status=r[rt]&1;
if(s->processId && (r[rt]&2))
{
s->userMode|=r[rt]&2;
//printf("CpuStatus=%d %d %d\n", r[rt], s->status, s->userMode);
//s->wakeup = 1;
//printf("pc=0x%x\n", epc);
}
}
break;
// case 0x11:/*COP1*/ break;
// case 0x12:/*COP2*/ break;
// case 0x13:/*COP3*/ break;
case 0x14:/*BEQL*/ lbranch=r[rs]==r[rt]; break;
case 0x15:/*BNEL*/ lbranch=r[rs]!=r[rt]; break;
case 0x16:/*BLEZL*/ lbranch=r[rs]<=0; break;
case 0x17:/*BGTZL*/ lbranch=r[rs]>0; break;
// case 0x1c:/*MAD*/ break; /*IV*/
case 0x20:/*LB*/ r[rt]=(signed char)mem_read(s,1,ptr); break;
case 0x21:/*LH*/ r[rt]=(signed short)mem_read(s,2,ptr); break;
case 0x22:/*LWL*/
//target=8*(ptr&3);
//r[rt]=(r[rt]&~(0xffffffff<<target))|
// (mem_read(s,4,ptr&~3)<<target); break;
case 0x23:/*LW*/ r[rt]=mem_read(s,4,ptr); break;
case 0x24:/*LBU*/ r[rt]=(unsigned char)mem_read(s,1,ptr); break;
case 0x25:/*LHU*/ r[rt]=(unsigned short)mem_read(s,2,ptr); break;
case 0x26:/*LWR*/
//target=32-8*(ptr&3);
//r[rt]=(r[rt]&~((unsigned int)0xffffffff>>target))|
//((unsigned int)mem_read(s,4,ptr&~3)>>target);
break;
case 0x28:/*SB*/ mem_write(s,1,ptr,r[rt]); break;
case 0x29:/*SH*/ mem_write(s,2,ptr,r[rt]); break;
case 0x2a:/*SWL*/
//mem_write(s,1,ptr,r[rt]>>24);
//mem_write(s,1,ptr+1,r[rt]>>16);
//mem_write(s,1,ptr+2,r[rt]>>8);
//mem_write(s,1,ptr+3,r[rt]); break;
case 0x2b:/*SW*/ mem_write(s,4,ptr,r[rt]); break;
case 0x2e:/*SWR*/ break; //fixme
case 0x2f:/*CACHE*/break;
case 0x30:/*LL*/ r[rt]=mem_read(s,4,ptr); break;
// case 0x31:/*LWC1*/ break;
// case 0x32:/*LWC2*/ break;
// case 0x33:/*LWC3*/ break;
// case 0x35:/*LDC1*/ break;
// case 0x36:/*LDC2*/ break;
// case 0x37:/*LDC3*/ break;
// case 0x38:/*SC*/ *(int*)ptr=r[rt]; r[rt]=1; break;
case 0x38:/*SC*/ mem_write(s,4,ptr,r[rt]); r[rt]=1; break;
// case 0x39:/*SWC1*/ break;
// case 0x3a:/*SWC2*/ break;
// case 0x3b:/*SWC3*/ break;
// case 0x3d:/*SDC1*/ break;
// case 0x3e:/*SDC2*/ break;
// case 0x3f:/*SDC3*/ break;
default: printf("ERROR2 address=0x%x opcode=0x%x\n", s->pc, opcode);
s->wakeup=1;
}
s->pc_next += (branch || lbranch == 1) ? imm_shift : 0;
s->pc_next &= ~3;
s->skip = (lbranch == 0) | skip2;
if(s->exceptionId)
{
r[rt] = rSave;
s->epc = epc;
s->pc_next = 0x3c;
s->skip = 1;
s->exceptionId = 0;
s->userMode = 0;
//s->wakeup = 1;
return;
}
}
void show_state(State *s)
{
int i,j;
printf("pid=%d userMode=%d, epc=0x%x\n", s->processId, s->userMode, s->epc);
for(i = 0; i < 4; ++i)
{
printf("%2.2d ", i * 8);
for(j = 0; j < 8; ++j)
{
printf("%8.8x ", s->r[i*8+j]);
}
printf("\n");
}
//printf("%8.8lx %8.8lx %8.8lx %8.8lx\n", s->pc, s->pc_next, s->hi, s->lo);
j = s->pc;
for(i = -4; i <= 8; ++i)
{
printf("%c", i==0 ? '*' : ' ');
s->pc = j + i * 4;
cycle(s, 10);
}
s->pc = j;
}
void do_debug(State *s)
{
int ch;
int i, j=0, watch=0, addr;
s->pc_next = s->pc + 4;
s->skip = 0;
s->wakeup = 0;
show_state(s);
ch = ' ';
for(;;)
{
if(ch != 'n')
{
if(watch)
printf("0x%8.8x=0x%8.8x\n", watch, mem_read(s, 4, watch));
printf("1=Debug 2=Trace 3=Step 4=BreakPt 5=Go 6=Memory ");
printf("7=Watch 8=Jump 9=Quit> ");
}
ch = getch();
if(ch != 'n')
printf("\n");
switch(ch)
{
case '1': case 'd': case ' ':
cycle(s, 0); show_state(s); break;
case 'n':
cycle(s, 1); break;
case '2': case 't':
cycle(s, 0); printf("*"); cycle(s, 10); break;
case '3': case 's':
printf("Count> ");
scanf("%d", &j);
for(i = 0; i < j; ++i)
cycle(s, 1);
show_state(s);
break;
case '4': case 'b':
printf("Line> ");
scanf("%x", &j);
printf("break point=0x%x\n", j);
break;
case '5': case 'g':
s->wakeup = 0;
cycle(s, 0);
while(s->wakeup == 0)
{
if(s->pc == j)
break;
cycle(s, 0);
}
show_state(s);
break;
case 'G':
s->wakeup = 0;
cycle(s, 1);
while(s->wakeup == 0)
{
if(s->pc == j)
break;
cycle(s, 1);
}
show_state(s);
break;
case '6': case 'm':
printf("Memory> ");
scanf("%x", &j);
for(i = 0; i < 8; ++i)
{
printf("%8.8x ", mem_read(s, 4, j+i*4));
}
printf("\n");
break;
case '7': case 'w':
printf("Watch> ");
scanf("%x", &watch);
break;
case '8': case 'j':
printf("Jump> ");
scanf("%x", &addr);
s->pc = addr;
s->pc_next = addr + 4;
show_state(s);
break;
case '9': case 'q':
return;
}
}
}
/************************************************************/
int main(int argc,char *argv[])
{
State state, *s=&state;
FILE *in;
int bytes, index;
printf("Plasma emulator\n");
memset(s, 0, sizeof(State));
s->big_endian = 1;
s->mem = (unsigned char*)malloc(MEM_SIZE);
memset(s->mem, 0, MEM_SIZE);
if(argc <= 1)
{
printf(" Usage: mlite file.exe\n");
printf(" mlite file.exe B {for big_endian}\n");
printf(" mlite file.exe L {for little_endian}\n");
printf(" mlite file.exe BD {disassemble big_endian}\n");
printf(" mlite file.exe LD {disassemble little_endian}\n");
return 0;
}
in = fopen(argv[1], "rb");
if(in == NULL)
{
printf("Can't open file %s!\n",argv[1]);
getch();
return(0);
}
bytes = fread(s->mem, 1, MEM_SIZE, in);
fclose(in);
memcpy(s->mem + 1024*1024, s->mem, 1024*1024); //internal 8KB SRAM
printf("Read %d bytes.\n", bytes);
cache_init();
if(argc == 3 && argv[2][0] == 'B')
{
printf("Big Endian\n");
s->big_endian = 1;
}
if(argc == 3 && argv[2][0] == 'L')
{
printf("Big Endian\n");
s->big_endian = 0;
}
s->processId = 0;
if(argc == 3 && argv[2][0] == 'S')
{ /*make big endian*/
printf("Big Endian\n");
for(index = 0; index < bytes+3; index += 4)
{
*(unsigned int*)&s->mem[index] = htonl(*(unsigned int*)&s->mem[index]);
}
in = fopen("big.exe", "wb");
fwrite(s->mem, bytes, 1, in);
fclose(in);
return(0);
}
if(argc == 3 && argv[2][1] == 'D')
{ /*dump image*/
for(index = 0; index < bytes; index += 4) {
s->pc = index;
cycle(s, 10);
}
free(s->mem);
return(0);
}
s->pc = 0x0;
index = mem_read(s, 4, 0);
if((index & 0xffffff00) == 0x3c1c1000)
s->pc = 0x10000000;
do_debug(s);
free(s->mem);
return(0);
}