1
0
mirror of git://projects.qi-hardware.com/nn-usb-fpga.git synced 2025-04-21 12:27:27 +03:00

Adding lm32 demo to SAKC project

This commit is contained in:
Carlos Camargo
2010-05-25 21:49:58 -05:00
parent 26b0c73a84
commit 61d4408f2a
145 changed files with 27924 additions and 1501 deletions

View File

@@ -0,0 +1,43 @@
//------------------------------------------------------------------
// Dual port memory (one read and one write port, same width)
//------------------------------------------------------------------
module dp_ram #(
parameter adr_width = 11,
parameter dat_width = 8
) (
// read port a
input clk_a,
input [adr_width-1:0] adr_a,
output reg [dat_width-1:0] dat_a,
// write port b
input clk_b,
input [adr_width-1:0] adr_b,
input [dat_width-1:0] dat_b,
input we_b
);
parameter depth = (1 << adr_width);
// actual ram cells
reg [dat_width-1:0] ram [0:depth-1];
//------------------------------------------------------------------
// read port
//------------------------------------------------------------------
always @(posedge clk_a)
begin
dat_a <= ram[adr_a];
end
//------------------------------------------------------------------
// write port
//------------------------------------------------------------------
always @(posedge clk_b)
begin
if (we_b) begin
ram[adr_b] <= dat_b;
end
end
endmodule

View File

@@ -0,0 +1,262 @@
//------------------------------------------------------------------
// Logic Analyzer Component
//------------------------------------------------------------------
module lac #(
parameter uart_freq_hz = 100000000,
parameter uart_baud = 115200,
parameter adr_width = 11,
parameter width = 8
) (
input reset,
input uart_clk,
input uart_rxd,
output uart_cts,
output uart_txd,
input uart_rts,
// actual probe input
input probe_clk,
input [width-1:0] probe,
output reg [7:0] select
);
parameter cmd_nop = 8'h20;
parameter cmd_arm = 8'h01;
parameter cmd_disarm = 8'h02;
//------------------------------------------------------------------
// uart instantiation
//------------------------------------------------------------------
assign uart_cts = 1;
reg tx_wr;
wire tx_busy;
reg [7:0] tx_data;
wire [7:0] rx_data;
wire rx_avail;
reg rx_ack;
uart #(
.freq_hz( uart_freq_hz ),
.baud( uart_baud )
) uart0 (
.reset( reset ),
.clk( uart_clk ),
// UART
.uart_txd( uart_txd ),
.uart_rxd( uart_rxd ),
//
.rx_data( rx_data ),
.rx_avail( rx_avail ),
.rx_error( rx_error ),
.rx_ack( rx_ack ),
.tx_data( tx_data ),
.tx_wr( tx_wr ),
.tx_busy( tx_busy )
);
//------------------------------------------------------------------
// handshake signal between clock domains
//------------------------------------------------------------------
reg [7:0] trig_mask;
reg [7:0] trig_cond;
reg [7:0] trig_pre;
reg [adr_width-1:0] start_adr; // set in probe_clk domain
reg armed; // set in uart_clk domain
reg triggered; // set in probe_clk domain
//------------------------------------------------------------------
// uart state machine
//------------------------------------------------------------------
wire rx_req;
assign rx_req = rx_avail & ~rx_ack;
reg triggered_synced;
wire [width-1:0] read_dat;
reg [adr_width-1:0] read_adr;
wire [adr_width-1:0] read_adr_next;
assign read_adr_next = read_adr + 1;
reg [2:0] state;
parameter s_idle = 0;
parameter s_read_select= 1;
parameter s_read_mask = 2;
parameter s_read_comp = 3;
parameter s_read_pre = 4;
parameter s_triggered = 5;
parameter s_send_byte = 6;
always @(posedge uart_clk)
begin
if (reset) begin
state <= s_idle;
select <= 0;
armed <= 0;
tx_wr <= 0;
end else begin
triggered_synced <= triggered;
rx_ack <= 0; // default until set otherwise
tx_wr <= 0;
case (state)
s_idle: begin
if (rx_req) begin
case (rx_data)
cmd_arm: begin
rx_ack <= 1;
state <= s_read_select;
end
cmd_disarm: begin
rx_ack <= 1;
armed <= 0;
end
default: begin
rx_ack <= 1;
end
endcase
end
if (~rx_req && triggered_synced) begin
state <= s_triggered;
end
end
s_read_select: begin
if (rx_req) begin
rx_ack <= 1;
select <= rx_data;
state <= s_read_mask;
end
end
s_read_mask: begin
if (rx_req) begin
rx_ack <= 1;
trig_mask <= rx_data;
state <= s_read_comp;
end
end
s_read_comp: begin
if (rx_req) begin
rx_ack <= 1;
trig_cond <= rx_data;
armed <= 1;
state <= s_read_pre;
end
end
s_read_pre: begin
if (rx_req) begin
rx_ack <= 1;
trig_pre <= rx_data;
armed <= 1;
state <= s_idle;
end
end
s_triggered: begin
armed <= 0;
read_adr <= start_adr;
tx_data <= adr_width;
tx_wr <= 1;
state <= s_send_byte;
end
s_send_byte: begin
tx_wr <= 0;
if (~tx_busy & ~tx_wr) begin
if (read_adr_next == start_adr)
state <= s_idle;
read_adr <= read_adr_next;
tx_data <= read_dat;
tx_wr <= 1;
end
end
default:
state <= s_idle;
endcase
end
end
//------------------------------------------------------------------
// Sampling clock domain
//------------------------------------------------------------------
// register probe input for better F_max
reg [width-1:0] probe_r;
always @(posedge probe_clk)
probe_r <= probe;
// Sampling machinery
reg armed_synced;
reg armed_synced2;
reg sampling;
reg [adr_width-1:0] write_adr;
wire [adr_width-1:0] next_adr;
assign next_adr = write_adr + 1;
wire cond_match;
assign cond_match = (probe_r & trig_mask) == (trig_cond & trig_mask) && armed_synced2;
always @(posedge probe_clk)
begin
if (reset) begin
armed_synced <= 0;
armed_synced2 <= 0;
sampling <= 0;
triggered <= 0;
write_adr <= 0;
end else begin
armed_synced <= armed;
armed_synced2 <= armed_synced;
if (armed_synced2 || sampling) begin
write_adr <= next_adr;
end
if (~triggered && armed_synced2) begin
if (cond_match) begin
sampling <= 1;
triggered <= 1;
start_adr <= write_adr;
end
end
if (sampling && next_adr == start_adr) begin
sampling <= 0;
end
if (~sampling && ~armed_synced2 && triggered)
triggered <= 0;
end
end
//------------------------------------------------------------------
// dual port memory
//------------------------------------------------------------------
wire write_en;
assign write_en = sampling || cond_match;
dp_ram #(
.adr_width( adr_width ),
.dat_width( width )
) ram0 (
// read port a
.clk_a( uart_clk ),
.adr_a( read_adr ),
.dat_a( read_dat ),
// write port b
.clk_b( probe_clk ),
.adr_b( write_adr ),
.dat_b( probe_r ),
.we_b( write_en )
);
endmodule

View File

@@ -0,0 +1,155 @@
//-----------------------------------------------------
// Design Name : uart
// File Name : uart.v
//-----------------------------------------------------
module uart #(
parameter freq_hz = 100000000,
parameter baud = 115200
) (
input reset,
input clk,
// UART lines
input uart_rxd,
output reg uart_txd,
//
output reg [7:0] rx_data,
output reg rx_avail,
output reg rx_error,
input rx_ack,
input [7:0] tx_data,
input tx_wr,
output reg tx_busy
);
parameter divisor = freq_hz/baud/16;
//-----------------------------------------------------------------
// enable16 generator
//-----------------------------------------------------------------
reg [15:0] enable16_counter;
wire enable16;
assign enable16 = (enable16_counter == 0);
always @(posedge clk)
begin
if (reset) begin
enable16_counter <= divisor-1;
end else begin
enable16_counter <= enable16_counter - 1;
if (enable16_counter == 0) begin
enable16_counter <= divisor-1;
end
end
end
//-----------------------------------------------------------------
// syncronize uart_rxd
//-----------------------------------------------------------------
reg uart_rxd1;
reg uart_rxd2;
always @(posedge clk)
begin
uart_rxd1 <= uart_rxd;
uart_rxd2 <= uart_rxd1;
end
//-----------------------------------------------------------------
// UART RX Logic
//-----------------------------------------------------------------
reg rx_busy;
reg [3:0] rx_count16;
reg [3:0] rx_bitcount;
reg [7:0] rxd_reg;
always @ (posedge clk)
begin
if (reset) begin
rx_busy <= 0;
rx_count16 <= 0;
rx_bitcount <= 0;
rx_avail <= 0;
rx_error <= 0;
end else begin
if (rx_ack) begin
rx_avail <= 0;
rx_error <= 0;
end
if (enable16) begin
if (!rx_busy) begin // look for start bit
if (!uart_rxd2) begin // start bit found
rx_busy <= 1;
rx_count16 <= 7;
rx_bitcount <= 0;
end
end else begin
rx_count16 <= rx_count16 + 1;
if (rx_count16 == 0) begin // sample
rx_bitcount <= rx_bitcount + 1;
if (rx_bitcount == 0) begin // verify startbit
if (uart_rxd2) begin
rx_busy <= 0;
end
end else if (rx_bitcount == 9) begin // look for stop bit
rx_busy <= 0;
if (uart_rxd2) begin // stop bit ok
rx_data <= rxd_reg;
rx_avail <= 1;
rx_error <= 0;
end else begin // bas stop bit
rx_error <= 1;
end
end else begin
rxd_reg <= { uart_rxd2, rxd_reg[7:1] };
end
end
end
end
end
end
//-----------------------------------------------------------------
// UART TX Logic
//-----------------------------------------------------------------
reg [3:0] tx_bitcount;
reg [3:0] tx_count16;
reg [7:0] txd_reg;
always @ (posedge clk)
begin
if (reset) begin
tx_busy <= 0;
uart_txd <= 1;
end else begin
if (tx_wr && !tx_busy) begin
txd_reg <= tx_data;
tx_bitcount <= 0;
tx_count16 <= 1;
tx_busy <= 1;
uart_txd <= 0;
end else if (enable16 && tx_busy) begin
tx_count16 <= tx_count16 + 1;
if (tx_count16 == 0) begin
tx_bitcount <= tx_bitcount + 1;
if (tx_bitcount == 8) begin
uart_txd <= 'b1;
end else if (tx_bitcount == 9) begin
uart_txd <= 'b1;
tx_busy <= 0;
end else begin
uart_txd <= txd_reg[0];
txd_reg <= { 1'b0, txd_reg[7:1] };
end
end
end
end
end
endmodule

View File

@@ -0,0 +1,15 @@
module JTAGB (
output JTCK,
output JRTI1,
output JRTI2,
output JTDI,
output JSHIFT,
output JUPDATE,
output JRSTN,
output JCE1,
output JCE2,
input JTDO1,
input JTDO2
) /*synthesis syn_black_box */;
endmodule

View File

@@ -0,0 +1,218 @@
/*-- ---------------------------------------------------------------------------
--
-- Name : ER1.v
--
-- Description:
--
-- This module is where the ER1 register implemented. ER1 and ER2 registers
-- can be registers implemented in Lattice FPGAs using normal FPGA's
-- programmable logic resources. Once they are implemented, they can be
-- accessed as if they are JTAG data registers through the FPGA JTAG port.
-- In order to accessing these registers, JTAG instructions ER1(0x32) or
-- ER2(0x38) needs to be written to the JTAG IR register for enabling the
-- ER1/ER2 accessing logic. The ER1 or ER2 accessing logic can only be
-- enabled one at a time. Once they are enabled, they will be disabled if
-- another JTAG instruction is written into the JTAG instruction register.
-- The registers allow dynamically accessing the FPGA internal information
-- even when the device is running. Therefore, they are very useful for some
-- of the IP cores. In order to let ER1/ER2 registers shared by multiple IP
-- cores or other designs, there is a ER1/ER2 structure patterned by Lattice.
-- The ER1/ER2 structure allows only one ER1 register but more than one ER2
-- registers in an FPGA device. Please refer to the related document for
-- this patterned ER1/ER2 structure.
--
-- $Log: $
--
-- $Header: $
--
-- Copyright (C) 2004 Lattice Semiconductor Corp. All rights reserved.
--
-- ---------------------------------------------------------------------------*/
module ER1 (input JTCK,
input JTDI,
output JTDO1,
output reg JTDO2,
input JSHIFT,
input JUPDATE,
input JRSTN,
input JCE1,
input [14:0] ER2_TDO,
output reg [14:0] IP_ENABLE,
input ISPTRACY_ER2_TDO,
output ISPTRACY_ENABLE,
output CONTROL_DATAN)/* synthesis syn_hier = hard */;
wire controlDataNBit;
wire ispTracyEnableBit;
wire [3:0] encodedIpEnableBits;
wire [9:0] er1TdiBit;
wire captureDrER1;
assign JTDO1 = er1TdiBit[0];
TYPEB BIT0 (.CLK(JTCK),
.RESET_N(JRSTN),
.CLKEN(JCE1),
.TDI(er1TdiBit[1]),
.TDO(er1TdiBit[0]),
.DATA_IN(1'b0),
.CAPTURE_DR(captureDrER1));
TYPEB BIT1 (.CLK(JTCK),
.RESET_N(JRSTN),
.CLKEN(JCE1),
.TDI(er1TdiBit[2]),
.TDO(er1TdiBit[1]),
.DATA_IN(1'b0),
.CAPTURE_DR(captureDrER1));
TYPEB BIT2 (.CLK(JTCK),
.RESET_N(JRSTN),
.CLKEN(JCE1),
.TDI(er1TdiBit[3]),
.TDO(er1TdiBit[2]),
.DATA_IN(1'b1),
.CAPTURE_DR(captureDrER1));
TYPEA BIT3 (.CLK(JTCK),
.RESET_N(JRSTN),
.CLKEN(JCE1),
.TDI(er1TdiBit[4]),
.TDO(er1TdiBit[3]),
.DATA_OUT(controlDataNBit),
.DATA_IN(controlDataNBit),
.CAPTURE_DR(captureDrER1),
.UPDATE_DR(JUPDATE));
assign CONTROL_DATAN = controlDataNBit;
TYPEA BIT4 (.CLK(JTCK),
.RESET_N(JRSTN),
.CLKEN(JCE1),
.TDI(er1TdiBit[5]),
.TDO(er1TdiBit[4]),
.DATA_OUT(ispTracyEnableBit),
.DATA_IN(ispTracyEnableBit),
.CAPTURE_DR(captureDrER1),
.UPDATE_DR(JUPDATE)
);
assign ISPTRACY_ENABLE = ispTracyEnableBit;
TYPEA BIT5 (.CLK(JTCK),
.RESET_N(JRSTN),
.CLKEN(JCE1),
.TDI(er1TdiBit[6]),
.TDO(er1TdiBit[5]),
.DATA_OUT(encodedIpEnableBits[0]),
.DATA_IN(encodedIpEnableBits[0]),
.CAPTURE_DR(captureDrER1),
.UPDATE_DR(JUPDATE));
TYPEA BIT6 (.CLK(JTCK),
.RESET_N(JRSTN),
.CLKEN(JCE1),
.TDI(er1TdiBit[7]),
.TDO(er1TdiBit[6]),
.DATA_OUT(encodedIpEnableBits[1]),
.DATA_IN(encodedIpEnableBits[1]),
.CAPTURE_DR(captureDrER1),
.UPDATE_DR(JUPDATE));
TYPEA BIT7 (.CLK(JTCK),
.RESET_N(JRSTN),
.CLKEN(JCE1),
.TDI(er1TdiBit[8]),
.TDO(er1TdiBit[7]),
.DATA_OUT(encodedIpEnableBits[2]),
.DATA_IN(encodedIpEnableBits[2]),
.CAPTURE_DR(captureDrER1),
.UPDATE_DR(JUPDATE));
TYPEA BIT8 (.CLK(JTCK),
.RESET_N(JRSTN),
.CLKEN(JCE1),
.TDI(er1TdiBit[9]),
.TDO(er1TdiBit[8]),
.DATA_OUT(encodedIpEnableBits[3]),
.DATA_IN(encodedIpEnableBits[3]),
.CAPTURE_DR(captureDrER1),
.UPDATE_DR(JUPDATE)
);
assign er1TdiBit[9] = JTDI;
assign captureDrER1 = !JSHIFT & JCE1;
always @ (encodedIpEnableBits,ISPTRACY_ER2_TDO, ER2_TDO)
begin
case (encodedIpEnableBits)
4'h0: begin
IP_ENABLE <= 15'b000000000000000;
JTDO2 <= ISPTRACY_ER2_TDO;
end
4'h1: begin
IP_ENABLE <= 15'b000000000000001;
JTDO2 <= ER2_TDO[0];
end
4'h2: begin
IP_ENABLE <= 15'b000000000000010;
JTDO2 <= ER2_TDO[1];
end
4'h3: begin
IP_ENABLE <= 15'b000000000000100;
JTDO2 <= ER2_TDO[2];
end
4'h4: begin
IP_ENABLE <= 15'b000000000001000;
JTDO2 <= ER2_TDO[3];
end
4'h5: begin
IP_ENABLE <= 15'b000000000010000;
JTDO2 <= ER2_TDO[4];
end
4'h6: begin
IP_ENABLE <= 15'b000000000100000;
JTDO2 <= ER2_TDO[5];
end
4'h7: begin
IP_ENABLE <= 15'b000000001000000;
JTDO2 <= ER2_TDO[6];
end
4'h8: begin
IP_ENABLE <= 15'b000000010000000;
JTDO2 <= ER2_TDO[7];
end
4'h9: begin
IP_ENABLE <= 15'b000000100000000;
JTDO2 <= ER2_TDO[8];
end
4'hA: begin
IP_ENABLE <= 15'b000001000000000;
JTDO2 <= ER2_TDO[9];
end
4'hB: begin
IP_ENABLE <= 15'b000010000000000;
JTDO2 <= ER2_TDO[10];
end
4'hC: begin
IP_ENABLE <= 15'b000100000000000;
JTDO2 <= ER2_TDO[11];
end
4'hD: begin
IP_ENABLE <= 15'b001000000000000;
JTDO2 <= ER2_TDO[12];
end
4'hE: begin
IP_ENABLE <= 15'b010000000000000;
JTDO2 <= ER2_TDO[13];
end
4'hF: begin
IP_ENABLE <= 15'b100000000000000;
JTDO2 <= ER2_TDO[14];
end
endcase
end
endmodule

View File

@@ -0,0 +1,213 @@
// =============================================================================
// COPYRIGHT NOTICE
// Copyright 2006 (c) Lattice Semiconductor Corporation
// ALL RIGHTS RESERVED
// This confidential and proprietary software may be used only as authorised by
// a licensing agreement from Lattice Semiconductor Corporation.
// The entire notice above must be reproduced on all authorized copies and
// copies may only be made to the extent permitted by a licensing agreement from
// Lattice Semiconductor Corporation.
//
// Lattice Semiconductor Corporation TEL : 1-800-Lattice (USA and Canada)
// 5555 NE Moore Court 408-826-6000 (other locations)
// Hillsboro, OR 97124 web : http://www.latticesemi.com/
// U.S.A email: techsupport@latticesemi.com
// =============================================================================/
// FILE DETAILS
// Project : LatticeMico32
// File : jtag_cores.v
// Title : Instantiates all IP cores on JTAG chain.
// Dependencies : system_conf.v
// Version : 6.0.13
// =============================================================================
`include "system_conf.v"
/////////////////////////////////////////////////////
// Module interface
/////////////////////////////////////////////////////
module jtag_cores (
// ----- Inputs -------
`ifdef INCLUDE_LM32
reg_d,
reg_addr_d,
`endif
`ifdef INCLUDE_SPI
spi_q,
`endif
// ----- Outputs -------
`ifdef INCLUDE_LM32
reg_update,
reg_q,
reg_addr_q,
`endif
`ifdef INCLUDE_SPI
spi_c,
spi_d,
spi_sn,
`endif
jtck,
jrstn
);
/////////////////////////////////////////////////////
// Inputs
/////////////////////////////////////////////////////
`ifdef INCLUDE_LM32
input [7:0] reg_d;
input [2:0] reg_addr_d;
`endif
`ifdef INCLUDE_SPI
input spi_q;
`endif
/////////////////////////////////////////////////////
// Outputs
/////////////////////////////////////////////////////
`ifdef INCLUDE_LM32
output reg_update;
wire reg_update;
output [7:0] reg_q;
wire [7:0] reg_q;
output [2:0] reg_addr_q;
wire [2:0] reg_addr_q;
`endif
`ifdef INCLUDE_SPI
output spi_c;
wire spi_c;
output spi_d;
wire spi_d;
output spi_sn;
wire spi_sn;
`endif
output jtck;
wire jtck; /* synthesis ER1_MARK="jtck" */ /* synthesis syn_keep=1 */
output jrstn;
wire jrstn; /* synthesis ER1_MARK="jrstn" */ /* synthesis syn_keep=1 */
/////////////////////////////////////////////////////
// Internal nets and registers
/////////////////////////////////////////////////////
wire rtiER1;
wire rtiER2;
wire tdi;/* synthesis ER1_MARK="jtdi" */ /* synthesis syn_keep=1 */
wire tdoEr1;/* synthesis ER1_MARK="jtdo1" */ /* synthesis syn_keep=1 */
wire tdoEr2;
wire jtdo2_mux;/* synthesis ER1_MARK="jtdo2" */ /* synthesis syn_keep=1 */
wire spi_tdo2;
wire shiftDr;/* synthesis ER1_MARK="jshift" */ /* synthesis syn_keep=1 */
wire updateDr;/* synthesis ER1_MARK="jupdate" */ /* synthesis syn_keep=1 */
wire enableEr1;/* synthesis ER1_MARK="jce1" */ /* synthesis syn_keep=1 */
wire enableEr2;/* synthesis ER1_MARK="jce2" */ /* synthesis syn_keep=1 */
wire [14:0] ipEnable;/* synthesis ER1_MARK="ip_enable" */ /* synthesis syn_keep=1 */
wire controlDataN;/* synthesis ER1_MARK="control_datan" */ /* synthesis syn_keep=1 */
wire lm32_isptracy_enable;/* synthesis ER1_MARK="isptracy_enable" */ /* synthesis syn_keep=1 */
/////////////////////////////////////////////////////
// Instantiations
/////////////////////////////////////////////////////
parameter lat_family = `LATTICE_FAMILY;
generate
if (lat_family == "EC" || lat_family == "ECP" || lat_family == "XP") begin
JTAGB jtagb (.JTCK (jtck),
.JRTI1 (rtiER1),
.JRTI2 (rtiER2),
.JTDI (tdi),
.JSHIFT (shiftDr),
.JUPDATE (updateDr),
.JRSTN (jrstn),
.JCE1 (enableEr1),
.JCE2 (enableEr2),
.JTDO1 (tdoEr1),
.JTDO2 (jtdo2_mux)) /* synthesis ER1="ENABLED" */ /* synthesis ER2="ENABLED" */ /* synthesis JTAG_FLASH_PRGRM="DISABLED" */;
end else if (lat_family == "ECP2" || lat_family == "ECP2M") begin
JTAGC jtagc (.JTCK (jtck),
.JRTI1 (rtiER1),
.JRTI2 (rtiER2),
.JTDI (tdi),
.JSHIFT (shiftDr),
.JUPDATE (updateDr),
.JRSTN (jrstn),
.IJTAGEN (1'b1),
.JCE1 (enableEr1),
.JCE2 (enableEr2),
.JTDO1 (tdoEr1),
.JTDO2 (jtdo2_mux)) /* synthesis ER1="ENABLED" */ /* synthesis ER2="ENABLED" */ /* synthesis JTAG_FLASH_PRGRM="DISABLED" */;
end else if (lat_family == "SC" || lat_family == "SCM") begin // if (lat_family == "ECP2" || lat_family == "ECP2M")
JTAGA jtaga(.JTCK (jtck),
.JRTI1 (rtiER1),
.JRTI2 (rtiER2),
.JTDI (tdi),
.JSHIFT (shiftDr),
.JUPDATE (updateDr),
.JRSTN (jrstn),
.JCE1 (enableEr1),
.JCE2 (enableEr2),
.JTDO1 (tdoEr1),
.JTDO2 (jtdo2_mux)) /* synthesis ER1="ENABLED" */ /* synthesis ER2="ENABLED" */ /* synthesis JTAG_FLASH_PRGRM="DISABLED" */;
end
endgenerate
ER1 er1 (
.JTCK (jtck),
.JTDI (tdi),
.JTDO1 (tdoEr1),
.JTDO2 (jtdo2_mux),
.JSHIFT (shiftDr),
.JUPDATE (updateDr),
.JRSTN (jrstn),
.JCE1 (enableEr1),
.ER2_TDO ({13'b0,tdoEr2,spi_tdo2}),
.IP_ENABLE (ipEnable),
.ISPTRACY_ENABLE(lm32_isptracy_enable),
.ISPTRACY_ER2_TDO(lm32_isptracy_enable),
.CONTROL_DATAN (controlDataN));
`ifdef INCLUDE_LM32
jtag_lm32 jtag_lm32 (
.JTCK (jtck),
.JTDI (tdi),
.JTDO2 (tdoEr2),
.JSHIFT (shiftDr),
.JUPDATE (updateDr),
.JRSTN (jrstn),
.JCE2 (enableEr2),
.JTAGREG_ENABLE (ipEnable[1]),
.CONTROL_DATAN (controlDataN),
.REG_UPDATE (reg_update),
.REG_D (reg_d),
.REG_ADDR_D (reg_addr_d),
.REG_Q (reg_q),
.REG_ADDR_Q (reg_addr_q)
);
`endif
`ifdef INCLUDE_SPI
SPIPROG spiprog_inst (
.JTCK (tck),
.JTDI (tdi),
.JTDO2 (spi_tdo2),
.JSHIFT (shiftDr),
.JUPDATE (updateDr),
.JRSTN (resetN),
.JCE2 (enableEr2),
.SPIPROG_ENABLE (ipEnable[0]),
.CONTROL_DATAN (controlDataN),
.SPI_C (spi_c),
.SPI_D (spi_d),
.SPI_SN (spi_sn),
.SPI_Q (spi_q)
);
`endif
endmodule

View File

@@ -0,0 +1,195 @@
// =============================================================================
// COPYRIGHT NOTICE
// Copyright 2006 (c) Lattice Semiconductor Corporation
// ALL RIGHTS RESERVED
// This confidential and proprietary software may be used only as authorised by
// a licensing agreement from Lattice Semiconductor Corporation.
// The entire notice above must be reproduced on all authorized copies and
// copies may only be made to the extent permitted by a licensing agreement from
// Lattice Semiconductor Corporation.
//
// Lattice Semiconductor Corporation TEL : 1-800-Lattice (USA and Canada)
// 5555 NE Moore Court 408-826-6000 (other locations)
// Hillsboro, OR 97124 web : http://www.latticesemi.com/
// U.S.A email: techsupport@latticesemi.com
// =============================================================================/
// FILE DETAILS
// Project : LatticeMico32
// File : jtag_lm32.v
// Title : JTAG data register for LM32 CPU debug interface
// Version : 6.0.13
// =============================================================================
/////////////////////////////////////////////////////
// Module interface
/////////////////////////////////////////////////////
module jtag_lm32 (
input JTCK,
input JTDI,
output JTDO2,
input JSHIFT,
input JUPDATE,
input JRSTN,
input JCE2,
input JTAGREG_ENABLE,
input CONTROL_DATAN,
output REG_UPDATE,
input [7:0] REG_D,
input [2:0] REG_ADDR_D,
output [7:0] REG_Q,
output [2:0] REG_ADDR_Q
);
/////////////////////////////////////////////////////
// Internal nets and registers
/////////////////////////////////////////////////////
wire [9:0] tdibus;
/////////////////////////////////////////////////////
// Instantiations
/////////////////////////////////////////////////////
TYPEA DATA_BIT0 (
.CLK(JTCK),
.RESET_N(JRSTN),
.CLKEN(clk_enable),
.TDI(JTDI),
.TDO(tdibus[0]),
.DATA_OUT(REG_Q[0]),
.DATA_IN(REG_D[0]),
.CAPTURE_DR(captureDr),
.UPDATE_DR(JUPDATE)
);
TYPEA DATA_BIT1 (
.CLK(JTCK),
.RESET_N(JRSTN),
.CLKEN(clk_enable),
.TDI(tdibus[0]),
.TDO(tdibus[1]),
.DATA_OUT(REG_Q[1]),
.DATA_IN(REG_D[1]),
.CAPTURE_DR(captureDr),
.UPDATE_DR(JUPDATE)
);
TYPEA DATA_BIT2 (
.CLK(JTCK),
.RESET_N(JRSTN),
.CLKEN(clk_enable),
.TDI(tdibus[1]),
.TDO(tdibus[2]),
.DATA_OUT(REG_Q[2]),
.DATA_IN(REG_D[2]),
.CAPTURE_DR(captureDr),
.UPDATE_DR(JUPDATE)
);
TYPEA DATA_BIT3 (
.CLK(JTCK),
.RESET_N(JRSTN),
.CLKEN(clk_enable),
.TDI(tdibus[2]),
.TDO(tdibus[3]),
.DATA_OUT(REG_Q[3]),
.DATA_IN(REG_D[3]),
.CAPTURE_DR(captureDr),
.UPDATE_DR(JUPDATE)
);
TYPEA DATA_BIT4 (
.CLK(JTCK),
.RESET_N(JRSTN),
.CLKEN(clk_enable),
.TDI(tdibus[3]),
.TDO(tdibus[4]),
.DATA_OUT(REG_Q[4]),
.DATA_IN(REG_D[4]),
.CAPTURE_DR(captureDr),
.UPDATE_DR(JUPDATE)
);
TYPEA DATA_BIT5 (
.CLK(JTCK),
.RESET_N(JRSTN),
.CLKEN(clk_enable),
.TDI(tdibus[4]),
.TDO(tdibus[5]),
.DATA_OUT(REG_Q[5]),
.DATA_IN(REG_D[5]),
.CAPTURE_DR(captureDr),
.UPDATE_DR(JUPDATE)
);
TYPEA DATA_BIT6 (
.CLK(JTCK),
.RESET_N(JRSTN),
.CLKEN(clk_enable),
.TDI(tdibus[5]),
.TDO(tdibus[6]),
.DATA_OUT(REG_Q[6]),
.DATA_IN(REG_D[6]),
.CAPTURE_DR(captureDr),
.UPDATE_DR(JUPDATE)
);
TYPEA DATA_BIT7 (
.CLK(JTCK),
.RESET_N(JRSTN),
.CLKEN(clk_enable),
.TDI(tdibus[6]),
.TDO(tdibus[7]),
.DATA_OUT(REG_Q[7]),
.DATA_IN(REG_D[7]),
.CAPTURE_DR(captureDr),
.UPDATE_DR(JUPDATE)
);
TYPEA ADDR_BIT0 (
.CLK(JTCK),
.RESET_N(JRSTN),
.CLKEN(clk_enable),
.TDI(tdibus[7]),
.TDO(tdibus[8]),
.DATA_OUT(REG_ADDR_Q[0]),
.DATA_IN(REG_ADDR_D[0]),
.CAPTURE_DR(captureDr),
.UPDATE_DR(JUPDATE)
);
TYPEA ADDR_BIT1 (
.CLK(JTCK),
.RESET_N(JRSTN),
.CLKEN(clk_enable),
.TDI(tdibus[8]),
.TDO(tdibus[9]),
.DATA_OUT(REG_ADDR_Q[1]),
.DATA_IN(REG_ADDR_D[1]),
.CAPTURE_DR(captureDr),
.UPDATE_DR(JUPDATE)
);
TYPEA ADDR_BIT2 (
.CLK(JTCK),
.RESET_N(JRSTN),
.CLKEN(clk_enable),
.TDI(tdibus[9]),
.TDO(JTDO2),
.DATA_OUT(REG_ADDR_Q[2]),
.DATA_IN(REG_ADDR_D[2]),
.CAPTURE_DR(captureDr),
.UPDATE_DR(JUPDATE)
);
/////////////////////////////////////////////////////
// Combinational logic
/////////////////////////////////////////////////////
assign clk_enable = JTAGREG_ENABLE & JCE2;
assign captureDr = !JSHIFT & JCE2;
// JCE2 is only active during shift
assign REG_UPDATE = JTAGREG_ENABLE & JUPDATE;
endmodule

View File

@@ -0,0 +1,110 @@
// =============================================================================
// COPYRIGHT NOTICE
// Copyright 2006 (c) Lattice Semiconductor Corporation
// ALL RIGHTS RESERVED
// This confidential and proprietary software may be used only as authorised by
// a licensing agreement from Lattice Semiconductor Corporation.
// The entire notice above must be reproduced on all authorized copies and
// copies may only be made to the extent permitted by a licensing agreement from
// Lattice Semiconductor Corporation.
//
// Lattice Semiconductor Corporation TEL : 1-800-Lattice (USA and Canada)
// 5555 NE Moore Court 408-826-6000 (other locations)
// Hillsboro, OR 97124 web : http://www.latticesemi.com/
// U.S.A email: techsupport@latticesemi.com
// ============================================================================/
// FILE DETAILS
// Project : LatticeMico32
// File : lm32_adder.v
// Title : Integer adder / subtractor with comparison flag generation
// Dependencies : lm32_include.v
// Version : 6.1.17
// =============================================================================
`include "lm32_include.v"
/////////////////////////////////////////////////////
// Module interface
/////////////////////////////////////////////////////
module lm32_adder (
// ----- Inputs -------
adder_op_x,
adder_op_x_n,
operand_0_x,
operand_1_x,
// ----- Outputs -------
adder_result_x,
adder_carry_n_x,
adder_overflow_x
);
/////////////////////////////////////////////////////
// Inputs
/////////////////////////////////////////////////////
input adder_op_x; // Operating to perform, 0 for addition, 1 for subtraction
input adder_op_x_n; // Inverted version of adder_op_x
input [`LM32_WORD_RNG] operand_0_x; // Operand to add, or subtract from
input [`LM32_WORD_RNG] operand_1_x; // Opearnd to add, or subtract by
/////////////////////////////////////////////////////
// Outputs
/////////////////////////////////////////////////////
output [`LM32_WORD_RNG] adder_result_x; // Result of addition or subtraction
wire [`LM32_WORD_RNG] adder_result_x;
output adder_carry_n_x; // Inverted carry
wire adder_carry_n_x;
output adder_overflow_x; // Indicates if overflow occured, only valid for subtractions
reg adder_overflow_x;
/////////////////////////////////////////////////////
// Internal nets and registers
/////////////////////////////////////////////////////
wire a_sign; // Sign (i.e. positive or negative) of operand 0
wire b_sign; // Sign of operand 1
wire result_sign; // Sign of result
/////////////////////////////////////////////////////
// Instantiations
/////////////////////////////////////////////////////
lm32_addsub addsub (
// ----- Inputs -----
.DataA (operand_0_x),
.DataB (operand_1_x),
.Cin (adder_op_x),
.Add_Sub (adder_op_x_n),
// ----- Ouputs -----
.Result (adder_result_x),
.Cout (adder_carry_n_x)
);
/////////////////////////////////////////////////////
// Combinational Logic
/////////////////////////////////////////////////////
// Extract signs of operands and result
assign a_sign = operand_0_x[`LM32_WORD_WIDTH-1];
assign b_sign = operand_1_x[`LM32_WORD_WIDTH-1];
assign result_sign = adder_result_x[`LM32_WORD_WIDTH-1];
// Determine whether an overflow occured when performing a subtraction
always @*
begin
// +ve - -ve = -ve -> overflow
// -ve - +ve = +ve -> overflow
if ( (!a_sign & b_sign & result_sign)
|| (a_sign & !b_sign & !result_sign)
)
adder_overflow_x = `TRUE;
else
adder_overflow_x = `FALSE;
end
endmodule

View File

@@ -0,0 +1,69 @@
// =============================================================================
// COPYRIGHT NOTICE
// Copyright 2006 (c) Lattice Semiconductor Corporation
// ALL RIGHTS RESERVED
// This confidential and proprietary software may be used only as authorised by
// a licensing agreement from Lattice Semiconductor Corporation.
// The entire notice above must be reproduced on all authorized copies and
// copies may only be made to the extent permitted by a licensing agreement from
// Lattice Semiconductor Corporation.
//
// Lattice Semiconductor Corporation TEL : 1-800-Lattice (USA and Canada)
// 5555 NE Moore Court 408-826-6000 (other locations)
// Hillsboro, OR 97124 web : http://www.latticesemi.com/
// U.S.A email: techsupport@latticesemi.com
// =============================================================================/
// FILE DETAILS
// Project : LatticeMico32
// File : lm32_addsub.v
// Title : PMI adder/subtractor.
// Version : 6.1.17
// =============================================================================
`include "lm32_include.v"
/////////////////////////////////////////////////////
// Module interface
/////////////////////////////////////////////////////
module lm32_addsub (
// ----- Inputs -------
DataA,
DataB,
Cin,
Add_Sub,
// ----- Outputs -------
Result,
Cout
);
/////////////////////////////////////////////////////
// Inputs
/////////////////////////////////////////////////////
input [31:0] DataA;
input [31:0] DataB;
input Cin;
input Add_Sub;
/////////////////////////////////////////////////////
// Outputs
/////////////////////////////////////////////////////
output [31:0] Result;
wire [31:0] Result;
output Cout;
wire Cout;
/////////////////////////////////////////////////////
// Instantiations
/////////////////////////////////////////////////////
wire [32:0] tmp_addResult = DataA + DataB + Cin;
wire [32:0] tmp_subResult = DataA - DataB - !Cin;
assign Result = (Add_Sub == 1) ? tmp_addResult[31:0] : tmp_subResult[31:0];
assign Cout = (Add_Sub == 1) ? tmp_addResult[32] : !tmp_subResult[32];
endmodule

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,494 @@
// =============================================================================
// COPYRIGHT NOTICE
// Copyright 2006 (c) Lattice Semiconductor Corporation
// ALL RIGHTS RESERVED
// This confidential and proprietary software may be used only as authorised by
// a licensing agreement from Lattice Semiconductor Corporation.
// The entire notice above must be reproduced on all authorized copies and
// copies may only be made to the extent permitted by a licensing agreement from
// Lattice Semiconductor Corporation.
//
// Lattice Semiconductor Corporation TEL : 1-800-Lattice (USA and Canada)
// 5555 NE Moore Court 408-826-6000 (other locations)
// Hillsboro, OR 97124 web : http://www.latticesemi.com/
// U.S.A email: techsupport@latticesemi.com
// =============================================================================/
// FILE DETAILS
// Project : LatticeMico32
// File : lm32_dcache.v
// Title : Data cache
// Dependencies : lm32_include.v
// Version : 6.1.17
// =============================================================================
`include "lm32_include.v"
`ifdef CFG_DCACHE_ENABLED
`define LM32_DC_ADDR_OFFSET_RNG addr_offset_msb:addr_offset_lsb
`define LM32_DC_ADDR_SET_RNG addr_set_msb:addr_set_lsb
`define LM32_DC_ADDR_TAG_RNG addr_tag_msb:addr_tag_lsb
`define LM32_DC_ADDR_IDX_RNG addr_set_msb:addr_offset_lsb
`define LM32_DC_TMEM_ADDR_WIDTH addr_set_width
`define LM32_DC_TMEM_ADDR_RNG (`LM32_DC_TMEM_ADDR_WIDTH-1):0
`define LM32_DC_DMEM_ADDR_WIDTH (addr_offset_width+addr_set_width)
`define LM32_DC_DMEM_ADDR_RNG (`LM32_DC_DMEM_ADDR_WIDTH-1):0
`define LM32_DC_TAGS_WIDTH (addr_tag_width+1)
`define LM32_DC_TAGS_RNG (`LM32_DC_TAGS_WIDTH-1):0
`define LM32_DC_TAGS_TAG_RNG (`LM32_DC_TAGS_WIDTH-1):1
`define LM32_DC_TAGS_VALID_RNG 0
`define LM32_DC_STATE_RNG 2:0
`define LM32_DC_STATE_FLUSH 3'b001
`define LM32_DC_STATE_CHECK 3'b010
`define LM32_DC_STATE_REFILL 3'b100
/////////////////////////////////////////////////////
// Module interface
/////////////////////////////////////////////////////
module lm32_dcache (
// ----- Inputs -----
clk_i,
rst_i,
stall_a,
stall_x,
stall_m,
address_x,
address_m,
load_q_m,
store_q_m,
store_data,
store_byte_select,
refill_ready,
refill_data,
dflush,
// ----- Outputs -----
stall_request,
restart_request,
refill_request,
refill_address,
refilling,
load_data
);
/////////////////////////////////////////////////////
// Parameters
/////////////////////////////////////////////////////
parameter associativity = 1; // Associativity of the cache (Number of ways)
parameter sets = 512; // Number of sets
parameter bytes_per_line = 16; // Number of bytes per cache line
parameter base_address = 0; // Base address of cachable memory
parameter limit = 0; // Limit (highest address) of cachable memory
//localparam addr_offset_width = clogb2(bytes_per_line)-1-2;
localparam addr_offset_width = 2;
//localparam addr_set_width = clogb2(sets)-1;
localparam addr_set_width = 9;
localparam addr_offset_lsb = 2;
localparam addr_offset_msb = (addr_offset_lsb+addr_offset_width-1);
localparam addr_set_lsb = (addr_offset_msb+1);
localparam addr_set_msb = (addr_set_lsb+addr_set_width-1);
localparam addr_tag_lsb = (addr_set_msb+1);
localparam addr_tag_msb = 31;
localparam addr_tag_width = (addr_tag_msb-addr_tag_lsb+1);
/////////////////////////////////////////////////////
// Inputs
/////////////////////////////////////////////////////
input clk_i; // Clock
input rst_i; // Reset
input stall_a; // Stall A stage
input stall_x; // Stall X stage
input stall_m; // Stall M stage
input [`LM32_WORD_RNG] address_x; // X stage load/store address
input [`LM32_WORD_RNG] address_m; // M stage load/store address
input load_q_m; // Load instruction in M stage
input store_q_m; // Store instruction in M stage
input [`LM32_WORD_RNG] store_data; // Data to store
input [`LM32_BYTE_SELECT_RNG] store_byte_select; // Which bytes in store data should be modified
input refill_ready; // Indicates next word of refill data is ready
input [`LM32_WORD_RNG] refill_data; // Refill data
input dflush; // Indicates cache should be flushed
/////////////////////////////////////////////////////
// Outputs
/////////////////////////////////////////////////////
output stall_request; // Request pipeline be stalled because cache is busy
wire stall_request;
output restart_request; // Request to restart instruction that caused the cache miss
reg restart_request;
output refill_request; // Request a refill
reg refill_request;
output [`LM32_WORD_RNG] refill_address; // Address to refill from
reg [`LM32_WORD_RNG] refill_address;
output refilling; // Indicates if the cache is currently refilling
reg refilling;
output [`LM32_WORD_RNG] load_data; // Data read from cache
wire [`LM32_WORD_RNG] load_data;
/////////////////////////////////////////////////////
// Internal nets and registers
/////////////////////////////////////////////////////
wire read_port_enable; // Cache memory read port clock enable
wire write_port_enable; // Cache memory write port clock enable
wire [0:associativity-1] way_tmem_we; // Tag memory write enable
wire [0:associativity-1] way_dmem_we; // Data memory write enable
wire [`LM32_WORD_RNG] way_data[0:associativity-1]; // Data read from data memory
wire [`LM32_DC_TAGS_TAG_RNG] way_tag[0:associativity-1];// Tag read from tag memory
wire [0:associativity-1] way_valid; // Indicates which ways are valid
wire [0:associativity-1] way_match; // Indicates which ways matched
wire miss; // Indicates no ways matched
wire [`LM32_DC_TMEM_ADDR_RNG] tmem_read_address; // Tag memory read address
wire [`LM32_DC_TMEM_ADDR_RNG] tmem_write_address; // Tag memory write address
wire [`LM32_DC_DMEM_ADDR_RNG] dmem_read_address; // Data memory read address
wire [`LM32_DC_DMEM_ADDR_RNG] dmem_write_address; // Data memory write address
wire [`LM32_DC_TAGS_RNG] tmem_write_data; // Tag memory write data
reg [`LM32_WORD_RNG] dmem_write_data; // Data memory write data
reg [`LM32_DC_STATE_RNG] state; // Current state of FSM
wire flushing; // Indicates if cache is currently flushing
wire check; // Indicates if cache is currently checking for hits/misses
wire refill; // Indicates if cache is currently refilling
wire valid_store; // Indicates if there is a valid store instruction
reg [associativity-1:0] refill_way_select; // Which way should be refilled
reg [`LM32_DC_ADDR_OFFSET_RNG] refill_offset; // Which word in cache line should be refilled
wire last_refill; // Indicates when on last cycle of cache refill
reg [`LM32_DC_TMEM_ADDR_RNG] flush_set; // Which set is currently being flushed
genvar i, j;
/////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////
`include "lm32_functions.v"
/////////////////////////////////////////////////////
// Instantiations
/////////////////////////////////////////////////////
generate
for (i = 0; i < associativity; i = i + 1)
begin : memories
// Way data
if (`LM32_DC_DMEM_ADDR_WIDTH < 7)
begin : data_memories
lm32_ram #(
// ----- Parameters -------
.data_width (32),
.address_width (`LM32_DC_DMEM_ADDR_WIDTH)
) way_0_data_ram (
// ----- Inputs -------
.read_clk (clk_i),
.write_clk (clk_i),
.reset (rst_i),
.read_address (dmem_read_address),
.enable_read (read_port_enable),
.write_address (dmem_write_address),
.enable_write (write_port_enable),
.write_enable (way_dmem_we[i]),
.write_data (dmem_write_data),
// ----- Outputs -------
.read_data (way_data[i])
);
end
else
begin
for (j = 0; j < 4; j = j + 1)
begin : byte_memories
lm32_ram #(
// ----- Parameters -------
.data_width (8),
.address_width (`LM32_DC_DMEM_ADDR_WIDTH)
) way_0_data_ram (
// ----- Inputs -------
.read_clk (clk_i),
.write_clk (clk_i),
.reset (rst_i),
.read_address (dmem_read_address),
.enable_read (read_port_enable),
.write_address (dmem_write_address),
.enable_write (write_port_enable),
.write_enable (way_dmem_we[i] & (store_byte_select[j] | refill)),
.write_data (dmem_write_data[(j+1)*8-1:j*8]),
// ----- Outputs -------
.read_data (way_data[i][(j+1)*8-1:j*8])
);
end
end
// Way tags
lm32_ram #(
// ----- Parameters -------
.data_width (`LM32_DC_TAGS_WIDTH),
.address_width (`LM32_DC_TMEM_ADDR_WIDTH)
) way_0_tag_ram (
// ----- Inputs -------
.read_clk (clk_i),
.write_clk (clk_i),
.reset (rst_i),
.read_address (tmem_read_address),
.enable_read (read_port_enable),
.write_address (tmem_write_address),
.enable_write (`TRUE),
.write_enable (way_tmem_we[i]),
.write_data (tmem_write_data),
// ----- Outputs -------
.read_data ({way_tag[i], way_valid[i]})
);
end
endgenerate
/////////////////////////////////////////////////////
// Combinational logic
/////////////////////////////////////////////////////
// Compute which ways in the cache match the address being read
generate
for (i = 0; i < associativity; i = i + 1)
begin : match
assign way_match[i] = ({way_tag[i], way_valid[i]} == {address_m[`LM32_DC_ADDR_TAG_RNG], `TRUE});
end
endgenerate
// Select data from way that matched the address being read
generate
if (associativity == 1)
begin : data_1
assign load_data = way_data[0];
end
else if (associativity == 2)
begin : data_2
assign load_data = way_match[0] ? way_data[0] : way_data[1];
end
endgenerate
generate
if (`LM32_DC_DMEM_ADDR_WIDTH < 7)
begin
// Select data to write to data memories
always @(*)
begin
if (refill == `TRUE)
dmem_write_data = refill_data;
else
begin
dmem_write_data[`LM32_BYTE_0_RNG] = store_byte_select[0] ? store_data[`LM32_BYTE_0_RNG] : load_data[`LM32_BYTE_0_RNG];
dmem_write_data[`LM32_BYTE_1_RNG] = store_byte_select[1] ? store_data[`LM32_BYTE_1_RNG] : load_data[`LM32_BYTE_1_RNG];
dmem_write_data[`LM32_BYTE_2_RNG] = store_byte_select[2] ? store_data[`LM32_BYTE_2_RNG] : load_data[`LM32_BYTE_2_RNG];
dmem_write_data[`LM32_BYTE_3_RNG] = store_byte_select[3] ? store_data[`LM32_BYTE_3_RNG] : load_data[`LM32_BYTE_3_RNG];
end
end
end
else
begin
// Select data to write to data memories - FIXME: Should use different write ports on dual port RAMs, but they don't work
always @(*)
begin
if (refill == `TRUE)
dmem_write_data = refill_data;
else
dmem_write_data = store_data;
end
end
endgenerate
// Compute address to use to index into the data memories
generate
if (bytes_per_line > 4)
assign dmem_write_address = (refill == `TRUE)
? {refill_address[`LM32_DC_ADDR_SET_RNG], refill_offset}
: address_m[`LM32_DC_ADDR_IDX_RNG];
else
assign dmem_write_address = (refill == `TRUE)
? refill_address[`LM32_DC_ADDR_SET_RNG]
: address_m[`LM32_DC_ADDR_IDX_RNG];
endgenerate
assign dmem_read_address = address_x[`LM32_DC_ADDR_IDX_RNG];
// Compute address to use to index into the tag memories
assign tmem_write_address = (flushing == `TRUE)
? flush_set
: refill_address[`LM32_DC_ADDR_SET_RNG];
assign tmem_read_address = address_x[`LM32_DC_ADDR_SET_RNG];
// Compute signal to indicate when we are on the last refill accesses
generate
if (bytes_per_line > 4)
assign last_refill = refill_offset == {addr_offset_width{1'b1}};
else
assign last_refill = `TRUE;
endgenerate
// Compute data and tag memory access enable
assign read_port_enable = (stall_x == `FALSE);
assign write_port_enable = (refill_ready == `TRUE) || !stall_m;
// Determine when we have a valid store
assign valid_store = (store_q_m == `TRUE) && (check == `TRUE);
// Compute data and tag memory write enables
generate
if (associativity == 1)
begin : we_1
assign way_dmem_we[0] = (refill_ready == `TRUE) || ((valid_store == `TRUE) && (way_match[0] == `TRUE));
assign way_tmem_we[0] = (refill_ready == `TRUE) || (flushing == `TRUE);
end
else
begin : we_2
assign way_dmem_we[0] = ((refill_ready == `TRUE) && (refill_way_select[0] == `TRUE)) || ((valid_store == `TRUE) && (way_match[0] == `TRUE));
assign way_dmem_we[1] = ((refill_ready == `TRUE) && (refill_way_select[1] == `TRUE)) || ((valid_store == `TRUE) && (way_match[1] == `TRUE));
assign way_tmem_we[0] = ((refill_ready == `TRUE) && (refill_way_select[0] == `TRUE)) || (flushing == `TRUE);
assign way_tmem_we[1] = ((refill_ready == `TRUE) && (refill_way_select[1] == `TRUE)) || (flushing == `TRUE);
end
endgenerate
// On the last refill cycle set the valid bit, for all other writes it should be cleared
assign tmem_write_data[`LM32_DC_TAGS_VALID_RNG] = ((last_refill == `TRUE) || (valid_store == `TRUE)) && (flushing == `FALSE);
assign tmem_write_data[`LM32_DC_TAGS_TAG_RNG] = refill_address[`LM32_DC_ADDR_TAG_RNG];
// Signals that indicate which state we are in
assign flushing = state[0];
assign check = state[1];
assign refill = state[2];
assign miss = (~(|way_match)) && (load_q_m == `TRUE) && (stall_m == `FALSE);
assign stall_request = (check == `FALSE);
/////////////////////////////////////////////////////
// Sequential logic
/////////////////////////////////////////////////////
// Record way selected for replacement on a cache miss
generate
if (associativity >= 2)
begin : way_select
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
refill_way_select <= {{associativity-1{1'b0}}, 1'b1};
else
begin
if (refill_request == `TRUE)
refill_way_select <= {refill_way_select[0], refill_way_select[1]};
end
end
end
endgenerate
// Record whether we are currently refilling
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
refilling <= `FALSE;
else
refilling <= refill;
end
// Instruction cache control FSM
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
begin
state <= `LM32_DC_STATE_FLUSH;
flush_set <= {`LM32_DC_TMEM_ADDR_WIDTH{1'b1}};
refill_request <= `FALSE;
refill_address <= {`LM32_WORD_WIDTH{1'bx}};
restart_request <= `FALSE;
end
else
begin
case (state)
// Flush the cache
`LM32_DC_STATE_FLUSH:
begin
if (flush_set == {`LM32_DC_TMEM_ADDR_WIDTH{1'b0}})
state <= `LM32_DC_STATE_CHECK;
flush_set <= flush_set - 1'b1;
end
// Check for cache misses
`LM32_DC_STATE_CHECK:
begin
if (stall_a == `FALSE)
restart_request <= `FALSE;
if (miss == `TRUE)
begin
refill_request <= `TRUE;
refill_address <= address_m;
state <= `LM32_DC_STATE_REFILL;
end
else if (dflush == `TRUE)
state <= `LM32_DC_STATE_FLUSH;
end
// Refill a cache line
`LM32_DC_STATE_REFILL:
begin
refill_request <= `FALSE;
if (refill_ready == `TRUE)
begin
if (last_refill == `TRUE)
begin
restart_request <= `TRUE;
state <= `LM32_DC_STATE_CHECK;
end
end
end
endcase
end
end
generate
if (bytes_per_line > 4)
begin
// Refill offset
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
refill_offset <= {addr_offset_width{1'b0}};
else
begin
case (state)
// Check for cache misses
`LM32_DC_STATE_CHECK:
begin
if (miss == `TRUE)
refill_offset <= {addr_offset_width{1'b0}};
end
// Refill a cache line
`LM32_DC_STATE_REFILL:
begin
if (refill_ready == `TRUE)
refill_offset <= refill_offset + 1'b1;
end
endcase
end
end
end
endgenerate
endmodule
`endif

View File

@@ -0,0 +1,340 @@
// =============================================================================
// COPYRIGHT NOTICE
// Copyright 2006 (c) Lattice Semiconductor Corporation
// ALL RIGHTS RESERVED
// This confidential and proprietary software may be used only as authorised by
// a licensing agreement from Lattice Semiconductor Corporation.
// The entire notice above must be reproduced on all authorized copies and
// copies may only be made to the extent permitted by a licensing agreement from
// Lattice Semiconductor Corporation.
//
// Lattice Semiconductor Corporation TEL : 1-800-Lattice (USA and Canada)
// 5555 NE Moore Court 408-826-6000 (other locations)
// Hillsboro, OR 97124 web : http://www.latticesemi.com/
// U.S.A email: techsupport@latticesemi.com
// =============================================================================/
// FILE DETAILS
// Project : LatticeMico32
// File : lm32_debug.v
// Title : Hardware debug registers and associated logic.
// Dependencies : lm32_include.v
// Version : 6.1.17
// =============================================================================
`include "lm32_include.v"
`ifdef CFG_DEBUG_ENABLED
// States for single-step FSM
`define LM32_DEBUG_SS_STATE_RNG 2:0
`define LM32_DEBUG_SS_STATE_IDLE 3'b000
`define LM32_DEBUG_SS_STATE_WAIT_FOR_RET 3'b001
`define LM32_DEBUG_SS_STATE_EXECUTE_ONE_INSN 3'b010
`define LM32_DEBUG_SS_STATE_RAISE_BREAKPOINT 3'b011
`define LM32_DEBUG_SS_STATE_RESTART 3'b100
/////////////////////////////////////////////////////
// Module interface
/////////////////////////////////////////////////////
module lm32_debug (
// ----- Inputs -------
clk_i,
rst_i,
pc_x,
load_x,
store_x,
load_store_address_x,
csr_write_enable_x,
csr_write_data,
csr_x,
`ifdef CFG_HW_DEBUG_ENABLED
jtag_csr_write_enable,
jtag_csr_write_data,
jtag_csr,
`endif
`ifdef LM32_SINGLE_STEP_ENABLED
eret_q_x,
bret_q_x,
stall_x,
exception_x,
q_x,
`ifdef CFG_DCACHE_ENABLED
dcache_refill_request,
`endif
`endif
// ----- Outputs -------
`ifdef LM32_SINGLE_STEP_ENABLED
dc_ss,
`endif
dc_re,
bp_match,
wp_match
);
/////////////////////////////////////////////////////
// Parameters
/////////////////////////////////////////////////////
parameter breakpoints = 0; // Number of breakpoint CSRs
parameter watchpoints = 0; // Number of watchpoint CSRs
/////////////////////////////////////////////////////
// Inputs
/////////////////////////////////////////////////////
input clk_i; // Clock
input rst_i; // Reset
input [`LM32_PC_RNG] pc_x; // X stage PC
input load_x; // Load instruction in X stage
input store_x; // Store instruction in X stage
input [`LM32_WORD_RNG] load_store_address_x; // Load or store effective address
input csr_write_enable_x; // wcsr instruction in X stage
input [`LM32_WORD_RNG] csr_write_data; // Data to write to CSR
input [`LM32_CSR_RNG] csr_x; // Which CSR to write
`ifdef CFG_HW_DEBUG_ENABLED
input jtag_csr_write_enable; // JTAG interface CSR write enable
input [`LM32_WORD_RNG] jtag_csr_write_data; // Data to write to CSR
input [`LM32_CSR_RNG] jtag_csr; // Which CSR to write
`endif
`ifdef LM32_SINGLE_STEP_ENABLED
input eret_q_x; // eret instruction in X stage
input bret_q_x; // bret instruction in X stage
input stall_x; // Instruction in X stage is stalled
input exception_x; // An exception has occured in X stage
input q_x; // Indicates the instruction in the X stage is qualified
`ifdef CFG_DCACHE_ENABLED
input dcache_refill_request; // Indicates data cache wants to be refilled
`endif
`endif
/////////////////////////////////////////////////////
// Outputs
/////////////////////////////////////////////////////
`ifdef LM32_SINGLE_STEP_ENABLED
output dc_ss; // Single-step enable
reg dc_ss;
`endif
output dc_re; // Remap exceptions
reg dc_re;
output bp_match; // Indicates a breakpoint has matched
wire bp_match;
output wp_match; // Indicates a watchpoint has matched
wire wp_match;
/////////////////////////////////////////////////////
// Internal nets and registers
/////////////////////////////////////////////////////
genvar i; // Loop index for generate statements
// Debug CSRs
reg [`LM32_PC_RNG] bp_a[0:breakpoints-1]; // Instruction breakpoint address
reg bp_e[0:breakpoints-1]; // Instruction breakpoint enable
wire [0:breakpoints-1]bp_match_n; // Indicates if a h/w instruction breakpoint matched
reg [`LM32_WPC_C_RNG] wpc_c[0:watchpoints-1]; // Watchpoint enable
reg [`LM32_WORD_RNG] wp[0:watchpoints-1]; // Watchpoint address
wire [0:watchpoints-1]wp_match_n; // Indicates if a h/w data watchpoint matched
wire debug_csr_write_enable; // Debug CSR write enable (from either a wcsr instruction of external debugger)
wire [`LM32_WORD_RNG] debug_csr_write_data; // Data to write to debug CSR
wire [`LM32_CSR_RNG] debug_csr; // Debug CSR to write to
`ifdef LM32_SINGLE_STEP_ENABLED
// FIXME: Declaring this as a reg causes ModelSim 6.1.15b to crash, so use integer for now
//reg [`LM32_DEBUG_SS_STATE_RNG] state; // State of single-step FSM
integer state; // State of single-step FSM
`endif
/////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////
`include "lm32_functions.v"
/////////////////////////////////////////////////////
// Combinational Logic
/////////////////////////////////////////////////////
// Check for breakpoints
generate
for (i = 0; i < breakpoints; i = i + 1)
begin : bp_comb
assign bp_match_n[i] = ((bp_a[i] == pc_x) && (bp_e[i] == `TRUE));
end
endgenerate
generate
`ifdef LM32_SINGLE_STEP_ENABLED
if (breakpoints > 0)
assign bp_match = (|bp_match_n) || (state == `LM32_DEBUG_SS_STATE_RAISE_BREAKPOINT);
else
assign bp_match = state == `LM32_DEBUG_SS_STATE_RAISE_BREAKPOINT;
`else
if (breakpoints > 0)
assign bp_match = |bp_match_n;
else
assign bp_match = `FALSE;
`endif
endgenerate
// Check for watchpoints
generate
for (i = 0; i < watchpoints; i = i + 1)
begin : wp_comb
assign wp_match_n[i] = (wp[i] == load_store_address_x) && ((load_x & wpc_c[i][0]) | (store_x & wpc_c[i][1]));
end
endgenerate
generate
if (watchpoints > 0)
assign wp_match = |wp_match_n;
else
assign wp_match = `FALSE;
endgenerate
`ifdef CFG_HW_DEBUG_ENABLED
// Multiplex between wcsr instruction writes and debugger writes to the debug CSRs
assign debug_csr_write_enable = (csr_write_enable_x == `TRUE) || (jtag_csr_write_enable == `TRUE);
assign debug_csr_write_data = jtag_csr_write_enable == `TRUE ? jtag_csr_write_data : csr_write_data;
assign debug_csr = jtag_csr_write_enable == `TRUE ? jtag_csr : csr_x;
`else
assign debug_csr_write_enable = csr_write_enable_x;
assign debug_csr_write_data = csr_write_data;
assign debug_csr = csr_x;
`endif
/////////////////////////////////////////////////////
// Sequential Logic
/////////////////////////////////////////////////////
// Breakpoint address and enable CSRs
generate
for (i = 0; i < breakpoints; i = i + 1)
begin : bp_seq
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
begin
bp_a[i] <= {`LM32_PC_WIDTH{1'bx}};
bp_e[i] <= `FALSE;
end
else
begin
if ((debug_csr_write_enable == `TRUE) && (debug_csr == `LM32_CSR_BP0 + i))
begin
bp_a[i] <= debug_csr_write_data[`LM32_PC_RNG];
bp_e[i] <= debug_csr_write_data[0];
end
end
end
end
endgenerate
// Watchpoint address and control flags CSRs
generate
for (i = 0; i < watchpoints; i = i + 1)
begin : wp_seq
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
begin
wp[i] <= {`LM32_WORD_WIDTH{1'bx}};
wpc_c[i] <= `LM32_WPC_C_DISABLED;
end
else
begin
if (debug_csr_write_enable == `TRUE)
begin
if (debug_csr == `LM32_CSR_DC)
wpc_c[i] <= debug_csr_write_data[3+i*2:2+i*2];
if (debug_csr == `LM32_CSR_WP0 + i)
wp[i] <= debug_csr_write_data;
end
end
end
end
endgenerate
// Remap exceptions control bit
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
dc_re <= `FALSE;
else
begin
if ((debug_csr_write_enable == `TRUE) && (debug_csr == `LM32_CSR_DC))
dc_re <= debug_csr_write_data[1];
end
end
`ifdef LM32_SINGLE_STEP_ENABLED
// Single-step control flag
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
begin
state <= `LM32_DEBUG_SS_STATE_IDLE;
dc_ss <= `FALSE;
end
else
begin
if ((debug_csr_write_enable == `TRUE) && (debug_csr == `LM32_CSR_DC))
begin
dc_ss <= debug_csr_write_data[0];
if (debug_csr_write_data[0] == `FALSE)
state <= `LM32_DEBUG_SS_STATE_IDLE;
else
state <= `LM32_DEBUG_SS_STATE_WAIT_FOR_RET;
end
case (state)
`LM32_DEBUG_SS_STATE_WAIT_FOR_RET:
begin
// Wait for eret or bret instruction to be executed
if ( ( (eret_q_x == `TRUE)
|| (bret_q_x == `TRUE)
)
&& (stall_x == `FALSE)
)
state <= `LM32_DEBUG_SS_STATE_EXECUTE_ONE_INSN;
end
`LM32_DEBUG_SS_STATE_EXECUTE_ONE_INSN:
begin
// Wait for an instruction to be executed
if ((q_x == `TRUE) && (stall_x == `FALSE))
state <= `LM32_DEBUG_SS_STATE_RAISE_BREAKPOINT;
end
`LM32_DEBUG_SS_STATE_RAISE_BREAKPOINT:
begin
// Wait for exception to be raised
`ifdef CFG_DCACHE_ENABLED
if (dcache_refill_request == `TRUE)
state <= `LM32_DEBUG_SS_STATE_EXECUTE_ONE_INSN;
else
`endif
if ((exception_x == `TRUE) && (q_x == `TRUE) && (stall_x == `FALSE))
begin
dc_ss <= `FALSE;
state <= `LM32_DEBUG_SS_STATE_RESTART;
end
end
`LM32_DEBUG_SS_STATE_RESTART:
begin
// Watch to see if stepped instruction is restarted due to a cache miss
`ifdef CFG_DCACHE_ENABLED
if (dcache_refill_request == `TRUE)
state <= `LM32_DEBUG_SS_STATE_EXECUTE_ONE_INSN;
else
`endif
state <= `LM32_DEBUG_SS_STATE_IDLE;
end
endcase
end
end
`endif
endmodule
`endif

View File

@@ -0,0 +1,564 @@
// =============================================================================
// COPYRIGHT NOTICE
// Copyright 2006 (c) Lattice Semiconductor Corporation
// ALL RIGHTS RESERVED
// This confidential and proprietary software may be used only as authorised by
// a licensing agreement from Lattice Semiconductor Corporation.
// The entire notice above must be reproduced on all authorized copies and
// copies may only be made to the extent permitted by a licensing agreement from
// Lattice Semiconductor Corporation.
//
// Lattice Semiconductor Corporation TEL : 1-800-Lattice (USA and Canada)
// 5555 NE Moore Court 408-826-6000 (other locations)
// Hillsboro, OR 97124 web : http://www.latticesemi.com/
// U.S.A email: techsupport@latticesemi.com
// =============================================================================/
// FILE DETAILS
// Project : LatticeMico32
// File : lm32_decoder.v
// Title : Instruction decoder
// Dependencies : lm32_include.v
// Version : 6.1.17
// =============================================================================
`include "lm32_include.v"
// Index of opcode field in an instruction
`define LM32_OPCODE_RNG 31:26
`define LM32_OP_RNG 30:26
// Opcodes - Some are only listed as 5 bits as their MSB is a don't care
`define LM32_OPCODE_ADD 5'b01101
`define LM32_OPCODE_AND 5'b01000
`define LM32_OPCODE_ANDHI 6'b011000
`define LM32_OPCODE_B 6'b110000
`define LM32_OPCODE_BI 6'b111000
`define LM32_OPCODE_BE 6'b010001
`define LM32_OPCODE_BG 6'b010010
`define LM32_OPCODE_BGE 6'b010011
`define LM32_OPCODE_BGEU 6'b010100
`define LM32_OPCODE_BGU 6'b010101
`define LM32_OPCODE_BNE 6'b010111
`define LM32_OPCODE_CALL 6'b110110
`define LM32_OPCODE_CALLI 6'b111110
`define LM32_OPCODE_CMPE 5'b11001
`define LM32_OPCODE_CMPG 5'b11010
`define LM32_OPCODE_CMPGE 5'b11011
`define LM32_OPCODE_CMPGEU 5'b11100
`define LM32_OPCODE_CMPGU 5'b11101
`define LM32_OPCODE_CMPNE 5'b11111
`define LM32_OPCODE_DIVU 6'b100011
`define LM32_OPCODE_LB 6'b000100
`define LM32_OPCODE_LBU 6'b010000
`define LM32_OPCODE_LH 6'b000111
`define LM32_OPCODE_LHU 6'b001011
`define LM32_OPCODE_LW 6'b001010
`define LM32_OPCODE_MODU 6'b110001
`define LM32_OPCODE_MUL 5'b00010
`define LM32_OPCODE_NOR 5'b00001
`define LM32_OPCODE_OR 5'b01110
`define LM32_OPCODE_ORHI 6'b011110
`define LM32_OPCODE_RAISE 6'b101011
`define LM32_OPCODE_RCSR 6'b100100
`define LM32_OPCODE_SB 6'b001100
`define LM32_OPCODE_SEXTB 6'b101100
`define LM32_OPCODE_SEXTH 6'b110111
`define LM32_OPCODE_SH 6'b000011
`define LM32_OPCODE_SL 5'b01111
`define LM32_OPCODE_SR 5'b00101
`define LM32_OPCODE_SRU 5'b00000
`define LM32_OPCODE_SUB 6'b110010
`define LM32_OPCODE_SW 6'b010110
`define LM32_OPCODE_USER 6'b110011
`define LM32_OPCODE_WCSR 6'b110100
`define LM32_OPCODE_XNOR 5'b01001
`define LM32_OPCODE_XOR 5'b00110
/////////////////////////////////////////////////////
// Module interface
/////////////////////////////////////////////////////
module lm32_decoder (
// ----- Inputs -------
instruction,
// ----- Outputs -------
d_result_sel_0,
d_result_sel_1,
x_result_sel_csr,
`ifdef LM32_MC_ARITHMETIC_ENABLED
x_result_sel_mc_arith,
`endif
`ifdef LM32_NO_BARREL_SHIFT
x_result_sel_shift,
`endif
`ifdef CFG_SIGN_EXTEND_ENABLED
x_result_sel_sext,
`endif
x_result_sel_logic,
`ifdef CFG_USER_ENABLED
x_result_sel_user,
`endif
x_result_sel_add,
m_result_sel_compare,
`ifdef CFG_PL_BARREL_SHIFT_ENABLED
m_result_sel_shift,
`endif
w_result_sel_load,
`ifdef CFG_PL_MULTIPLY_ENABLED
w_result_sel_mul,
`endif
x_bypass_enable,
m_bypass_enable,
read_enable_0,
read_idx_0,
read_enable_1,
read_idx_1,
write_enable,
write_idx,
immediate,
branch_offset,
load,
store,
size,
sign_extend,
adder_op,
logic_op,
`ifdef CFG_PL_BARREL_SHIFT_ENABLED
direction,
`endif
`ifdef CFG_MC_BARREL_SHIFT_ENABLED
shift_left,
shift_right,
`endif
`ifdef CFG_MC_MULTIPLY_ENABLED
multiply,
`endif
`ifdef CFG_MC_DIVIDE_ENABLED
divide,
modulus,
`endif
branch,
branch_reg,
condition,
`ifdef CFG_DEBUG_ENABLED
break,
`endif
scall,
eret,
`ifdef CFG_DEBUG_ENABLED
bret,
`endif
`ifdef CFG_USER_ENABLED
user_opcode,
`endif
csr_write_enable
);
/////////////////////////////////////////////////////
// Inputs
/////////////////////////////////////////////////////
input [`LM32_INSTRUCTION_RNG] instruction; // Instruction to decode
/////////////////////////////////////////////////////
// Outputs
/////////////////////////////////////////////////////
output [`LM32_D_RESULT_SEL_0_RNG] d_result_sel_0;
reg [`LM32_D_RESULT_SEL_0_RNG] d_result_sel_0;
output [`LM32_D_RESULT_SEL_1_RNG] d_result_sel_1;
reg [`LM32_D_RESULT_SEL_1_RNG] d_result_sel_1;
output x_result_sel_csr;
reg x_result_sel_csr;
`ifdef LM32_MC_ARITHMETIC_ENABLED
output x_result_sel_mc_arith;
reg x_result_sel_mc_arith;
`endif
`ifdef LM32_NO_BARREL_SHIFT
output x_result_sel_shift;
reg x_result_sel_shift;
`endif
`ifdef CFG_SIGN_EXTEND_ENABLED
output x_result_sel_sext;
reg x_result_sel_sext;
`endif
output x_result_sel_logic;
reg x_result_sel_logic;
`ifdef CFG_USER_ENABLED
output x_result_sel_user;
reg x_result_sel_user;
`endif
output x_result_sel_add;
reg x_result_sel_add;
output m_result_sel_compare;
reg m_result_sel_compare;
`ifdef CFG_PL_BARREL_SHIFT_ENABLED
output m_result_sel_shift;
reg m_result_sel_shift;
`endif
output w_result_sel_load;
reg w_result_sel_load;
`ifdef CFG_PL_MULTIPLY_ENABLED
output w_result_sel_mul;
reg w_result_sel_mul;
`endif
output x_bypass_enable;
wire x_bypass_enable;
output m_bypass_enable;
wire m_bypass_enable;
output read_enable_0;
wire read_enable_0;
output [`LM32_REG_IDX_RNG] read_idx_0;
wire [`LM32_REG_IDX_RNG] read_idx_0;
output read_enable_1;
wire read_enable_1;
output [`LM32_REG_IDX_RNG] read_idx_1;
wire [`LM32_REG_IDX_RNG] read_idx_1;
output write_enable;
wire write_enable;
output [`LM32_REG_IDX_RNG] write_idx;
wire [`LM32_REG_IDX_RNG] write_idx;
output [`LM32_WORD_RNG] immediate;
wire [`LM32_WORD_RNG] immediate;
output [`LM32_PC_RNG] branch_offset;
wire [`LM32_PC_RNG] branch_offset;
output load;
wire load;
output store;
wire store;
output [`LM32_SIZE_RNG] size;
wire [`LM32_SIZE_RNG] size;
output sign_extend;
wire sign_extend;
output adder_op;
wire adder_op;
output [`LM32_LOGIC_OP_RNG] logic_op;
wire [`LM32_LOGIC_OP_RNG] logic_op;
`ifdef CFG_PL_BARREL_SHIFT_ENABLED
output direction;
wire direction;
`endif
`ifdef CFG_MC_BARREL_SHIFT_ENABLED
output shift_left;
wire shift_left;
output shift_right;
wire shift_right;
`endif
`ifdef CFG_MC_MULTIPLY_ENABLED
output multiply;
wire multiply;
`endif
`ifdef CFG_MC_DIVIDE_ENABLED
output divide;
wire divide;
output modulus;
wire modulus;
`endif
output branch;
wire branch;
output branch_reg;
wire branch_reg;
output [`LM32_CONDITION_RNG] condition;
wire [`LM32_CONDITION_RNG] condition;
`ifdef CFG_DEBUG_ENABLED
output break;
wire break;
`endif
output scall;
wire scall;
output eret;
wire eret;
`ifdef CFG_DEBUG_ENABLED
output bret;
wire bret;
`endif
`ifdef CFG_USER_ENABLED
output [`LM32_USER_OPCODE_RNG] user_opcode;
wire [`LM32_USER_OPCODE_RNG] user_opcode;
`endif
output csr_write_enable;
wire csr_write_enable;
/////////////////////////////////////////////////////
// Internal nets and registers
/////////////////////////////////////////////////////
wire [`LM32_WORD_RNG] extended_immediate; // Zero or sign extended immediate
wire [`LM32_WORD_RNG] high_immediate; // Immediate as high 16 bits
wire [`LM32_WORD_RNG] call_immediate; // Call immediate
wire [`LM32_WORD_RNG] branch_immediate; // Conditional branch immediate
wire sign_extend_immediate; // Whether the immediate should be sign extended (`TRUE) or zero extended (`FALSE)
wire select_high_immediate; // Whether to select the high immediate
wire select_call_immediate; // Whether to select the call immediate
/////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////
`include "lm32_functions.v"
/////////////////////////////////////////////////////
// Combinational logic
/////////////////////////////////////////////////////
// Determine opcode
wire op_add = instruction[`LM32_OP_RNG] == `LM32_OPCODE_ADD;
wire op_and = instruction[`LM32_OP_RNG] == `LM32_OPCODE_AND;
wire op_andhi = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_ANDHI;
wire op_b = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_B;
wire op_bi = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_BI;
wire op_be = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_BE;
wire op_bg = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_BG;
wire op_bge = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_BGE;
wire op_bgeu = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_BGEU;
wire op_bgu = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_BGU;
wire op_bne = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_BNE;
wire op_call = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_CALL;
wire op_calli = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_CALLI;
wire op_cmpe = instruction[`LM32_OP_RNG] == `LM32_OPCODE_CMPE;
wire op_cmpg = instruction[`LM32_OP_RNG] == `LM32_OPCODE_CMPG;
wire op_cmpge = instruction[`LM32_OP_RNG] == `LM32_OPCODE_CMPGE;
wire op_cmpgeu = instruction[`LM32_OP_RNG] == `LM32_OPCODE_CMPGEU;
wire op_cmpgu = instruction[`LM32_OP_RNG] == `LM32_OPCODE_CMPGU;
wire op_cmpne = instruction[`LM32_OP_RNG] == `LM32_OPCODE_CMPNE;
`ifdef CFG_MC_DIVIDE_ENABLED
wire op_divu = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_DIVU;
`endif
wire op_lb = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_LB;
wire op_lbu = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_LBU;
wire op_lh = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_LH;
wire op_lhu = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_LHU;
wire op_lw = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_LW;
`ifdef CFG_MC_DIVIDE_ENABLED
wire op_modu = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_MODU;
`endif
`ifdef LM32_MULTIPLY_ENABLED
wire op_mul = instruction[`LM32_OP_RNG] == `LM32_OPCODE_MUL;
`endif
wire op_nor = instruction[`LM32_OP_RNG] == `LM32_OPCODE_NOR;
wire op_or = instruction[`LM32_OP_RNG] == `LM32_OPCODE_OR;
wire op_orhi = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_ORHI;
wire op_raise = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_RAISE;
wire op_rcsr = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_RCSR;
wire op_sb = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_SB;
`ifdef CFG_SIGN_EXTEND_ENABLED
wire op_sextb = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_SEXTB;
wire op_sexth = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_SEXTH;
`endif
wire op_sh = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_SH;
`ifdef LM32_BARREL_SHIFT_ENABLED
wire op_sl = instruction[`LM32_OP_RNG] == `LM32_OPCODE_SL;
`endif
wire op_sr = instruction[`LM32_OP_RNG] == `LM32_OPCODE_SR;
wire op_sru = instruction[`LM32_OP_RNG] == `LM32_OPCODE_SRU;
wire op_sub = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_SUB;
wire op_sw = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_SW;
wire op_user = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_USER;
wire op_wcsr = instruction[`LM32_OPCODE_RNG] == `LM32_OPCODE_WCSR;
wire op_xnor = instruction[`LM32_OP_RNG] == `LM32_OPCODE_XNOR;
wire op_xor = instruction[`LM32_OP_RNG] == `LM32_OPCODE_XOR;
// Group opcodes by function
wire arith = op_add | op_sub;
wire logicc = op_and | op_andhi | op_nor | op_or | op_orhi | op_xor | op_xnor;
wire cmp = op_cmpe | op_cmpg | op_cmpge | op_cmpgeu | op_cmpgu | op_cmpne;
wire bra = op_b | op_bi | op_be | op_bg | op_bge | op_bgeu | op_bgu | op_bne;
wire call = op_call | op_calli;
`ifdef LM32_BARREL_SHIFT_ENABLED
wire shift = op_sl | op_sr | op_sru;
`endif
`ifdef LM32_NO_BARREL_SHIFT
wire shift = op_sr | op_sru;
`endif
`ifdef CFG_MC_BARREL_SHIFT_ENABLED
assign shift_left = op_sl;
assign shift_right = op_sr | op_sru;
`endif
`ifdef CFG_SIGN_EXTEND_ENABLED
wire sext = op_sextb | op_sexth;
`endif
`ifdef LM32_MULTIPLY_ENABLED
wire multiply = op_mul;
`endif
`ifdef CFG_MC_DIVIDE_ENABLED
assign divide = op_divu;
assign modulus = op_modu;
`endif
assign load = op_lb | op_lbu | op_lh | op_lhu | op_lw;
assign store = op_sb | op_sh | op_sw;
// Select pipeline multiplexor controls
always @*
begin
// D stage
if (call)
d_result_sel_0 = `LM32_D_RESULT_SEL_0_NEXT_PC;
else
d_result_sel_0 = `LM32_D_RESULT_SEL_0_REG_0;
if (call)
d_result_sel_1 = `LM32_D_RESULT_SEL_1_ZERO;
else if ((instruction[31] == 1'b0) && !bra)
d_result_sel_1 = `LM32_D_RESULT_SEL_1_IMMEDIATE;
else
d_result_sel_1 = `LM32_D_RESULT_SEL_1_REG_1;
// X stage
x_result_sel_csr = `FALSE;
`ifdef LM32_MC_ARITHMETIC_ENABLED
x_result_sel_mc_arith = `FALSE;
`endif
`ifdef LM32_NO_BARREL_SHIFT
x_result_sel_shift = `FALSE;
`endif
`ifdef CFG_SIGN_EXTEND_ENABLED
x_result_sel_sext = `FALSE;
`endif
x_result_sel_logic = `FALSE;
`ifdef CFG_USER_ENABLED
x_result_sel_user = `FALSE;
`endif
x_result_sel_add = `FALSE;
if (op_rcsr)
x_result_sel_csr = `TRUE;
`ifdef LM32_MC_ARITHMETIC_ENABLED
`ifdef CFG_MC_BARREL_SHIFT_ENABLED
else if (shift_left | shift_right)
x_result_sel_mc_arith = `TRUE;
`endif
`ifdef CFG_MC_DIVIDE_ENABLED
else if (divide | modulus)
x_result_sel_mc_arith = `TRUE;
`endif
`ifdef CFG_MC_MULTIPLY_ENABLED
else if (multiply)
x_result_sel_mc_arith = `TRUE;
`endif
`endif
`ifdef LM32_NO_BARREL_SHIFT
else if (shift)
x_result_sel_shift = `TRUE;
`endif
`ifdef CFG_SIGN_EXTEND_ENABLED
else if (sext)
x_result_sel_sext = `TRUE;
`endif
else if (logicc)
x_result_sel_logic = `TRUE;
`ifdef CFG_USER_ENABLED
else if (op_user)
x_result_sel_user = `TRUE;
`endif
else
x_result_sel_add = `TRUE;
// M stage
m_result_sel_compare = cmp;
`ifdef CFG_PL_BARREL_SHIFT_ENABLED
m_result_sel_shift = shift;
`endif
// W stage
w_result_sel_load = load;
`ifdef CFG_PL_MULTIPLY_ENABLED
w_result_sel_mul = op_mul;
`endif
end
// Set if result is valid at end of X stage
assign x_bypass_enable = arith
| logicc
`ifdef CFG_MC_BARREL_SHIFT_ENABLED
| shift_left
| shift_right
`endif
`ifdef CFG_MC_MULTIPLY_ENABLED
| multiply
`endif
`ifdef CFG_MC_DIVIDE_ENABLED
| divide
| modulus
`endif
`ifdef LM32_NO_BARREL_SHIFT
| shift
`endif
`ifdef CFG_SIGN_EXTEND_ENABLED
| sext
`endif
`ifdef CFG_USER_ENABLED
| op_user
`endif
| op_rcsr
;
// Set if result is valid at end of M stage
assign m_bypass_enable = x_bypass_enable
`ifdef CFG_PL_BARREL_SHIFT_ENABLED
| shift
`endif
| cmp
;
// Register file read port 0
assign read_enable_0 = ~(op_bi | op_calli);
assign read_idx_0 = instruction[25:21];
// Register file read port 1
assign read_enable_1 = ~(op_bi | op_calli | load);
assign read_idx_1 = instruction[20:16];
// Register file write port
assign write_enable = ~(bra | op_raise | store | op_wcsr);
assign write_idx = call
? 5'd29
: instruction[31] == 1'b0
? instruction[20:16]
: instruction[15:11];
// Size of load/stores
assign size = instruction[27:26];
// Whether to sign or zero extend
assign sign_extend = instruction[28];
// Set adder_op to 1 to perform a subtraction
assign adder_op = op_sub | op_cmpe | op_cmpg | op_cmpge | op_cmpgeu | op_cmpgu | op_cmpne | bra;
// Logic operation (and, or, etc)
assign logic_op = instruction[29:26];
`ifdef CFG_PL_BARREL_SHIFT_ENABLED
// Shift direction
assign direction = instruction[29];
`endif
// Control flow microcodes
assign branch = bra | call;
assign branch_reg = op_call | op_b;
assign condition = instruction[28:26];
`ifdef CFG_DEBUG_ENABLED
assign break = op_raise & ~instruction[2];
`endif
assign scall = op_raise & instruction[2];
assign eret = op_b & (instruction[25:21] == 5'd30);
`ifdef CFG_DEBUG_ENABLED
assign bret = op_b & (instruction[25:21] == 5'd31);
`endif
`ifdef CFG_USER_ENABLED
// Extract user opcode
assign user_opcode = instruction[10:0];
`endif
// CSR read/write
assign csr_write_enable = op_wcsr;
// Extract immediate from instruction
assign sign_extend_immediate = ~(op_and | op_cmpgeu | op_cmpgu | op_nor | op_or | op_xnor | op_xor);
assign select_high_immediate = op_andhi | op_orhi;
assign select_call_immediate = instruction[31];
assign high_immediate = {instruction[15:0], 16'h0000};
assign extended_immediate = {{16{sign_extend_immediate & instruction[15]}}, instruction[15:0]};
assign call_immediate = {{6{instruction[25]}}, instruction[25:0]};
assign branch_immediate = {{16{instruction[15]}}, instruction[15:0]};
assign immediate = select_high_immediate == `TRUE
? high_immediate
: extended_immediate;
assign branch_offset = select_call_immediate == `TRUE
? call_immediate
: branch_immediate;
endmodule

View File

@@ -0,0 +1,29 @@
// =============================================================================
// COPYRIGHT NOTICE
// Copyright 2006 (c) Lattice Semiconductor Corporation
// ALL RIGHTS RESERVED
// This confidential and proprietary software may be used only as authorised by
// a licensing agreement from Lattice Semiconductor Corporation.
// The entire notice above must be reproduced on all authorized copies and
// copies may only be made to the extent permitted by a licensing agreement from
// Lattice Semiconductor Corporation.
//
// Lattice Semiconductor Corporation TEL : 1-800-Lattice (USA and Canada)
// 5555 NE Moore Court 408-826-6000 (other locations)
// Hillsboro, OR 97124 web : http://www.latticesemi.com/
// U.S.A email: techsupport@latticesemi.com
// =============================================================================/
// FILE DETAILS
// Project : LatticeMico32
// File : lm32_functions.v
// Title : Common functions
// Version : 6.1.17
// =============================================================================
function integer clogb2;
input [31:0] value;
begin
for (clogb2 = 0; value > 0; clogb2 = clogb2 + 1)
value = value >> 1;
end
endfunction

View File

@@ -0,0 +1,428 @@
// =============================================================================
// COPYRIGHT NOTICE
// Copyright 2006 (c) Lattice Semiconductor Corporation
// ALL RIGHTS RESERVED
// This confidential and proprietary software may be used only as authorised by
// a licensing agreement from Lattice Semiconductor Corporation.
// The entire notice above must be reproduced on all authorized copies and
// copies may only be made to the extent permitted by a licensing agreement from
// Lattice Semiconductor Corporation.
//
// Lattice Semiconductor Corporation TEL : 1-800-Lattice (USA and Canada)
// 5555 NE Moore Court 408-826-6000 (other locations)
// Hillsboro, OR 97124 web : http://www.latticesemi.com/
// U.S.A email: techsupport@latticesemi.com
// =============================================================================/
// FILE DETAILS
// Project : LatticeMico32
// File : lm32_icache.v
// Title : Instruction cache
// Dependencies : lm32_include.v
// Version : 6.1.17
// =============================================================================
`include "lm32_include.v"
`define LM32_IC_ADDR_OFFSET_RNG addr_offset_msb:addr_offset_lsb
`define LM32_IC_ADDR_SET_RNG addr_set_msb:addr_set_lsb
`define LM32_IC_ADDR_TAG_RNG addr_tag_msb:addr_tag_lsb
`define LM32_IC_ADDR_IDX_RNG addr_set_msb:addr_offset_lsb
`define LM32_IC_TMEM_ADDR_WIDTH addr_set_width
`define LM32_IC_TMEM_ADDR_RNG (`LM32_IC_TMEM_ADDR_WIDTH-1):0
`define LM32_IC_DMEM_ADDR_WIDTH (addr_offset_width+addr_set_width)
`define LM32_IC_DMEM_ADDR_RNG (`LM32_IC_DMEM_ADDR_WIDTH-1):0
`define LM32_IC_TAGS_WIDTH (addr_tag_width+1)
`define LM32_IC_TAGS_RNG (`LM32_IC_TAGS_WIDTH-1):0
`define LM32_IC_TAGS_TAG_RNG (`LM32_IC_TAGS_WIDTH-1):1
`define LM32_IC_TAGS_VALID_RNG 0
`define LM32_IC_STATE_RNG 3:0
`define LM32_IC_STATE_FLUSH_INIT 4'b0001
`define LM32_IC_STATE_FLUSH 4'b0010
`define LM32_IC_STATE_CHECK 4'b0100
`define LM32_IC_STATE_REFILL 4'b1000
/////////////////////////////////////////////////////
// Module interface
/////////////////////////////////////////////////////
module lm32_icache (
// ----- Inputs -----
clk_i,
rst_i,
stall_a,
stall_f,
address_a,
address_f,
read_enable_f,
refill_ready,
refill_data,
iflush,
// ----- Outputs -----
stall_request,
restart_request,
refill_request,
refill_address,
refilling,
inst
);
/////////////////////////////////////////////////////
// Parameters
/////////////////////////////////////////////////////
parameter associativity = 1; // Associativity of the cache (Number of ways)
parameter sets = 512; // Number of sets
parameter bytes_per_line = 16; // Number of bytes per cache line
parameter base_address = 0; // Base address of cachable memory
parameter limit = 0; // Limit (highest address) of cachable memory
localparam addr_offset_width = 2;
localparam addr_set_width = 9;
localparam addr_offset_lsb = 2;
localparam addr_offset_msb = (addr_offset_lsb+addr_offset_width-1);
localparam addr_set_lsb = (addr_offset_msb+1);
localparam addr_set_msb = (addr_set_lsb+addr_set_width-1);
localparam addr_tag_lsb = (addr_set_msb+1);
localparam addr_tag_msb = 31;
localparam addr_tag_width = (addr_tag_msb-addr_tag_lsb+1);
/////////////////////////////////////////////////////
// Inputs
/////////////////////////////////////////////////////
input clk_i; // Clock
input rst_i; // Reset
input stall_a; // Stall instruction in A stage
input stall_f; // Stall instruction in F stage
input [`LM32_PC_RNG] address_a; // Address of instruction in A stage
input [`LM32_PC_RNG] address_f; // Address of instruction in F stage
input read_enable_f; // Indicates if cache access is valid
input refill_ready; // Next word of refill data is ready
input [`LM32_INSTRUCTION_RNG] refill_data; // Data to refill the cache with
input iflush; // Flush the cache
/////////////////////////////////////////////////////
// Outputs
/////////////////////////////////////////////////////
output stall_request; // Request to stall the pipeline
wire stall_request;
output restart_request; // Request to restart instruction that caused the cache miss
reg restart_request;
output refill_request; // Request to refill a cache line
wire refill_request;
output [`LM32_PC_RNG] refill_address; // Base address of cache refill
reg [`LM32_PC_RNG] refill_address;
output refilling; // Indicates the instruction cache is currently refilling
reg refilling;
output [`LM32_INSTRUCTION_RNG] inst; // Instruction read from cache
wire [`LM32_INSTRUCTION_RNG] inst;
/////////////////////////////////////////////////////
// Internal nets and registers
/////////////////////////////////////////////////////
wire enable;
wire [0:associativity-1] way_mem_we;
wire [`LM32_INSTRUCTION_RNG] way_data[0:associativity-1];
wire [`LM32_IC_TAGS_TAG_RNG] way_tag[0:associativity-1];
wire [0:associativity-1] way_valid;
wire [0:associativity-1] way_match;
wire miss;
wire [`LM32_IC_TMEM_ADDR_RNG] tmem_read_address;
wire [`LM32_IC_TMEM_ADDR_RNG] tmem_write_address;
wire [`LM32_IC_DMEM_ADDR_RNG] dmem_read_address;
wire [`LM32_IC_DMEM_ADDR_RNG] dmem_write_address;
wire [`LM32_IC_TAGS_RNG] tmem_write_data;
reg [`LM32_IC_STATE_RNG] state;
wire flushing;
wire check;
wire refill;
reg [associativity-1:0] refill_way_select;
reg [`LM32_IC_ADDR_OFFSET_RNG] refill_offset;
wire last_refill;
reg [`LM32_IC_TMEM_ADDR_RNG] flush_set;
genvar i;
/////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////
`include "lm32_functions.v"
/////////////////////////////////////////////////////
// Instantiations
/////////////////////////////////////////////////////
generate
for (i = 0; i < associativity; i = i + 1)
begin : memories
// Way 0 data
lm32_ram #(
// ----- Parameters -------
.data_width (32),
.address_width (`LM32_IC_DMEM_ADDR_WIDTH)
) way_0_data_ram (
// ----- Inputs -------
.read_clk (clk_i),
.write_clk (clk_i),
.reset (rst_i),
.read_address (dmem_read_address),
.enable_read (enable),
.write_address (dmem_write_address),
.enable_write (`TRUE),
.write_enable (way_mem_we[i]),
.write_data (refill_data),
// ----- Outputs -------
.read_data (way_data[i])
);
// Way 0 tags
lm32_ram #(
// ----- Parameters -------
.data_width (`LM32_IC_TAGS_WIDTH),
.address_width (`LM32_IC_TMEM_ADDR_WIDTH)
) way_0_tag_ram (
// ----- Inputs -------
.read_clk (clk_i),
.write_clk (clk_i),
.reset (rst_i),
.read_address (tmem_read_address),
.enable_read (enable),
.write_address (tmem_write_address),
.enable_write (`TRUE),
.write_enable (way_mem_we[i] | flushing),
.write_data (tmem_write_data),
// ----- Outputs -------
.read_data ({way_tag[i], way_valid[i]})
);
end
endgenerate
/////////////////////////////////////////////////////
// Combinational logic
/////////////////////////////////////////////////////
// Compute which ways in the cache match the address address being read
generate
for (i = 0; i < associativity; i = i + 1)
begin : match
assign way_match[i] = ({way_tag[i], way_valid[i]} == {address_f[`LM32_IC_ADDR_TAG_RNG], `TRUE});
end
endgenerate
// Select data from way that matched the address being read
generate
if (associativity == 1)
begin : inst_1
assign inst = way_data[0];
end
else if (associativity == 2)
begin : inst_2
assign inst = way_match[0] ? way_data[0] : way_data[1];
end
endgenerate
// Compute address to use to index into the data memories
generate
if (bytes_per_line > 4)
begin : wadr1
assign dmem_write_address = {refill_address[`LM32_IC_ADDR_SET_RNG], refill_offset};
end
else
begin : wadr2
assign dmem_write_address = refill_address[`LM32_IC_ADDR_SET_RNG];
end
endgenerate
assign dmem_read_address = address_a[`LM32_IC_ADDR_IDX_RNG];
// Compute address to use to index into the tag memories
assign tmem_read_address = address_a[`LM32_IC_ADDR_SET_RNG];
assign tmem_write_address = flushing
? flush_set
: refill_address[`LM32_IC_ADDR_SET_RNG];
// Compute signal to indicate when we are on the last refill accesses
generate
if (bytes_per_line > 4)
begin : lrefil1
assign last_refill = refill_offset == {addr_offset_width{1'b1}};
end
else
begin : lrefil2
assign last_refill = `TRUE;
end
endgenerate
// Compute data and tag memory access enable
assign enable = (stall_a == `FALSE);
// Compute data and tag memory write enables
generate
if (associativity == 1)
begin : we_1
assign way_mem_we[0] = (refill_ready == `TRUE);
end
else
begin : we_2
assign way_mem_we[0] = (refill_ready == `TRUE) && (refill_way_select[0] == `TRUE);
assign way_mem_we[1] = (refill_ready == `TRUE) && (refill_way_select[1] == `TRUE);
end
endgenerate
// On the last refill cycle set the valid bit, for all other writes it should be cleared
assign tmem_write_data[`LM32_IC_TAGS_VALID_RNG] = last_refill & !flushing;
assign tmem_write_data[`LM32_IC_TAGS_TAG_RNG] = refill_address[`LM32_IC_ADDR_TAG_RNG];
// Signals that indicate which state we are in
assign flushing = |state[1:0];
assign check = state[2];
assign refill = state[3];
assign miss = (~(|way_match)) && (read_enable_f == `TRUE) && (stall_f == `FALSE);
assign stall_request = (check == `FALSE);
assign refill_request = (refill == `TRUE);
/////////////////////////////////////////////////////
// Sequential logic
/////////////////////////////////////////////////////
// Record way selected for replacement on a cache miss
generate
if (associativity >= 2)
begin : way_select
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
refill_way_select <= {{associativity-1{1'b0}}, 1'b1};
else
begin
if (miss == `TRUE)
refill_way_select <= {refill_way_select[0], refill_way_select[1]};
end
end
end
endgenerate
// Record whether we are refilling
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
refilling <= `FALSE;
else
refilling <= refill;
end
// Instruction cache control FSM
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
begin
state <= `LM32_IC_STATE_FLUSH_INIT;
flush_set <= {`LM32_IC_TMEM_ADDR_WIDTH{1'b1}};
refill_address <= {`LM32_PC_WIDTH{1'bx}};
restart_request <= `FALSE;
end
else
begin
case (state)
// Flush the cache for the first time after reset
`LM32_IC_STATE_FLUSH_INIT:
begin
if (flush_set == {`LM32_IC_TMEM_ADDR_WIDTH{1'b0}})
state <= `LM32_IC_STATE_CHECK;
flush_set <= flush_set - 1'b1;
end
// Flush the cache in response to an write to the ICC CSR
`LM32_IC_STATE_FLUSH:
begin
if (flush_set == {`LM32_IC_TMEM_ADDR_WIDTH{1'b0}})
state <= `LM32_IC_STATE_REFILL;
flush_set <= flush_set - 1'b1;
end
// Check for cache misses
`LM32_IC_STATE_CHECK:
begin
if (stall_a == `FALSE)
restart_request <= `FALSE;
if (iflush == `TRUE)
begin
refill_address <= address_f;
state <= `LM32_IC_STATE_FLUSH;
end
else if (miss == `TRUE)
begin
refill_address <= address_f;
state <= `LM32_IC_STATE_REFILL;
end
end
// Refill a cache line
`LM32_IC_STATE_REFILL:
begin
if (refill_ready == `TRUE)
begin
if (last_refill == `TRUE)
begin
restart_request <= `TRUE;
state <= `LM32_IC_STATE_CHECK;
end
end
end
endcase
end
end
generate
if (bytes_per_line > 4)
begin : refilof1
// Refill offset
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
refill_offset <= {addr_offset_width{1'b0}};
else
begin
case (state)
// Check for cache misses
`LM32_IC_STATE_CHECK:
begin
if (iflush == `TRUE)
refill_offset <= {addr_offset_width{1'b0}};
else if (miss == `TRUE)
refill_offset <= {addr_offset_width{1'b0}};
end
// Refill a cache line
`LM32_IC_STATE_REFILL:
begin
if (refill_ready == `TRUE)
refill_offset <= refill_offset + 1'b1;
end
endcase
end
end
end
endgenerate
endmodule

View File

@@ -0,0 +1,320 @@
// =============================================================================
// COPYRIGHT NOTICE
// Copyright 2006 (c) Lattice Semiconductor Corporation
// ALL RIGHTS RESERVED
// This confidential and proprietary software may be used only as authorised by
// a licensing agreement from Lattice Semiconductor Corporation.
// The entire notice above must be reproduced on all authorized copies and
// copies may only be made to the extent permitted by a licensing agreement from
// Lattice Semiconductor Corporation.
//
// Lattice Semiconductor Corporation TEL : 1-800-Lattice (USA and Canada)
// 5555 NE Moore Court 408-826-6000 (other locations)
// Hillsboro, OR 97124 web : http://www.latticesemi.com/
// U.S.A email: techsupport@latticesemi.com
// =============================================================================/
// FILE DETAILS
// Project : LatticeMico32
// File : lm32_include.v
// Title : CPU global macros
// Version : 6.1.17
// =============================================================================
`ifdef LM32_INCLUDE_V
`else
`define LM32_INCLUDE_V
// Configuration options
`include "system_conf.v"
`ifdef TRUE
`else
`define TRUE 1'b1
`define FALSE 1'b0
`define TRUE_N 1'b0
`define FALSE_N 1'b1
`endif
// Wishbone configuration
`define CFG_IWB_ENABLED
`define CFG_DWB_ENABLED
// Data-path width
`define LM32_WORD_WIDTH 32
`define LM32_WORD_RNG (`LM32_WORD_WIDTH-1):0
`define LM32_SHIFT_WIDTH 5
`define LM32_SHIFT_RNG (`LM32_SHIFT_WIDTH-1):0
`define LM32_BYTE_SELECT_WIDTH 4
`define LM32_BYTE_SELECT_RNG (`LM32_BYTE_SELECT_WIDTH-1):0
// Register file size
`define LM32_REGISTERS 32
`define LM32_REG_IDX_WIDTH 5
`define LM32_REG_IDX_RNG (`LM32_REG_IDX_WIDTH-1):0
// Standard register numbers
`define LM32_RA_REG `LM32_REG_IDX_WIDTH'd29
`define LM32_EA_REG `LM32_REG_IDX_WIDTH'd30
`define LM32_BA_REG `LM32_REG_IDX_WIDTH'd31
// Range of Program Counter. Two LSBs are always 0.
`ifdef CFG_ICACHE_ENABLED
// XXX `define LM32_PC_WIDTH (clogb2(`CFG_ICACHE_LIMIT-`CFG_ICACHE_BASE_ADDRESS)-2) XXX
`define LM32_PC_WIDTH 30
`else
`ifdef CFG_IWB_ENABLED
`define LM32_PC_WIDTH (`LM32_WORD_WIDTH-2)
`else
`define LM32_PC_WIDTH `LM32_IROM_ADDRESS_WIDTH
`endif
`endif
`define LM32_PC_RNG (`LM32_PC_WIDTH+2-1):2
// Range of an instruction
`define LM32_INSTRUCTION_WIDTH 32
`define LM32_INSTRUCTION_RNG (`LM32_INSTRUCTION_WIDTH-1):0
// Adder operation
`define LM32_ADDER_OP_ADD 1'b0
`define LM32_ADDER_OP_SUBTRACT 1'b1
// Shift direction
`define LM32_SHIFT_OP_RIGHT 1'b0
`define LM32_SHIFT_OP_LEFT 1'b1
// Currently always enabled
`define CFG_BUS_ERRORS_ENABLED
// Derive macro that indicates whether we have single-stepping or not
`ifdef CFG_ROM_DEBUG_ENABLED
`define LM32_SINGLE_STEP_ENABLED
`else
`ifdef CFG_HW_DEBUG_ENABLED
`define LM32_SINGLE_STEP_ENABLED
`endif
`endif
// Derive macro that indicates whether JTAG interface is required
`ifdef CFG_JTAG_UART_ENABLED
`define LM32_JTAG_ENABLED
`else
`ifdef CFG_DEBUG_ENABLED
`define LM32_JTAG_ENABLED
`else
`endif
`endif
// Derive macro that indicates whether we have a barrel-shifter or not
`ifdef CFG_PL_BARREL_SHIFT_ENABLED
`define LM32_BARREL_SHIFT_ENABLED
`else // CFG_PL_BARREL_SHIFT_ENABLED
`ifdef CFG_MC_BARREL_SHIFT_ENABLED
`define LM32_BARREL_SHIFT_ENABLED
`else
`define LM32_NO_BARREL_SHIFT
`endif
`endif // CFG_PL_BARREL_SHIFT_ENABLED
// Derive macro that indicates whether we have a multiplier or not
`ifdef CFG_PL_MULTIPLY_ENABLED
`define LM32_MULTIPLY_ENABLED
`else
`ifdef CFG_MC_MULTIPLY_ENABLED
`define LM32_MULTIPLY_ENABLED
`endif
`endif
// Derive a macro that indicates whether or not the multi-cycle arithmetic unit is required
`ifdef CFG_MC_DIVIDE_ENABLED
`define LM32_MC_ARITHMETIC_ENABLED
`endif
`ifdef CFG_MC_MULTIPLY_ENABLED
`define LM32_MC_ARITHMETIC_ENABLED
`endif
`ifdef CFG_MC_BARREL_SHIFT_ENABLED
`define LM32_MC_ARITHMETIC_ENABLED
`endif
// Derive macro that indicates if we are using an EBR register file
`ifdef CFG_EBR_POSEDGE_REGISTER_FILE
`define LM32_EBR_REGISTER_FILE
`endif
`ifdef CFG_EBR_NEGEDGE_REGISTER_FILE
`define LM32_EBR_REGISTER_FILE
`endif
// Revision number
`define LM32_REVISION 6'h11
// Logical operations - Function encoded directly in instruction
`define LM32_LOGIC_OP_RNG 3:0
// Conditions for conditional branches
`define LM32_CONDITION_WIDTH 3
`define LM32_CONDITION_RNG (`LM32_CONDITION_WIDTH-1):0
`define LM32_CONDITION_E 3'b001
`define LM32_CONDITION_G 3'b010
`define LM32_CONDITION_GE 3'b011
`define LM32_CONDITION_GEU 3'b100
`define LM32_CONDITION_GU 3'b101
`define LM32_CONDITION_NE 3'b111
`define LM32_CONDITION_U1 3'b000
`define LM32_CONDITION_U2 3'b110
// Size of load or store instruction - Encoding corresponds to opcode
`define LM32_SIZE_WIDTH 2
`define LM32_SIZE_RNG 1:0
`define LM32_SIZE_BYTE 2'b00
`define LM32_SIZE_HWORD 2'b11
`define LM32_SIZE_WORD 2'b10
`define LM32_ADDRESS_LSBS_WIDTH 2
// Width and range of a CSR index
`ifdef CFG_DEBUG_ENABLED
`define LM32_CSR_WIDTH 5
`define LM32_CSR_RNG (`LM32_CSR_WIDTH-1):0
`else
`ifdef CFG_JTAG_ENABLED
`define LM32_CSR_WIDTH 4
`define LM32_CSR_RNG (`LM32_CSR_WIDTH-1):0
`else
`define LM32_CSR_WIDTH 3
`define LM32_CSR_RNG (`LM32_CSR_WIDTH-1):0
`endif
`endif
// CSR indices
`define LM32_CSR_IE `LM32_CSR_WIDTH'h0
`define LM32_CSR_IM `LM32_CSR_WIDTH'h1
`define LM32_CSR_IP `LM32_CSR_WIDTH'h2
`define LM32_CSR_ICC `LM32_CSR_WIDTH'h3
`define LM32_CSR_DCC `LM32_CSR_WIDTH'h4
`define LM32_CSR_CC `LM32_CSR_WIDTH'h5
`define LM32_CSR_CFG `LM32_CSR_WIDTH'h6
`define LM32_CSR_EBA `LM32_CSR_WIDTH'h7
`ifdef CFG_DEBUG_ENABLED
`define LM32_CSR_DC `LM32_CSR_WIDTH'h8
`define LM32_CSR_DEBA `LM32_CSR_WIDTH'h9
`endif
`ifdef CFG_JTAG_ENABLED
`define LM32_CSR_JTX `LM32_CSR_WIDTH'he
`define LM32_CSR_JRX `LM32_CSR_WIDTH'hf
`endif
`ifdef CFG_DEBUG_ENABLED
`define LM32_CSR_BP0 `LM32_CSR_WIDTH'h10
`define LM32_CSR_BP1 `LM32_CSR_WIDTH'h11
`define LM32_CSR_BP2 `LM32_CSR_WIDTH'h12
`define LM32_CSR_BP3 `LM32_CSR_WIDTH'h13
`define LM32_CSR_WP0 `LM32_CSR_WIDTH'h18
`define LM32_CSR_WP1 `LM32_CSR_WIDTH'h19
`define LM32_CSR_WP2 `LM32_CSR_WIDTH'h1a
`define LM32_CSR_WP3 `LM32_CSR_WIDTH'h1b
`endif
// Values for WPC CSR
`define LM32_WPC_C_RNG 1:0
`define LM32_WPC_C_DISABLED 2'b00
`define LM32_WPC_C_READ 2'b01
`define LM32_WPC_C_WRITE 2'b10
`define LM32_WPC_C_READ_WRITE 2'b11
// Exception IDs
`define LM32_EID_WIDTH 3
`define LM32_EID_RNG (`LM32_EID_WIDTH-1):0
`define LM32_EID_RESET 3'h0
`define LM32_EID_BREAKPOINT 3'd1
`define LM32_EID_INST_BUS_ERROR 3'h2
`define LM32_EID_WATCHPOINT 3'd3
`define LM32_EID_DATA_BUS_ERROR 3'h4
`define LM32_EID_DIVIDE_BY_ZERO 3'h5
`define LM32_EID_INTERRUPT 3'h6
`define LM32_EID_SCALL 3'h7
// Pipeline result selection mux controls
`define LM32_D_RESULT_SEL_0_RNG 0:0
`define LM32_D_RESULT_SEL_0_REG_0 1'b0
`define LM32_D_RESULT_SEL_0_NEXT_PC 1'b1
`define LM32_D_RESULT_SEL_1_RNG 1:0
`define LM32_D_RESULT_SEL_1_ZERO 2'b00
`define LM32_D_RESULT_SEL_1_REG_1 2'b01
`define LM32_D_RESULT_SEL_1_IMMEDIATE 2'b10
`define LM32_USER_OPCODE_WIDTH 11
`define LM32_USER_OPCODE_RNG (`LM32_USER_OPCODE_WIDTH-1):0
// Derive a macro to indicate if either of the caches are implemented
`ifdef CFG_ICACHE_ENABLED
`define LM32_CACHE_ENABLED
`else
`ifdef CFG_DCACHE_ENABLED
`define LM32_CACHE_ENABLED
`endif
`endif
/////////////////////////////////////////////////////
// Interrupts
/////////////////////////////////////////////////////
// Always enable interrupts
`define CFG_INTERRUPTS_ENABLED
// Currently this is fixed to 32 and should not be changed
`define CFG_INTERRUPTS 32
`define LM32_INTERRUPT_WIDTH `CFG_INTERRUPTS
`define LM32_INTERRUPT_RNG (`LM32_INTERRUPT_WIDTH-1):0
/////////////////////////////////////////////////////
// General
/////////////////////////////////////////////////////
// Sub-word range types
`define LM32_BYTE_WIDTH 8
`define LM32_BYTE_RNG 7:0
`define LM32_HWORD_WIDTH 16
`define LM32_HWORD_RNG 15:0
// Word sub-byte indicies
`define LM32_BYTE_0_RNG 7:0
`define LM32_BYTE_1_RNG 15:8
`define LM32_BYTE_2_RNG 23:16
`define LM32_BYTE_3_RNG 31:24
// Word sub-halfword indices
`define LM32_HWORD_0_RNG 15:0
`define LM32_HWORD_1_RNG 31:16
// Use an asynchronous reset
// To use a synchronous reset, define this macro as nothing
`define CFG_RESET_SENSITIVITY or posedge rst_i
// V.T. Srce
`define SRCE
// Whether to include context registers for debug exceptions
// in addition to standard exception handling registers
// Bizarre - Removing this increases LUT count!
`define CFG_DEBUG_EXCEPTIONS_ENABLED
// Wishbone defines
// Refer to Wishbone System-on-Chip Interconnection Architecture
// These should probably be moved to a Wishbone common file
// Wishbone cycle types
`define LM32_CTYPE_WIDTH 3
`define LM32_CTYPE_RNG (`LM32_CTYPE_WIDTH-1):0
`define LM32_CTYPE_CLASSIC 3'b000
`define LM32_CTYPE_CONSTANT 3'b001
`define LM32_CTYPE_INCREMENTING 3'b010
`define LM32_CTYPE_END 3'b111
// Wishbone burst types
`define LM32_BTYPE_WIDTH 2
`define LM32_BTYPE_RNG (`LM32_BTYPE_WIDTH-1):0
`define LM32_BTYPE_LINEAR 2'b00
`define LM32_BTYPE_4_BEAT 2'b01
`define LM32_BTYPE_8_BEAT 2'b10
`define LM32_BTYPE_16_BEAT 2'b11
`endif

View File

@@ -0,0 +1,32 @@
`ifndef LM32_ALL_FILES
`define LM32_ALL_FILES
//`ifndef SIMULATION
//`include "pmi_def.v"
//`endif
// JTAG Debug related files
`include "../components/lm32_top/rtl/verilog/er1.v"
`include "../components/lm32_top/rtl/verilog/typeb.v"
`include "../components/lm32_top/rtl/verilog/typea.v"
`include "../components/lm32_top/rtl/verilog/jtag_cores.v"
`include "../components/lm32_top/rtl/verilog/jtag_lm32.v"
// CPU Core related files
`include "../components/lm32_top/rtl/verilog/lm32_addsub.v"
`include "../components/lm32_top/rtl/verilog/lm32_adder.v"
`include "../components/lm32_top/rtl/verilog/lm32_cpu.v"
`include "../components/lm32_top/rtl/verilog/lm32_dcache.v"
`include "../components/lm32_top/rtl/verilog/lm32_debug.v"
`include "../components/lm32_top/rtl/verilog/lm32_decoder.v"
`include "../components/lm32_top/rtl/verilog/lm32_icache.v"
`include "../components/lm32_top/rtl/verilog/lm32_instruction_unit.v"
`include "../components/lm32_top/rtl/verilog/lm32_interrupt.v"
`include "../components/lm32_top/rtl/verilog/lm32_load_store_unit.v"
`include "../components/lm32_top/rtl/verilog/lm32_logic_op.v"
`include "../components/lm32_top/rtl/verilog/lm32_mc_arithmetic.v"
`include "../components/lm32_top/rtl/verilog/lm32_multiplier.v"
`include "../components/lm32_top/rtl/verilog/lm32_shifter.v"
`include "../components/lm32_top/rtl/verilog/lm32_top.v"
`include "../components/lm32_top/rtl/verilog/lm32_monitor.v"
`include "../components/lm32_top/rtl/verilog/lm32_monitor_ram.v"
`include "../components/lm32_top/rtl/verilog/lm32_ram.v"
`include "../components/lm32_top/rtl/verilog/lm32_jtag.v"
`endif // LM32_ALL_FILES

View File

@@ -0,0 +1,751 @@
// =============================================================================
// COPYRIGHT NOTICE
// Copyright 2006 (c) Lattice Semiconductor Corporation
// ALL RIGHTS RESERVED
// This confidential and proprietary software may be used only as authorised by
// a licensing agreement from Lattice Semiconductor Corporation.
// The entire notice above must be reproduced on all authorized copies and
// copies may only be made to the extent permitted by a licensing agreement from
// Lattice Semiconductor Corporation.
//
// Lattice Semiconductor Corporation TEL : 1-800-Lattice (USA and Canada)
// 5555 NE Moore Court 408-826-6000 (other locations)
// Hillsboro, OR 97124 web : http://www.latticesemi.com/
// U.S.A email: techsupport@latticesemi.com
// =============================================================================/
// FILE DETAILS
// Project : LatticeMico32
// File : lm32_instruction_unit.v
// Title : Instruction unit
// Dependencies : lm32_include.v
// Version : 6.1.17
// =============================================================================
`include "lm32_include.v"
/////////////////////////////////////////////////////
// Module interface
/////////////////////////////////////////////////////
module lm32_instruction_unit (
// ----- Inputs -------
clk_i,
rst_i,
// From pipeline
stall_a,
stall_f,
stall_d,
stall_x,
stall_m,
valid_f,
kill_f,
`ifdef CFG_FAST_UNCONDITIONAL_BRANCH
branch_taken_x,
branch_target_x,
`endif
branch_taken_m,
branch_target_m,
`ifdef CFG_ICACHE_ENABLED
iflush,
`endif
`ifdef CFG_DCACHE_ENABLED
dcache_restart_request,
dcache_refill_request,
dcache_refilling,
`endif
`ifdef CFG_IWB_ENABLED
// From Wishbone
i_dat_i,
i_ack_i,
i_err_i,
i_rty_i,
`endif
`ifdef CFG_HW_DEBUG_ENABLED
jtag_read_enable,
jtag_write_enable,
jtag_write_data,
jtag_address,
`endif
// ----- Outputs -------
// To pipeline
pc_f,
pc_d,
pc_x,
pc_m,
pc_w,
`ifdef CFG_ICACHE_ENABLED
icache_stall_request,
icache_restart_request,
icache_refill_request,
icache_refilling,
`endif
`ifdef CFG_IWB_ENABLED
// To Wishbone
i_dat_o,
i_adr_o,
i_cyc_o,
i_sel_o,
i_stb_o,
i_we_o,
i_cti_o,
i_lock_o,
i_bte_o,
`endif
`ifdef CFG_HW_DEBUG_ENABLED
jtag_read_data,
jtag_access_complete,
`endif
`ifdef CFG_BUS_ERRORS_ENABLED
bus_error_d,
`endif
`ifdef CFG_EBR_POSEDGE_REGISTER_FILE
instruction_f,
`endif
instruction_d
);
/////////////////////////////////////////////////////
// Parameters
/////////////////////////////////////////////////////
parameter associativity = 1; // Associativity of the cache (Number of ways)
parameter sets = 512; // Number of sets
parameter bytes_per_line = 16; // Number of bytes per cache line
parameter base_address = 0; // Base address of cachable memory
parameter limit = 0; // Limit (highest address) of cachable memory
// For bytes_per_line == 4, we set 1 so part-select range isn't reversed, even though not really used
//localparam addr_offset_width = (bytes_per_line == 4 ? 1 : clogb2(bytes_per_line)-1-2);
localparam addr_offset_width = 2;
localparam addr_offset_lsb = 2;
localparam addr_offset_msb = (addr_offset_lsb+addr_offset_width-1);
/////////////////////////////////////////////////////
// Inputs
/////////////////////////////////////////////////////
input clk_i; // Clock
input rst_i; // Reset
input stall_a; // Stall A stage instruction
input stall_f; // Stall F stage instruction
input stall_d; // Stall D stage instruction
input stall_x; // Stall X stage instruction
input stall_m; // Stall M stage instruction
input valid_f; // Instruction in F stage is valid
input kill_f; // Kill instruction in F stage
`ifdef CFG_FAST_UNCONDITIONAL_BRANCH
input branch_taken_x; // Branch instruction in X stage is taken
input [`LM32_PC_RNG] branch_target_x; // Target PC of X stage branch instruction
`endif
input branch_taken_m; // Branch instruction in M stage is taken
input [`LM32_PC_RNG] branch_target_m; // Target PC of M stage branch instruction
`ifdef CFG_ICACHE_ENABLED
input iflush; // Flush instruction cache
`endif
`ifdef CFG_DCACHE_ENABLED
input dcache_restart_request; // Restart instruction that caused a data cache miss
input dcache_refill_request; // Request to refill data cache
input dcache_refilling;
`endif
`ifdef CFG_IWB_ENABLED
input [`LM32_WORD_RNG] i_dat_i; // Instruction Wishbone interface read data
input i_ack_i; // Instruction Wishbone interface acknowledgement
input i_err_i; // Instruction Wishbone interface error
input i_rty_i; // Instruction Wishbone interface retry
`endif
`ifdef CFG_HW_DEBUG_ENABLED
input jtag_read_enable; // JTAG read memory request
input jtag_write_enable; // JTAG write memory request
input [`LM32_BYTE_RNG] jtag_write_data; // JTAG wrirte data
input [`LM32_WORD_RNG] jtag_address; // JTAG read/write address
`endif
/////////////////////////////////////////////////////
// Outputs
/////////////////////////////////////////////////////
output [`LM32_PC_RNG] pc_f; // F stage PC
reg [`LM32_PC_RNG] pc_f;
output [`LM32_PC_RNG] pc_d; // D stage PC
reg [`LM32_PC_RNG] pc_d;
output [`LM32_PC_RNG] pc_x; // X stage PC
reg [`LM32_PC_RNG] pc_x;
output [`LM32_PC_RNG] pc_m; // M stage PC
reg [`LM32_PC_RNG] pc_m;
output [`LM32_PC_RNG] pc_w; // W stage PC
reg [`LM32_PC_RNG] pc_w;
`ifdef CFG_ICACHE_ENABLED
output icache_stall_request; // Instruction cache stall request
wire icache_stall_request;
output icache_restart_request; // Request to restart instruction that cached instruction cache miss
wire icache_restart_request;
output icache_refill_request; // Instruction cache refill request
wire icache_refill_request;
output icache_refilling; // Indicates the icache is refilling
wire icache_refilling;
`endif
`ifdef CFG_IWB_ENABLED
output [`LM32_WORD_RNG] i_dat_o; // Instruction Wishbone interface write data
`ifdef CFG_HW_DEBUG_ENABLED
reg [`LM32_WORD_RNG] i_dat_o;
`else
wire [`LM32_WORD_RNG] i_dat_o;
`endif
output [`LM32_WORD_RNG] i_adr_o; // Instruction Wishbone interface address
reg [`LM32_WORD_RNG] i_adr_o;
output i_cyc_o; // Instruction Wishbone interface cycle
reg i_cyc_o;
output [`LM32_BYTE_SELECT_RNG] i_sel_o; // Instruction Wishbone interface byte select
`ifdef CFG_HW_DEBUG_ENABLED
reg [`LM32_BYTE_SELECT_RNG] i_sel_o;
`else
wire [`LM32_BYTE_SELECT_RNG] i_sel_o;
`endif
output i_stb_o; // Instruction Wishbone interface strobe
reg i_stb_o;
output i_we_o; // Instruction Wishbone interface write enable
`ifdef CFG_HW_DEBUG_ENABLED
reg i_we_o;
`else
wire i_we_o;
`endif
output [`LM32_CTYPE_RNG] i_cti_o; // Instruction Wishbone interface cycle type
reg [`LM32_CTYPE_RNG] i_cti_o;
output i_lock_o; // Instruction Wishbone interface lock bus
reg i_lock_o;
output [`LM32_BTYPE_RNG] i_bte_o; // Instruction Wishbone interface burst type
wire [`LM32_BTYPE_RNG] i_bte_o;
`endif
`ifdef CFG_HW_DEBUG_ENABLED
output [`LM32_BYTE_RNG] jtag_read_data; // Data read for JTAG interface
reg [`LM32_BYTE_RNG] jtag_read_data;
output jtag_access_complete; // Requested memory access by JTAG interface is complete
wire jtag_access_complete;
`endif
`ifdef CFG_BUS_ERRORS_ENABLED
output bus_error_d; // Indicates a bus error occured while fetching the instruction
reg bus_error_d;
`endif
`ifdef CFG_EBR_POSEDGE_REGISTER_FILE
output [`LM32_INSTRUCTION_RNG] instruction_f; // F stage instruction (only to have register indices extracted from)
wire [`LM32_INSTRUCTION_RNG] instruction_f;
`endif
output [`LM32_INSTRUCTION_RNG] instruction_d; // D stage instruction to be decoded
reg [`LM32_INSTRUCTION_RNG] instruction_d;
/////////////////////////////////////////////////////
// Internal nets and registers
/////////////////////////////////////////////////////
reg [`LM32_PC_RNG] pc_a; // A stage PC
`ifdef LM32_CACHE_ENABLED
reg [`LM32_PC_RNG] restart_address; // Address to restart from after a cache miss
`endif
`ifdef CFG_ICACHE_ENABLED
wire icache_read_enable_f; // Indicates if instruction cache miss is valid
wire [`LM32_PC_RNG] icache_refill_address; // Address that caused cache miss
reg icache_refill_ready; // Indicates when next word of refill data is ready to be written to cache
reg [`LM32_INSTRUCTION_RNG] icache_refill_data; // Next word of refill data, fetched from Wishbone
wire [`LM32_INSTRUCTION_RNG] icache_data_f; // Instruction fetched from instruction cache
wire [`LM32_CTYPE_RNG] first_cycle_type; // First Wishbone cycle type
wire [`LM32_CTYPE_RNG] next_cycle_type; // Next Wishbone cycle type
wire last_word; // Indicates if this is the last word in the cache line
wire [`LM32_PC_RNG] first_address; // First cache refill address
`else
`ifdef CFG_IWB_ENABLED
reg [`LM32_INSTRUCTION_RNG] wb_data_f; // Instruction fetched from Wishbone
`endif
`endif
`ifdef CFG_IROM_ENABLED
wire irom_select_a; // Indicates if A stage PC maps to a ROM address
reg irom_select_f; // Indicates if F stage PC maps to a ROM address
wire [`LM32_INSTRUCTION_RNG] irom_data_f; // Instruction fetched from ROM
`endif
`ifdef CFG_EBR_POSEDGE_REGISTER_FILE
`else
wire [`LM32_INSTRUCTION_RNG] instruction_f; // F stage instruction
`endif
`ifdef CFG_BUS_ERRORS_ENABLED
reg bus_error_f; // Indicates if a bus error occured while fetching the instruction in the F stage
`endif
`ifdef CFG_HW_DEBUG_ENABLED
reg jtag_access; // Indicates if a JTAG WB access is in progress
`endif
/////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////
`include "lm32_functions.v"
/////////////////////////////////////////////////////
// Instantiations
/////////////////////////////////////////////////////
// Instruction ROM
`ifdef CFG_IROM_ENABLED
pmi_ram_dp #(
// ----- Parameters -------
.pmi_wr_addr_depth (1 << (clogb2(`CFG_IROM_LIMIT/4-`CFG_IROM_BASE_ADDRESS/4+1)-1)),
.pmi_wr_addr_width ((clogb2(`CFG_IROM_LIMIT/4-`CFG_IROM_BASE_ADDRESS/4+1)-1)),
.pmi_wr_data_width (`LM32_INSTRUCTION_WIDTH),
.pmi_rd_addr_depth (1 << (clogb2(`CFG_IROM_LIMIT/4-`CFG_IROM_BASE_ADDRESS/4+1)-1)),
.pmi_rd_addr_width ((clogb2(`CFG_IROM_LIMIT/4-`CFG_IROM_BASE_ADDRESS/4+1)-1)),
.pmi_rd_data_width (`LM32_INSTRUCTION_WIDTH),
.pmi_regmode ("noreg"),
.pmi_gsr ("enable"),
.pmi_resetmode ("async"),
.pmi_init_file (`CFG_IROM_INIT_FILE),
.pmi_init_file_format ("hex"),
.module_type ("pmi_ram_dp")
) ram (
// ----- Inputs -------
.RdClock (clk_i),
.WrClock (`FALSE),
.Reset (rst_i),
.Data ({32{1'b0}}),
.RdAddress (pc_a[(clogb2(`CFG_IROM_LIMIT/4-`CFG_IROM_BASE_ADDRESS/4+1)-1)+2-1:2]),
.WrAddress ({(clogb2(`CFG_IROM_LIMIT/4-`CFG_IROM_BASE_ADDRESS/4+1)-1){1'b0}}),
.RdClockEn (~stall_a),
.WrClockEn (`FALSE),
.WE (`FALSE),
// ----- Outputs -------
.Q (irom_data_f)
);
`endif
`ifdef CFG_ICACHE_ENABLED
// Instruction cache
lm32_icache #(
.associativity (associativity),
.sets (sets),
.bytes_per_line (bytes_per_line),
.base_address (base_address),
.limit (limit)
) icache (
// ----- Inputs -----
.clk_i (clk_i),
.rst_i (rst_i),
.stall_a (stall_a),
.stall_f (stall_f),
.address_a (pc_a),
.address_f (pc_f),
.read_enable_f (icache_read_enable_f),
.refill_ready (icache_refill_ready),
.refill_data (icache_refill_data),
.iflush (iflush),
// ----- Outputs -----
.stall_request (icache_stall_request),
.restart_request (icache_restart_request),
.refill_request (icache_refill_request),
.refill_address (icache_refill_address),
.refilling (icache_refilling),
.inst (icache_data_f)
);
`endif
/////////////////////////////////////////////////////
// Combinational Logic
/////////////////////////////////////////////////////
`ifdef CFG_ICACHE_ENABLED
// Generate signal that indicates when instruction cache misses are valid
assign icache_read_enable_f = (valid_f == `TRUE)
&& (kill_f == `FALSE)
`ifdef CFG_DCACHE_ENABLED
&& (dcache_restart_request == `FALSE)
`endif
`ifdef CFG_IROM_ENABLED
&& (irom_select_f == `FALSE)
`endif
;
`endif
// Compute address of next instruction to fetch
always @(*)
begin
// The request from the latest pipeline stage must take priority
`ifdef CFG_DCACHE_ENABLED
if (dcache_restart_request == `TRUE)
pc_a = restart_address;
else
`endif
if (branch_taken_m == `TRUE)
pc_a = branch_target_m;
`ifdef CFG_FAST_UNCONDITIONAL_BRANCH
else if (branch_taken_x == `TRUE)
pc_a = branch_target_x;
`endif
else
`ifdef CFG_ICACHE_ENABLED
if (icache_restart_request == `TRUE)
pc_a = restart_address;
else
`endif
pc_a = pc_f + 1'b1;
end
// Select where instruction should be fetched from
`ifdef CFG_IROM_ENABLED
assign irom_select_a = ({pc_a, 2'b00} >= `CFG_IROM_BASE_ADDRESS) && ({pc_a, 2'b00} <= `CFG_IROM_LIMIT);
`endif
// Select instruction from selected source
`ifdef CFG_ICACHE_ENABLED
`ifdef CFG_IROM_ENABLED
assign instruction_f = irom_select_f == `TRUE ? irom_data_f : icache_data_f;
`else
assign instruction_f = icache_data_f;
`endif
`else
`ifdef CFG_IROM_ENABLED
`ifdef CFG_IWB_ENABLED
assign instruction_f = irom_select_f == `TRUE ? irom_data_f : wb_data_f;
`else
assign instruction_f = irom_data_f;
`endif
`else
assign instruction_f = wb_data_f;
`endif
`endif
// Unused/constant Wishbone signals
`ifdef CFG_IWB_ENABLED
`ifdef CFG_HW_DEBUG_ENABLED
`else
assign i_dat_o = 32'd0;
assign i_we_o = `FALSE;
assign i_sel_o = 4'b1111;
`endif
assign i_bte_o = `LM32_BTYPE_LINEAR;
`endif
`ifdef CFG_ICACHE_ENABLED
// Determine parameters for next cache refill Wishbone access
// generate
// case (bytes_per_line)
// 4:
// begin
// assign first_cycle_type = `LM32_CTYPE_END;
// assign next_cycle_type = `LM32_CTYPE_END;
// assign last_word = `TRUE;
// assign first_address = icache_refill_address;
// end
// 8:
// begin
// assign first_cycle_type = `LM32_CTYPE_INCREMENTING;
// assign next_cycle_type = `LM32_CTYPE_END;
// assign last_word = i_adr_o[addr_offset_msb:addr_offset_lsb] == 1'b1;
// assign first_address = {icache_refill_address[`LM32_PC_WIDTH+2-1:addr_offset_msb+1], {addr_offset_width{1'b0}}};
// end
// 16:
// begin
assign first_cycle_type = `LM32_CTYPE_INCREMENTING;
assign next_cycle_type = i_adr_o[addr_offset_msb] == 1'b1 ? `LM32_CTYPE_END : `LM32_CTYPE_INCREMENTING;
assign last_word = i_adr_o[addr_offset_msb:addr_offset_lsb] == 2'b11;
assign first_address = {icache_refill_address[`LM32_PC_WIDTH+2-1:addr_offset_msb+1], {addr_offset_width{1'b0}}};
// end
// endcase
// endgenerate
`endif
/////////////////////////////////////////////////////
// Sequential Logic
/////////////////////////////////////////////////////
// PC
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
begin
pc_f <= (`CFG_EBA_RESET-4)/4;
pc_d <= {`LM32_PC_WIDTH{1'b0}};
pc_x <= {`LM32_PC_WIDTH{1'b0}};
pc_m <= {`LM32_PC_WIDTH{1'b0}};
pc_w <= {`LM32_PC_WIDTH{1'b0}};
end
else
begin
if (stall_f == `FALSE)
pc_f <= pc_a;
if (stall_d == `FALSE)
pc_d <= pc_f;
if (stall_x == `FALSE)
pc_x <= pc_d;
if (stall_m == `FALSE)
pc_m <= pc_x;
pc_w <= pc_m;
end
end
`ifdef LM32_CACHE_ENABLED
// Address to restart from after a cache miss has been handled
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
restart_address <= {`LM32_PC_WIDTH{1'b0}};
else
begin
`ifdef CFG_DCACHE_ENABLED
`ifdef CFG_ICACHE_ENABLED
// D-cache restart address must take priority, otherwise instructions will be lost
if (dcache_refill_request == `TRUE)
restart_address <= pc_w;
else if ((icache_refill_request == `TRUE) && (!dcache_refilling))
restart_address <= icache_refill_address;
`else
if (dcache_refill_request == `TRUE)
restart_address <= pc_w;
`endif
`else
`ifdef CFG_ICACHE_ENABLED
if (icache_refill_request == `TRUE)
restart_address <= icache_refill_address;
`endif
`endif
end
end
`endif
// Record where instruction was fetched from
`ifdef CFG_IROM_ENABLED
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
irom_select_f <= `FALSE;
else
begin
if (stall_f == `FALSE)
irom_select_f <= irom_select_a;
end
end
`endif
`ifdef CFG_HW_DEBUG_ENABLED
assign jtag_access_complete = (i_cyc_o == `TRUE) && ((i_ack_i == `TRUE) || (i_err_i == `TRUE)) && (jtag_access == `TRUE);
always @*
begin
case (jtag_address[1:0])
2'b00: jtag_read_data = i_dat_i[`LM32_BYTE_3_RNG];
2'b01: jtag_read_data = i_dat_i[`LM32_BYTE_2_RNG];
2'b10: jtag_read_data = i_dat_i[`LM32_BYTE_1_RNG];
2'b11: jtag_read_data = i_dat_i[`LM32_BYTE_0_RNG];
endcase
end
`endif
`ifdef CFG_IWB_ENABLED
// Instruction Wishbone interface
`ifdef CFG_ICACHE_ENABLED
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
begin
i_cyc_o <= `FALSE;
i_stb_o <= `FALSE;
i_adr_o <= {`LM32_WORD_WIDTH{1'b0}};
i_cti_o <= `LM32_CTYPE_END;
i_lock_o <= `FALSE;
icache_refill_data <= {`LM32_INSTRUCTION_WIDTH{1'b0}};
icache_refill_ready <= `FALSE;
`ifdef CFG_BUS_ERRORS_ENABLED
bus_error_f <= `FALSE;
`endif
`ifdef CFG_HW_DEBUG_ENABLED
i_we_o <= `FALSE;
i_sel_o <= 4'b1111;
jtag_access <= `FALSE;
`endif
end
else
begin
icache_refill_ready <= `FALSE;
// Is a cycle in progress?
if (i_cyc_o == `TRUE)
begin
// Has cycle completed?
if ((i_ack_i == `TRUE) || (i_err_i == `TRUE))
begin
`ifdef CFG_HW_DEBUG_ENABLED
if (jtag_access == `TRUE)
begin
i_cyc_o <= `FALSE;
i_stb_o <= `FALSE;
i_we_o <= `FALSE;
jtag_access <= `FALSE;
end
else
`endif
begin
if (last_word == `TRUE)
begin
// Cache line fill complete
i_cyc_o <= `FALSE;
i_stb_o <= `FALSE;
i_lock_o <= `FALSE;
end
// Fetch next word in cache line
i_adr_o[addr_offset_msb:addr_offset_lsb] <= i_adr_o[addr_offset_msb:addr_offset_lsb] + 1'b1;
i_cti_o <= next_cycle_type;
// Write fetched data into instruction cache
icache_refill_ready <= `TRUE;
icache_refill_data <= i_dat_i;
end
end
`ifdef CFG_BUS_ERRORS_ENABLED
if (i_err_i == `TRUE)
begin
bus_error_f <= `TRUE;
$display ("Instruction bus error. Address: %x", i_adr_o);
end
`endif
end
else
begin
if ((icache_refill_request == `TRUE) && (icache_refill_ready == `FALSE))
begin
// Read first word of cache line
`ifdef CFG_HW_DEBUG_ENABLED
i_sel_o <= 4'b1111;
`endif
i_adr_o <= {first_address, 2'b00};
i_cyc_o <= `TRUE;
i_stb_o <= `TRUE;
i_cti_o <= first_cycle_type;
//i_lock_o <= `TRUE;
`ifdef CFG_BUS_ERRORS_ENABLED
bus_error_f <= `FALSE;
`endif
end
`ifdef CFG_HW_DEBUG_ENABLED
else
begin
if ((jtag_read_enable == `TRUE) || (jtag_write_enable == `TRUE))
begin
case (jtag_address[1:0])
2'b00: i_sel_o <= 4'b1000;
2'b01: i_sel_o <= 4'b0100;
2'b10: i_sel_o <= 4'b0010;
2'b11: i_sel_o <= 4'b0001;
endcase
i_adr_o <= jtag_address;
i_dat_o <= {4{jtag_write_data}};
i_cyc_o <= `TRUE;
i_stb_o <= `TRUE;
i_we_o <= jtag_write_enable;
i_cti_o <= `LM32_CTYPE_END;
jtag_access <= `TRUE;
end
end
`endif
`ifdef CFG_BUS_ERRORS_ENABLED
// Clear bus error when exception taken, otherwise they would be
// continually generated if exception handler is cached
`ifdef CFG_FAST_UNCONDITIONAL_BRANCH
if (branch_taken_x == `TRUE)
bus_error_f <= `FALSE;
`endif
if (branch_taken_m == `TRUE)
bus_error_f <= `FALSE;
`endif
end
end
end
`else
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
begin
i_cyc_o <= `FALSE;
i_stb_o <= `FALSE;
i_adr_o <= {`LM32_WORD_WIDTH{1'b0}};
i_cti_o <= `LM32_CTYPE_CLASSIC;
i_lock_o <= `FALSE;
wb_data_f <= {`LM32_INSTRUCTION_WIDTH{1'b0}};
`ifdef CFG_BUS_ERRORS_ENABLED
bus_error_f <= `FALSE;
`endif
end
else
begin
// Is a cycle in progress?
if (i_cyc_o == `TRUE)
begin
// Has cycle completed?
if((i_ack_i == `TRUE) || (i_err_i == `TRUE))
begin
// Cycle complete
i_cyc_o <= `FALSE;
i_stb_o <= `FALSE;
// Register fetched instruction
wb_data_f <= i_dat_i;
end
`ifdef CFG_BUS_ERRORS_ENABLED
if (i_err_i == `TRUE)
begin
bus_error_f <= `TRUE;
$display ("Instruction bus error. Address: %x", i_adr_o);
end
`endif
end
else
begin
// Wait for an instruction fetch from an external address
if ( (stall_a == `FALSE)
`ifdef CFG_IROM_ENABLED
&& (irom_select_a == `FALSE)
`endif
)
begin
// Fetch instruction
`ifdef CFG_HW_DEBUG_ENABLED
i_sel_o <= 4'b1111;
`endif
i_adr_o <= {pc_a, 2'b00};
i_cyc_o <= `TRUE;
i_stb_o <= `TRUE;
`ifdef CFG_BUS_ERRORS_ENABLED
bus_error_f <= `FALSE;
`endif
end
end
end
end
`endif
`endif
// Instruction register
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
begin
instruction_d <= {`LM32_INSTRUCTION_WIDTH{1'b0}};
`ifdef CFG_BUS_ERRORS_ENABLED
bus_error_d <= `FALSE;
`endif
end
else
begin
if (stall_d == `FALSE)
begin
instruction_d <= instruction_f;
`ifdef CFG_BUS_ERRORS_ENABLED
bus_error_d <= bus_error_f;
`endif
end
end
end
endmodule

View File

@@ -0,0 +1,333 @@
// =============================================================================
// COPYRIGHT NOTICE
// Copyright 2006 (c) Lattice Semiconductor Corporation
// ALL RIGHTS RESERVED
// This confidential and proprietary software may be used only as authorised by
// a licensing agreement from Lattice Semiconductor Corporation.
// The entire notice above must be reproduced on all authorized copies and
// copies may only be made to the extent permitted by a licensing agreement from
// Lattice Semiconductor Corporation.
//
// Lattice Semiconductor Corporation TEL : 1-800-Lattice (USA and Canada)
// 5555 NE Moore Court 408-826-6000 (other locations)
// Hillsboro, OR 97124 web : http://www.latticesemi.com/
// U.S.A email: techsupport@latticesemi.com
// =============================================================================/
// FILE DETAILS
// Project : LatticeMico32
// File : lm32_interrupt.v
// Title : Interrupt logic
// Dependencies : lm32_include.v
// Version : 6.1.17
// =============================================================================
`include "system_conf.v"
`include "lm32_include.v"
/////////////////////////////////////////////////////
// Module interface
/////////////////////////////////////////////////////
module lm32_interrupt (
// ----- Inputs -------
clk_i,
rst_i,
// From external devices
interrupt_n,
// From pipeline
stall_x,
`ifdef CFG_DEBUG_ENABLED
non_debug_exception,
debug_exception,
`else
exception,
`endif
eret_q_x,
`ifdef CFG_DEBUG_ENABLED
bret_q_x,
`endif
csr,
csr_write_data,
csr_write_enable,
// ----- Outputs -------
interrupt_exception,
// To pipeline
csr_read_data
);
/////////////////////////////////////////////////////
// Parameters
/////////////////////////////////////////////////////
parameter interrupts = `CFG_INTERRUPTS; // Number of interrupts
/////////////////////////////////////////////////////
// Inputs
/////////////////////////////////////////////////////
input clk_i; // Clock
input rst_i; // Reset
input [interrupts-1:0] interrupt_n; // Interrupt pins, active-low
input stall_x; // Stall X pipeline stage
`ifdef CFG_DEBUG_ENABLED
input non_debug_exception; // Non-debug related exception has been raised
input debug_exception; // Debug-related exception has been raised
`else
input exception; // Exception has been raised
`endif
input eret_q_x; // Return from exception
`ifdef CFG_DEBUG_ENABLED
input bret_q_x; // Return from breakpoint
`endif
input [`LM32_CSR_RNG] csr; // CSR read/write index
input [`LM32_WORD_RNG] csr_write_data; // Data to write to specified CSR
input csr_write_enable; // CSR write enable
/////////////////////////////////////////////////////
// Outputs
/////////////////////////////////////////////////////
output interrupt_exception; // Request to raide an interrupt exception
wire interrupt_exception;
output [`LM32_WORD_RNG] csr_read_data; // Data read from CSR
reg [`LM32_WORD_RNG] csr_read_data;
/////////////////////////////////////////////////////
// Internal nets and registers
/////////////////////////////////////////////////////
wire [interrupts-1:0] asserted; // Which interrupts are currently being asserted
wire [interrupts-1:0] interrupt_n_exception;
// Interrupt CSRs
reg ie; // Interrupt enable
reg eie; // Exception interrupt enable
`ifdef CFG_DEBUG_ENABLED
reg bie; // Breakpoint interrupt enable
`endif
reg [interrupts-1:0] ip; // Interrupt pending
reg [interrupts-1:0] im; // Interrupt mask
/////////////////////////////////////////////////////
// Combinational Logic
/////////////////////////////////////////////////////
// Determine which interrupts have occured and are unmasked
assign interrupt_n_exception = ip & im;
// Determine if any unmasked interrupts have occured
assign interrupt_exception = (|interrupt_n_exception) & ie;
// Determine which interrupts are currently being asserted (active-low) or are already pending
assign asserted = ip | ~interrupt_n;
//assign ie_csr_read_data = {{`LM32_WORD_WIDTH-3{1'b0}},
//`ifdef CFG_DEBUG_ENABLED
// bie,
//`else
// 1'b0,
//`endif
// eie,
// ie
// };
wire ip_csr_read_data = ip;
wire im_csr_read_data = im;
// XXX JB XXX
// generate
// if (interrupts > 1)
// begin
// CSR read
always @*
begin
case (csr)
`LM32_CSR_IE: csr_read_data = {{`LM32_WORD_WIDTH-3{1'b0}},
`ifdef CFG_DEBUG_ENABLED
bie,
`else
1'b0,
`endif
eie,
ie
};
`LM32_CSR_IP: csr_read_data = ip;
`LM32_CSR_IM: csr_read_data = im;
default: csr_read_data = {`LM32_WORD_WIDTH{1'bx}};
endcase
end
// XXX JB XXX
// end
// else
// begin
//// CSR read
//always @*
//begin
// case (csr)
// `LM32_CSR_IE: csr_read_data = {{`LM32_WORD_WIDTH-3{1'b0}},
//`ifdef CFG_DEBUG_ENABLED
// bie,
//`else
// 1'b0,
//`endif
// eie,
// ie
// };
// `LM32_CSR_IP: csr_read_data = ip;
// default: csr_read_data = {`LM32_WORD_WIDTH{1'bx}};
// endcase
//end
// end
//endgenerate
/////////////////////////////////////////////////////
// Sequential Logic
/////////////////////////////////////////////////////
// XXX JB XXX
//generate
// if (interrupts > 1)
// begin
// IE, IM, IP - Interrupt Enable, Interrupt Mask and Interrupt Pending CSRs
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
begin
ie <= `FALSE;
eie <= `FALSE;
`ifdef CFG_DEBUG_ENABLED
bie <= `FALSE;
`endif
im <= {interrupts{1'b0}};
ip <= {interrupts{1'b0}};
end
else
begin
// Set IP bit when interrupt line is asserted
ip <= asserted;
`ifdef CFG_DEBUG_ENABLED
if (non_debug_exception == `TRUE)
begin
// Save and then clear interrupt enable
eie <= ie;
ie <= `FALSE;
end
else if (debug_exception == `TRUE)
begin
// Save and then clear interrupt enable
bie <= ie;
ie <= `FALSE;
end
`else
if (exception == `TRUE)
begin
// Save and then clear interrupt enable
eie <= ie;
ie <= `FALSE;
end
`endif
else if (stall_x == `FALSE)
begin
if (eret_q_x == `TRUE)
// Restore interrupt enable
ie <= eie;
`ifdef CFG_DEBUG_ENABLED
else if (bret_q_x == `TRUE)
// Restore interrupt enable
ie <= bie;
`endif
else if (csr_write_enable == `TRUE)
begin
// Handle wcsr write
if (csr == `LM32_CSR_IE)
begin
ie <= csr_write_data[0];
eie <= csr_write_data[1];
`ifdef CFG_DEBUG_ENABLED
bie <= csr_write_data[2];
`endif
end
if (csr == `LM32_CSR_IM)
im <= csr_write_data[interrupts-1:0];
if (csr == `LM32_CSR_IP)
ip <= asserted & ~csr_write_data[interrupts-1:0];
end
end
end
end
// end
//else
// begin
//// IE, IM, IP - Interrupt Enable, Interrupt Mask and Interrupt Pending CSRs
//always @(posedge clk_i `CFG_RESET_SENSITIVITY)
//begin
// if (rst_i == `TRUE)
// begin
// ie <= `FALSE;
// eie <= `FALSE;
//`ifdef CFG_DEBUG_ENABLED
// bie <= `FALSE;
//`endif
// ip <= {interrupts{1'b0}};
// end
// else
// begin
// // Set IP bit when interrupt line is asserted
// ip <= asserted;
//`ifdef CFG_DEBUG_ENABLED
// if (non_debug_exception == `TRUE)
// begin
// // Save and then clear interrupt enable
// eie <= ie;
// ie <= `FALSE;
// end
// else if (debug_exception == `TRUE)
// begin
// // Save and then clear interrupt enable
// bie <= ie;
// ie <= `FALSE;
// end
//`else
// if (exception == `TRUE)
// begin
// // Save and then clear interrupt enable
// eie <= ie;
// ie <= `FALSE;
// end
//`endif
// else if (stall_x == `FALSE)
// begin
// if (eret_q_x == `TRUE)
// // Restore interrupt enable
// ie <= eie;
//`ifdef CFG_DEBUG_ENABLED
// else if (bret_q_x == `TRUE)
// // Restore interrupt enable
// ie <= bie;
//`endif
// else if (csr_write_enable == `TRUE)
// begin
// // Handle wcsr write
// if (csr == `LM32_CSR_IE)
// begin
// ie <= csr_write_data[0];
// eie <= csr_write_data[1];
//`ifdef CFG_DEBUG_ENABLED
// bie <= csr_write_data[2];
//`endif
// end
// if (csr == `LM32_CSR_IP)
// ip <= asserted & ~csr_write_data[interrupts-1:0];
// end
// end
// end
//end
// end
//endgenerate
endmodule

View File

@@ -0,0 +1,491 @@
// =============================================================================
// COPYRIGHT NOTICE
// Copyright 2006 (c) Lattice Semiconductor Corporation
// ALL RIGHTS RESERVED
// This confidential and proprietary software may be used only as authorised by
// a licensing agreement from Lattice Semiconductor Corporation.
// The entire notice above must be reproduced on all authorized copies and
// copies may only be made to the extent permitted by a licensing agreement from
// Lattice Semiconductor Corporation.
//
// Lattice Semiconductor Corporation TEL : 1-800-Lattice (USA and Canada)
// 5555 NE Moore Court 408-826-6000 (other locations)
// Hillsboro, OR 97124 web : http://www.latticesemi.com/
// U.S.A email: techsupport@latticesemi.com
// =============================================================================/
// FILE DETAILS
// Project : LatticeMico32
// File : lm32_jtag.v
// Title : JTAG interface
// Dependencies : lm32_include.v
// Version : 6.1.17
// =============================================================================
`include "lm32_include.v"
`ifdef CFG_JTAG_ENABLED
`define LM32_DP 3'b000
`define LM32_TX 3'b001
`define LM32_RX 3'b010
// LM32 Debug Protocol commands IDs
`define LM32_DP_RNG 3:0
`define LM32_DP_READ_MEMORY 4'b0001
`define LM32_DP_WRITE_MEMORY 4'b0010
`define LM32_DP_READ_SEQUENTIAL 4'b0011
`define LM32_DP_WRITE_SEQUENTIAL 4'b0100
`define LM32_DP_WRITE_CSR 4'b0101
`define LM32_DP_BREAK 4'b0110
`define LM32_DP_RESET 4'b0111
// States for FSM
`define LM32_JTAG_STATE_RNG 3:0
`define LM32_JTAG_STATE_READ_COMMAND 4'h0
`define LM32_JTAG_STATE_READ_BYTE_0 4'h1
`define LM32_JTAG_STATE_READ_BYTE_1 4'h2
`define LM32_JTAG_STATE_READ_BYTE_2 4'h3
`define LM32_JTAG_STATE_READ_BYTE_3 4'h4
`define LM32_JTAG_STATE_READ_BYTE_4 4'h5
`define LM32_JTAG_STATE_PROCESS_COMMAND 4'h6
`define LM32_JTAG_STATE_WAIT_FOR_MEMORY 4'h7
`define LM32_JTAG_STATE_WAIT_FOR_CSR 4'h8
/////////////////////////////////////////////////////
// Module interface
/////////////////////////////////////////////////////
module lm32_jtag (
// ----- Inputs -------
clk_i,
rst_i,
jtag_clk,
jtag_update,
jtag_reg_q,
jtag_reg_addr_q,
`ifdef CFG_JTAG_UART_ENABLED
csr,
csr_write_enable,
csr_write_data,
stall_x,
`endif
`ifdef CFG_HW_DEBUG_ENABLED
jtag_read_data,
jtag_access_complete,
`endif
`ifdef CFG_DEBUG_ENABLED
exception_q_w,
`endif
// ----- Outputs -------
`ifdef CFG_JTAG_UART_ENABLED
jtx_csr_read_data,
jrx_csr_read_data,
`endif
`ifdef CFG_HW_DEBUG_ENABLED
jtag_csr_write_enable,
jtag_csr_write_data,
jtag_csr,
jtag_read_enable,
jtag_write_enable,
jtag_write_data,
jtag_address,
`endif
`ifdef CFG_DEBUG_ENABLED
jtag_break,
jtag_reset,
`endif
jtag_reg_d,
jtag_reg_addr_d
);
parameter lat_family = `LATTICE_FAMILY;
/////////////////////////////////////////////////////
// Inputs
/////////////////////////////////////////////////////
input clk_i; // Clock
input rst_i; // Reset
input jtag_clk; // JTAG clock
input jtag_update; // JTAG data register has been updated
input [`LM32_BYTE_RNG] jtag_reg_q; // JTAG data register
input [2:0] jtag_reg_addr_q; // JTAG data register
`ifdef CFG_JTAG_UART_ENABLED
input [`LM32_CSR_RNG] csr; // CSR to write
input csr_write_enable; // CSR write enable
input [`LM32_WORD_RNG] csr_write_data; // Data to write to specified CSR
input stall_x; // Stall instruction in X stage
`endif
`ifdef CFG_HW_DEBUG_ENABLED
input [`LM32_BYTE_RNG] jtag_read_data; // Data read from requested address
input jtag_access_complete; // Memory access if complete
`endif
`ifdef CFG_DEBUG_ENABLED
input exception_q_w; // Indicates an exception has occured in W stage
`endif
/////////////////////////////////////////////////////
// Outputs
/////////////////////////////////////////////////////
`ifdef CFG_JTAG_UART_ENABLED
output [`LM32_WORD_RNG] jtx_csr_read_data; // Value of JTX CSR for rcsr instructions
wire [`LM32_WORD_RNG] jtx_csr_read_data;
output [`LM32_WORD_RNG] jrx_csr_read_data; // Value of JRX CSR for rcsr instructions
wire [`LM32_WORD_RNG] jrx_csr_read_data;
`endif
`ifdef CFG_HW_DEBUG_ENABLED
output jtag_csr_write_enable; // CSR write enable
reg jtag_csr_write_enable;
output [`LM32_WORD_RNG] jtag_csr_write_data; // Data to write to specified CSR
wire [`LM32_WORD_RNG] jtag_csr_write_data;
output [`LM32_CSR_RNG] jtag_csr; // CSR to write
wire [`LM32_CSR_RNG] jtag_csr;
output jtag_read_enable; // Memory read enable
reg jtag_read_enable;
output jtag_write_enable; // Memory write enable
reg jtag_write_enable;
output [`LM32_BYTE_RNG] jtag_write_data; // Data to write to specified address
wire [`LM32_BYTE_RNG] jtag_write_data;
output [`LM32_WORD_RNG] jtag_address; // Memory read/write address
wire [`LM32_WORD_RNG] jtag_address;
`endif
`ifdef CFG_DEBUG_ENABLED
output jtag_break; // Request to raise a breakpoint exception
reg jtag_break;
output jtag_reset; // Request to raise a reset exception
reg jtag_reset;
`endif
output [`LM32_BYTE_RNG] jtag_reg_d;
reg [`LM32_BYTE_RNG] jtag_reg_d;
output [2:0] jtag_reg_addr_d;
wire [2:0] jtag_reg_addr_d;
/////////////////////////////////////////////////////
// Internal nets and registers
/////////////////////////////////////////////////////
reg rx_toggle; // Clock-domain crossing registers
reg rx_toggle_r; // Registered version of rx_toggle
reg rx_toggle_r_r; // Registered version of rx_toggle_r
reg rx_toggle_r_r_r; // Registered version of rx_toggle_r_r
reg [`LM32_BYTE_RNG] rx_byte;
reg [2:0] rx_addr;
`ifdef CFG_JTAG_UART_ENABLED
reg [`LM32_BYTE_RNG] uart_tx_byte; // UART TX data
reg uart_tx_valid; // TX data is valid
reg [`LM32_BYTE_RNG] uart_rx_byte; // UART RX data
reg uart_rx_valid; // RX data is valid
`endif
reg [`LM32_DP_RNG] command; // The last received command
`ifdef CFG_HW_DEBUG_ENABLED
reg [`LM32_BYTE_RNG] jtag_byte_0; // Registers to hold command paramaters
reg [`LM32_BYTE_RNG] jtag_byte_1;
reg [`LM32_BYTE_RNG] jtag_byte_2;
reg [`LM32_BYTE_RNG] jtag_byte_3;
reg [`LM32_BYTE_RNG] jtag_byte_4;
reg processing; // Indicates if we're still processing a memory read/write
`endif
reg [`LM32_JTAG_STATE_RNG] state; // Current state of FSM
/////////////////////////////////////////////////////
// Combinational Logic
/////////////////////////////////////////////////////
`ifdef CFG_HW_DEBUG_ENABLED
assign jtag_csr_write_data = {jtag_byte_0, jtag_byte_1, jtag_byte_2, jtag_byte_3};
assign jtag_csr = jtag_byte_4[`LM32_CSR_RNG];
assign jtag_address = {jtag_byte_0, jtag_byte_1, jtag_byte_2, jtag_byte_3};
assign jtag_write_data = jtag_byte_4;
`endif
// Generate status flags for reading via the JTAG interface
`ifdef CFG_JTAG_UART_ENABLED
assign jtag_reg_addr_d[1:0] = {uart_rx_valid, uart_tx_valid};
`else
assign jtag_reg_addr_d[1:0] = 2'b00;
`endif
`ifdef CFG_HW_DEBUG_ENABLED
assign jtag_reg_addr_d[2] = processing;
`else
assign jtag_reg_addr_d[2] = 1'b0;
`endif
`ifdef CFG_JTAG_UART_ENABLED
assign jtx_csr_read_data = {{`LM32_WORD_WIDTH-9{1'b0}}, uart_tx_valid, 8'h00};
assign jrx_csr_read_data = {{`LM32_WORD_WIDTH-9{1'b0}}, uart_rx_valid, uart_rx_byte};
`endif
/////////////////////////////////////////////////////
// Sequential Logic
/////////////////////////////////////////////////////
// Toggle a flag when a JTAG write occurs
generate
if (lat_family == "EC" || lat_family == "ECP" ||
lat_family == "XP" || lat_family == "ECP2" || lat_family == "ECP2M") begin
always @(posedge jtag_clk `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
rx_toggle <= 1'b0;
else
if (jtag_update == `TRUE)
rx_toggle <= ~rx_toggle;
end
end else begin // for SC & SCM
always @(negedge jtag_update `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
rx_toggle <= 1'b0;
else
rx_toggle <= ~rx_toggle;
end
end
endgenerate
always @(*)
begin
rx_byte = jtag_reg_q;
rx_addr = jtag_reg_addr_q;
end
// Clock domain crossing from JTAG clock domain to CPU clock domain
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
begin
rx_toggle_r <= 1'b0;
rx_toggle_r_r <= 1'b0;
rx_toggle_r_r_r <= 1'b0;
end
else
begin
rx_toggle_r <= rx_toggle;
rx_toggle_r_r <= rx_toggle_r;
rx_toggle_r_r_r <= rx_toggle_r_r;
end
end
// LM32 debug protocol state machine
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
begin
state <= `LM32_JTAG_STATE_READ_COMMAND;
command <= 4'b0000;
jtag_reg_d <= 8'h00;
`ifdef CFG_HW_DEBUG_ENABLED
processing <= `FALSE;
jtag_csr_write_enable <= `FALSE;
jtag_read_enable <= `FALSE;
jtag_write_enable <= `FALSE;
`endif
`ifdef CFG_DEBUG_ENABLED
jtag_break <= `FALSE;
jtag_reset <= `FALSE;
`endif
`ifdef CFG_JTAG_UART_ENABLED
uart_tx_byte <= 8'h00;
uart_tx_valid <= `FALSE;
uart_rx_byte <= 8'h00;
uart_rx_valid <= `FALSE;
`endif
end
else
begin
`ifdef CFG_JTAG_UART_ENABLED
if ((csr_write_enable == `TRUE) && (stall_x == `FALSE))
begin
case (csr)
`LM32_CSR_JTX:
begin
// Set flag indicating data is available
uart_tx_byte <= csr_write_data[`LM32_BYTE_0_RNG];
uart_tx_valid <= `TRUE;
end
`LM32_CSR_JRX:
begin
// Clear flag indidicating data has been received
uart_rx_valid <= `FALSE;
end
endcase
end
`endif
`ifdef CFG_DEBUG_ENABLED
// When an exception has occured, clear the requests
if (exception_q_w == `TRUE)
begin
jtag_break <= `FALSE;
jtag_reset <= `FALSE;
end
`endif
case (state)
`LM32_JTAG_STATE_READ_COMMAND:
begin
// Wait for rx register to toggle which indicates new data is available
if (rx_toggle_r_r != rx_toggle_r_r_r)
begin
command <= rx_byte[7:4];
case (rx_addr)
`ifdef CFG_DEBUG_ENABLED
`LM32_DP:
begin
case (rx_byte[7:4])
`ifdef CFG_HW_DEBUG_ENABLED
`LM32_DP_READ_MEMORY:
state <= `LM32_JTAG_STATE_READ_BYTE_0;
`LM32_DP_READ_SEQUENTIAL:
begin
{jtag_byte_2, jtag_byte_3} <= {jtag_byte_2, jtag_byte_3} + 1'b1;
state <= `LM32_JTAG_STATE_PROCESS_COMMAND;
end
`LM32_DP_WRITE_MEMORY:
state <= `LM32_JTAG_STATE_READ_BYTE_0;
`LM32_DP_WRITE_SEQUENTIAL:
begin
{jtag_byte_2, jtag_byte_3} <= {jtag_byte_2, jtag_byte_3} + 1'b1;
state <= 5;
end
`LM32_DP_WRITE_CSR:
state <= `LM32_JTAG_STATE_READ_BYTE_0;
`endif
`LM32_DP_BREAK:
begin
`ifdef CFG_JTAG_UART_ENABLED
uart_rx_valid <= `FALSE;
uart_tx_valid <= `FALSE;
`endif
jtag_break <= `TRUE;
end
`LM32_DP_RESET:
begin
`ifdef CFG_JTAG_UART_ENABLED
uart_rx_valid <= `FALSE;
uart_tx_valid <= `FALSE;
`endif
jtag_reset <= `TRUE;
end
endcase
end
`endif
`ifdef CFG_JTAG_UART_ENABLED
`LM32_TX:
begin
uart_rx_byte <= rx_byte;
uart_rx_valid <= `TRUE;
end
`LM32_RX:
begin
jtag_reg_d <= uart_tx_byte;
uart_tx_valid <= `FALSE;
end
`endif
default:
;
endcase
end
end
`ifdef CFG_HW_DEBUG_ENABLED
`LM32_JTAG_STATE_READ_BYTE_0:
begin
if (rx_toggle_r_r != rx_toggle_r_r_r)
begin
jtag_byte_0 <= rx_byte;
state <= `LM32_JTAG_STATE_READ_BYTE_1;
end
end
`LM32_JTAG_STATE_READ_BYTE_1:
begin
if (rx_toggle_r_r != rx_toggle_r_r_r)
begin
jtag_byte_1 <= rx_byte;
state <= `LM32_JTAG_STATE_READ_BYTE_2;
end
end
`LM32_JTAG_STATE_READ_BYTE_2:
begin
if (rx_toggle_r_r != rx_toggle_r_r_r)
begin
jtag_byte_2 <= rx_byte;
state <= `LM32_JTAG_STATE_READ_BYTE_3;
end
end
`LM32_JTAG_STATE_READ_BYTE_3:
begin
if (rx_toggle_r_r != rx_toggle_r_r_r)
begin
jtag_byte_3 <= rx_byte;
if (command == `LM32_DP_READ_MEMORY)
state <= `LM32_JTAG_STATE_PROCESS_COMMAND;
else
state <= `LM32_JTAG_STATE_READ_BYTE_4;
end
end
`LM32_JTAG_STATE_READ_BYTE_4:
begin
if (rx_toggle_r_r != rx_toggle_r_r_r)
begin
jtag_byte_4 <= rx_byte;
state <= `LM32_JTAG_STATE_PROCESS_COMMAND;
end
end
`LM32_JTAG_STATE_PROCESS_COMMAND:
begin
case (command)
`LM32_DP_READ_MEMORY,
`LM32_DP_READ_SEQUENTIAL:
begin
jtag_read_enable <= `TRUE;
processing <= `TRUE;
state <= `LM32_JTAG_STATE_WAIT_FOR_MEMORY;
end
`LM32_DP_WRITE_MEMORY,
`LM32_DP_WRITE_SEQUENTIAL:
begin
jtag_write_enable <= `TRUE;
processing <= `TRUE;
state <= `LM32_JTAG_STATE_WAIT_FOR_MEMORY;
end
`LM32_DP_WRITE_CSR:
begin
jtag_csr_write_enable <= `TRUE;
processing <= `TRUE;
state <= `LM32_JTAG_STATE_WAIT_FOR_CSR;
end
endcase
end
`LM32_JTAG_STATE_WAIT_FOR_MEMORY:
begin
if (jtag_access_complete == `TRUE)
begin
jtag_read_enable <= `FALSE;
jtag_reg_d <= jtag_read_data;
jtag_write_enable <= `FALSE;
processing <= `FALSE;
state <= `LM32_JTAG_STATE_READ_COMMAND;
end
end
`LM32_JTAG_STATE_WAIT_FOR_CSR:
begin
jtag_csr_write_enable <= `FALSE;
processing <= `FALSE;
state <= `LM32_JTAG_STATE_READ_COMMAND;
end
`endif
endcase
end
end
endmodule
`endif

View File

@@ -0,0 +1,588 @@
// =============================================================================
// COPYRIGHT NOTICE
// Copyright 2006 (c) Lattice Semiconductor Corporation
// ALL RIGHTS RESERVED
// This confidential and proprietary software may be used only as authorised by
// a licensing agreement from Lattice Semiconductor Corporation.
// The entire notice above must be reproduced on all authorized copies and
// copies may only be made to the extent permitted by a licensing agreement from
// Lattice Semiconductor Corporation.
//
// Lattice Semiconductor Corporation TEL : 1-800-Lattice (USA and Canada)
// 5555 NE Moore Court 408-826-6000 (other locations)
// Hillsboro, OR 97124 web : http://www.latticesemi.com/
// U.S.A email: techsupport@latticesemi.com
// =============================================================================/
// FILE DETAILS
// Project : LatticeMico32
// File : lm32_load_store_unit.v
// Title : Load and store unit
// Dependencies : lm32_include.v
// Version : 6.0.13
// =============================================================================
`include "lm32_include.v"
/////////////////////////////////////////////////////
// Module interface
/////////////////////////////////////////////////////
module lm32_load_store_unit (
// ----- Inputs -------
clk_i,
rst_i,
// From pipeline
stall_a,
stall_x,
stall_m,
kill_x,
kill_m,
exception_m,
store_operand_x,
load_store_address_x,
load_store_address_m,
load_store_address_w,
load_q_x,
load_q_m,
store_q_m,
sign_extend_x,
size_x,
`ifdef CFG_DCACHE_ENABLED
dflush,
`endif
// From Wishbone
d_dat_i,
d_ack_i,
d_err_i,
d_rty_i,
// ----- Outputs -------
// To pipeline
`ifdef CFG_DCACHE_ENABLED
dcache_refill_request,
dcache_restart_request,
dcache_stall_request,
dcache_refilling,
`endif
load_data_w,
stall_wb_load,
// To Wishbone
d_dat_o,
d_adr_o,
d_cyc_o,
d_sel_o,
d_stb_o,
d_we_o,
d_cti_o,
d_lock_o,
d_bte_o
);
/////////////////////////////////////////////////////
// Parameters
/////////////////////////////////////////////////////
parameter associativity = 1; // Associativity of the cache (Number of ways)
parameter sets = 512; // Number of sets
parameter bytes_per_line = 16; // Number of bytes per cache line
parameter base_address = 0; // Base address of cachable memory
parameter limit = 0; // Limit (highest address) of cachable memory
// For bytes_per_line == 4, we set 1 so part-select range isn't reversed, even though not really used
//localparam addr_offset_width = bytes_per_line == 4 ? 1 : clogb2(bytes_per_line)-1-2;
localparam addr_offset_width = 2;
localparam addr_offset_lsb = 2;
localparam addr_offset_msb = (addr_offset_lsb+addr_offset_width-1);
/////////////////////////////////////////////////////
// Inputs
/////////////////////////////////////////////////////
input clk_i; // Clock
input rst_i; // Reset
input stall_a; // A stage stall
input stall_x; // X stage stall
input stall_m; // M stage stall
input kill_x; // Kill instruction in X stage
input kill_m; // Kill instruction in M stage
input exception_m; // An exception occured in the M stage
input [`LM32_WORD_RNG] store_operand_x; // Data read from register to store
input [`LM32_WORD_RNG] load_store_address_x; // X stage load/store address
input [`LM32_WORD_RNG] load_store_address_m; // M stage load/store address
input [1:0] load_store_address_w; // W stage load/store address (only least two significant bits are needed)
input load_q_x; // Load instruction in X stage
input load_q_m; // Load instruction in M stage
input store_q_m; // Store instruction in M stage
input sign_extend_x; // Whether load instruction in X stage should sign extend or zero extend
input [`LM32_SIZE_RNG] size_x; // Size of load or store (byte, hword, word)
`ifdef CFG_DCACHE_ENABLED
input dflush; // Flush the data cache
`endif
input [`LM32_WORD_RNG] d_dat_i; // Data Wishbone interface read data
input d_ack_i; // Data Wishbone interface acknowledgement
input d_err_i; // Data Wishbone interface error
input d_rty_i; // Data Wishbone interface retry
/////////////////////////////////////////////////////
// Outputs
/////////////////////////////////////////////////////
`ifdef CFG_DCACHE_ENABLED
output dcache_refill_request; // Request to refill data cache
wire dcache_refill_request;
output dcache_restart_request; // Request to restart the instruction that caused a data cache miss
wire dcache_restart_request;
output dcache_stall_request; // Data cache stall request
wire dcache_stall_request;
output dcache_refilling;
wire dcache_refilling;
`endif
output [`LM32_WORD_RNG] load_data_w; // Result of a load instruction
reg [`LM32_WORD_RNG] load_data_w;
output stall_wb_load; // Request to stall pipeline due to a load from the Wishbone interface
reg stall_wb_load;
output [`LM32_WORD_RNG] d_dat_o; // Data Wishbone interface write data
reg [`LM32_WORD_RNG] d_dat_o;
output [`LM32_WORD_RNG] d_adr_o; // Data Wishbone interface address
reg [`LM32_WORD_RNG] d_adr_o;
output d_cyc_o; // Data Wishbone interface cycle
reg d_cyc_o;
output [`LM32_BYTE_SELECT_RNG] d_sel_o; // Data Wishbone interface byte select
reg [`LM32_BYTE_SELECT_RNG] d_sel_o;
output d_stb_o; // Data Wishbone interface strobe
reg d_stb_o;
output d_we_o; // Data Wishbone interface write enable
reg d_we_o;
output [`LM32_CTYPE_RNG] d_cti_o; // Data Wishbone interface cycle type
wire [`LM32_CTYPE_RNG] d_cti_o;
output d_lock_o; // Date Wishbone interface lock bus
wire d_lock_o;
output [`LM32_BTYPE_RNG] d_bte_o; // Data Wishbone interface burst type
wire [`LM32_BTYPE_RNG] d_bte_o;
/////////////////////////////////////////////////////
// Internal nets and registers
/////////////////////////////////////////////////////
// Microcode pipeline registers - See inputs for description
reg [`LM32_SIZE_RNG] size_m;
reg [`LM32_SIZE_RNG] size_w;
reg sign_extend_m;
reg sign_extend_w;
reg [`LM32_WORD_RNG] store_data_x;
reg [`LM32_WORD_RNG] store_data_m;
reg [`LM32_BYTE_SELECT_RNG] byte_enable_x;
reg [`LM32_BYTE_SELECT_RNG] byte_enable_m;
wire [`LM32_WORD_RNG] data_m;
reg [`LM32_WORD_RNG] data_w;
`ifdef CFG_DCACHE_ENABLED
wire dcache_select_x; // Select data cache to load from / store to
reg dcache_select_m;
wire [`LM32_WORD_RNG] dcache_data_m; // Data read from cache
wire [`LM32_WORD_RNG] dcache_refill_address; // Address to refill data cache from
reg dcache_refill_ready; // Indicates the next word of refill data is ready
wire last_word; // Indicates if this is the last word in the cache line
wire [`LM32_WORD_RNG] first_address; // First cache refill address
`endif
`ifdef CFG_DRAM_ENABLED
wire dram_select_x; // Select data RAM to load from / store to
reg dram_select_m;
wire [`LM32_WORD_RNG] dram_data_m; // Data read from data RAM
wire [`LM32_WORD_RNG] dram_store_data_m; // Data to write to RAM
`endif
wire wb_select_x; // Select Wishbone to load from / store to
reg wb_select_m;
reg [`LM32_WORD_RNG] wb_data_m; // Data read from Wishbone
reg wb_load_complete; // Indicates when a Wishbone load is complete
/////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////
`include "lm32_functions.v"
/////////////////////////////////////////////////////
// Instantiations
/////////////////////////////////////////////////////
`ifdef CFG_DRAM_ENABLED
// Data RAM
pmi_ram_dp_true #(
// ----- Parameters -------
.pmi_addr_depth_a (1 << (clogb2(`CFG_DRAM_LIMIT/4-`CFG_DRAM_BASE_ADDRESS/4+1)-1)),
.pmi_addr_width_a ((clogb2(`CFG_DRAM_LIMIT/4-`CFG_DRAM_BASE_ADDRESS/4+1)-1)),
.pmi_data_width_a (`LM32_WORD_WIDTH),
.pmi_addr_depth_b (1 << (clogb2(`CFG_DRAM_LIMIT/4-`CFG_DRAM_BASE_ADDRESS/4+1)-1)),
.pmi_addr_width_b ((clogb2(`CFG_DRAM_LIMIT/4-`CFG_DRAM_BASE_ADDRESS/4+1)-1)),
.pmi_data_width_b (`LM32_WORD_WIDTH),
.pmi_regmode_a ("noreg"),
.pmi_regmode_b ("noreg"),
.pmi_gsr ("enable"),
.pmi_resetmode ("async"),
.pmi_init_file (`CFG_DRAM_INIT_FILE),
.pmi_init_file_format ("hex"),
.module_type ("pmi_ram_dp")
) ram (
// ----- Inputs -------
.ClockA (clk_i),
.ClockB (clk_i),
.ResetA (rst_i),
.ResetB (rst_i),
.DataInA ({32{1'b0}}),
.DataInB (dram_store_data_m),
.AddressA (load_store_address_x[(clogb2(`CFG_DRAM_LIMIT/4-`CFG_DRAM_BASE_ADDRESS/4+1)-1)+2-1:2]),
.AddressB (load_store_address_m[(clogb2(`CFG_DRAM_LIMIT/4-`CFG_DRAM_BASE_ADDRESS/4+1)-1)+2-1:2]),
.ClockEnA (!stall_x),
.ClockEnB (!stall_m),
.WrA (`FALSE),
.WrB (store_q_m),
// ----- Outputs -------
.QA (dram_data_m),
.QB ()
);
`endif
`ifdef CFG_DCACHE_ENABLED
// Data cache
lm32_dcache #(
.associativity (associativity),
.sets (sets),
.bytes_per_line (bytes_per_line),
.base_address (base_address),
.limit (limit)
) dcache (
// ----- Inputs -----
.clk_i (clk_i),
.rst_i (rst_i),
.stall_a (stall_a),
.stall_x (stall_x),
.stall_m (stall_m),
.address_x (load_store_address_x),
.address_m (load_store_address_m),
.load_q_m (load_q_m & dcache_select_m),
.store_q_m (store_q_m),
.store_data (store_data_m),
.store_byte_select (byte_enable_m),
.refill_ready (dcache_refill_ready),
.refill_data (wb_data_m),
.dflush (dflush),
// ----- Outputs -----
.stall_request (dcache_stall_request),
.restart_request (dcache_restart_request),
.refill_request (dcache_refill_request),
.refill_address (dcache_refill_address),
.refilling (dcache_refilling),
.load_data (dcache_data_m)
);
`endif
/////////////////////////////////////////////////////
// Combinational Logic
/////////////////////////////////////////////////////
// Select where data should be loaded from / stored to
`ifdef CFG_DCACHE_ENABLED
assign dcache_select_x = (load_store_address_x >= `CFG_DCACHE_BASE_ADDRESS) && (load_store_address_x <= `CFG_DCACHE_LIMIT);
//assign dcache_select_x = (load_store_address_x >= `CFG_DCACHE_BASE_ADDRESS) && ~|load_store_address_x[`LM32_WORD_WIDTH-1:clogb2(`CFG_DCACHE_LIMIT-`CFG_DCACHE_BASE_ADDRESS)-1];
`endif
`ifdef CFG_DRAM_ENABLED
assign dram_select_x = (load_store_address_x >= `CFG_DRAM_BASE_ADDRESS) && (load_store_address_x <= `CFG_DRAM_LIMIT);
`endif
assign wb_select_x = `TRUE
`ifdef CFG_DCACHE_ENABLED
&& !dcache_select_x
`endif
`ifdef CFG_DRAM_ENABLED
&& !dram_select_x
`endif
;
// Make sure data to store is in correct byte lane
always @(*)
begin
case (size_x)
`LM32_SIZE_BYTE: store_data_x = {4{store_operand_x[7:0]}};
`LM32_SIZE_HWORD: store_data_x = {2{store_operand_x[15:0]}};
`LM32_SIZE_WORD: store_data_x = store_operand_x;
default: store_data_x = {`LM32_WORD_WIDTH{1'bx}};
endcase
end
// Generate byte enable accoring to size of load or store and address being accessed
always @(*)
begin
casez ({size_x, load_store_address_x[1:0]})
{`LM32_SIZE_BYTE, 2'b11}: byte_enable_x = 4'b0001;
{`LM32_SIZE_BYTE, 2'b10}: byte_enable_x = 4'b0010;
{`LM32_SIZE_BYTE, 2'b01}: byte_enable_x = 4'b0100;
{`LM32_SIZE_BYTE, 2'b00}: byte_enable_x = 4'b1000;
{`LM32_SIZE_HWORD, 2'b1?}: byte_enable_x = 4'b0011;
{`LM32_SIZE_HWORD, 2'b0?}: byte_enable_x = 4'b1100;
{`LM32_SIZE_WORD, 2'b??}: byte_enable_x = 4'b1111;
default: byte_enable_x = 4'bxxxx;
endcase
end
`ifdef CFG_DRAM_ENABLED
// Only replace selected bytes
assign dram_store_data_m[`LM32_BYTE_0_RNG] = byte_enable_m[0] ? store_data_m[`LM32_BYTE_0_RNG] : dram_data_m[`LM32_BYTE_0_RNG];
assign dram_store_data_m[`LM32_BYTE_1_RNG] = byte_enable_m[1] ? store_data_m[`LM32_BYTE_1_RNG] : dram_data_m[`LM32_BYTE_1_RNG];
assign dram_store_data_m[`LM32_BYTE_2_RNG] = byte_enable_m[2] ? store_data_m[`LM32_BYTE_2_RNG] : dram_data_m[`LM32_BYTE_2_RNG];
assign dram_store_data_m[`LM32_BYTE_3_RNG] = byte_enable_m[3] ? store_data_m[`LM32_BYTE_3_RNG] : dram_data_m[`LM32_BYTE_3_RNG];
`endif
// Select data from selected source
`ifdef CFG_DCACHE_ENABLED
`ifdef CFG_DRAM_ENABLED
assign data_m = wb_select_m == `TRUE
? wb_data_m
: dram_select_m == `TRUE
? dram_data_m
: dcache_data_m;
`else
assign data_m = wb_select_m == `TRUE ? wb_data_m : dcache_data_m;
`endif
`else
`ifdef CFG_DRAM_ENABLED
assign data_m = wb_select_m == `TRUE ? wb_data_m : dram_data_m;
`else
assign data_m = wb_data_m;
`endif
`endif
// Sub-word selection and sign/zero-extension for loads
always @(*)
begin
casez ({size_w, load_store_address_w[1:0]})
{`LM32_SIZE_BYTE, 2'b11}: load_data_w = {{24{sign_extend_w & data_w[7]}}, data_w[7:0]};
{`LM32_SIZE_BYTE, 2'b10}: load_data_w = {{24{sign_extend_w & data_w[15]}}, data_w[15:8]};
{`LM32_SIZE_BYTE, 2'b01}: load_data_w = {{24{sign_extend_w & data_w[23]}}, data_w[23:16]};
{`LM32_SIZE_BYTE, 2'b00}: load_data_w = {{24{sign_extend_w & data_w[31]}}, data_w[31:24]};
{`LM32_SIZE_HWORD, 2'b1?}: load_data_w = {{16{sign_extend_w & data_w[15]}}, data_w[15:0]};
{`LM32_SIZE_HWORD, 2'b0?}: load_data_w = {{16{sign_extend_w & data_w[31]}}, data_w[31:16]};
{`LM32_SIZE_WORD, 2'b??}: load_data_w = data_w;
default: load_data_w = {`LM32_WORD_WIDTH{1'bx}};
endcase
end
// Unused Wishbone signals
assign d_cti_o = `LM32_CTYPE_WIDTH'd0;
assign d_lock_o = `FALSE;
assign d_bte_o = `LM32_BTYPE_WIDTH'd0;
`ifdef CFG_DCACHE_ENABLED
// Generate signal to indicate last word in cache line
generate
if (bytes_per_line > 4)
begin
assign first_address = {dcache_refill_address[`LM32_WORD_WIDTH-1:addr_offset_msb+1], {addr_offset_width{1'b0}}, 2'b00};
assign last_word = (&d_adr_o[addr_offset_msb:addr_offset_lsb]) == 1'b1;
end
else
begin
assign first_address = {dcache_refill_address[`LM32_WORD_WIDTH-1:2], 2'b00};
assign last_word = `TRUE;
end
endgenerate
`endif
/////////////////////////////////////////////////////
// Sequential Logic
/////////////////////////////////////////////////////
// Data Wishbone interface
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
begin
d_cyc_o <= `FALSE;
d_stb_o <= `FALSE;
d_dat_o <= {`LM32_WORD_WIDTH{1'b0}};
d_adr_o <= {`LM32_WORD_WIDTH{1'b0}};
d_sel_o <= {`LM32_BYTE_SELECT_WIDTH{`FALSE}};
d_we_o <= `FALSE;
wb_data_m <= {`LM32_WORD_WIDTH{1'b0}};
wb_load_complete <= `FALSE;
stall_wb_load <= `FALSE;
`ifdef CFG_DCACHE_ENABLED
dcache_refill_ready <= `FALSE;
`endif
end
else
begin
`ifdef CFG_DCACHE_ENABLED
// Refill ready should only be asserted for a single cycle
dcache_refill_ready <= `FALSE;
`endif
// Is a Wishbone cycle already in progress?
if (d_cyc_o == `TRUE)
begin
// Is the cycle complete?
if ((d_ack_i == `TRUE) || (d_err_i == `TRUE))
begin
`ifdef CFG_DCACHE_ENABLED
if ((dcache_refilling == `TRUE) && (!last_word))
begin
// Fetch next word of cache line
d_adr_o[addr_offset_msb:addr_offset_lsb] <= d_adr_o[addr_offset_msb:addr_offset_lsb] + 1'b1;
end
else
`endif
begin
// Refill/access complete
d_cyc_o <= `FALSE;
d_stb_o <= `FALSE;
end
`ifdef CFG_DCACHE_ENABLED
// If we are performing a refill, indicate to cache next word of data is ready
dcache_refill_ready <= dcache_refilling;
`endif
// Register data read from Wishbone interface
wb_data_m <= d_dat_i;
// Don't set when stores complete - otherwise we'll deadlock if load in m stage
wb_load_complete <= !d_we_o;
end
// synthesis translate_off
if (d_err_i == `TRUE)
$display ("Data bus error. Address: %x", d_adr_o);
// synthesis translate_on
end
else
begin
`ifdef CFG_DCACHE_ENABLED
if (dcache_refill_request == `TRUE)
begin
// Start cache refill
d_adr_o <= first_address;
d_cyc_o <= `TRUE;
d_sel_o <= {`LM32_WORD_WIDTH/8{`TRUE}};
d_stb_o <= `TRUE;
d_we_o <= `FALSE;
end
else
`endif
if ( (store_q_m == `TRUE)
&& (stall_m == `FALSE)
`ifdef CFG_DRAM_ENABLED
&& !dram_select_m
`endif
)
begin
// Data cache is write through, so all stores go to memory
d_dat_o <= store_data_m;
d_adr_o <= load_store_address_m;
d_cyc_o <= `TRUE;
d_sel_o <= byte_enable_m;
d_stb_o <= `TRUE;
d_we_o <= `TRUE;
end
else if ( (load_q_m == `TRUE)
&& (wb_select_m == `TRUE)
&& (wb_load_complete == `FALSE)
/* stall_m will be TRUE, because stall_wb_load will be TRUE */
)
begin
// Read requested address
stall_wb_load <= `FALSE;
d_adr_o <= load_store_address_m;
d_cyc_o <= `TRUE;
d_sel_o <= byte_enable_m;
d_stb_o <= `TRUE;
d_we_o <= `FALSE;
end
end
// Clear load/store complete flag when instruction leaves M stage
if (stall_m == `FALSE)
wb_load_complete <= `FALSE;
// When a Wishbone load first enters the M stage, we need to stall it
if ((load_q_x == `TRUE) && (wb_select_x == `TRUE) && (stall_x == `FALSE))
stall_wb_load <= `TRUE;
// Clear stall request if load instruction is killed
if ((kill_m == `TRUE) || (exception_m == `TRUE))
stall_wb_load <= `FALSE;
end
end
// Pipeline registers
// X/M stage pipeline registers
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
begin
sign_extend_m <= `FALSE;
size_m <= 2'b00;
byte_enable_m <= `FALSE;
store_data_m <= {`LM32_WORD_WIDTH{1'b0}};
`ifdef CFG_DCACHE_ENABLED
dcache_select_m <= `FALSE;
`endif
`ifdef CFG_DRAM_ENABLED
dram_select_m <= `FALSE;
`endif
wb_select_m <= `FALSE;
end
else
begin
if (stall_m == `FALSE)
begin
sign_extend_m <= sign_extend_x;
size_m <= size_x;
byte_enable_m <= byte_enable_x;
store_data_m <= store_data_x;
`ifdef CFG_DCACHE_ENABLED
dcache_select_m <= dcache_select_x;
`endif
`ifdef CFG_DRAM_ENABLED
dram_select_m <= dram_select_x;
`endif
wb_select_m <= wb_select_x;
end
end
end
// M/W stage pipeline registers
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
begin
size_w <= 2'b00;
data_w <= {`LM32_WORD_WIDTH{1'b0}};
sign_extend_w <= `FALSE;
end
else
begin
size_w <= size_m;
data_w <= data_m;
sign_extend_w <= sign_extend_m;
end
end
/////////////////////////////////////////////////////
// Behavioural Logic
/////////////////////////////////////////////////////
// synthesis translate_off
// Check for non-aligned loads or stores
always @(posedge clk_i)
begin
if (((load_q_m == `TRUE) || (store_q_m == `TRUE)) && (stall_m == `FALSE))
begin
if ((size_m === `LM32_SIZE_HWORD) && (load_store_address_m[0] !== 1'b0))
$display ("Warning: Non-aligned halfword access. Address: 0x%0x Time: %0t.", load_store_address_m, $time);
if ((size_m === `LM32_SIZE_WORD) && (load_store_address_m[1:0] !== 2'b00))
$display ("Warning: Non-aligned word access. Address: 0x%0x Time: %0t.", load_store_address_m, $time);
end
end
// synthesis translate_on
endmodule

View File

@@ -0,0 +1,71 @@
// =============================================================================
// COPYRIGHT NOTICE
// Copyright 2006 (c) Lattice Semiconductor Corporation
// ALL RIGHTS RESERVED
// This confidential and proprietary software may be used only as authorised by
// a licensing agreement from Lattice Semiconductor Corporation.
// The entire notice above must be reproduced on all authorized copies and
// copies may only be made to the extent permitted by a licensing agreement from
// Lattice Semiconductor Corporation.
//
// Lattice Semiconductor Corporation TEL : 1-800-Lattice (USA and Canada)
// 5555 NE Moore Court 408-826-6000 (other locations)
// Hillsboro, OR 97124 web : http://www.latticesemi.com/
// U.S.A email: techsupport@latticesemi.com
// =============================================================================/
// FILE DETAILS
// Project : LatticeMico32
// File : lm32_logic_op.v
// Title : Logic operations (and / or / not etc)
// Dependencies : lm32_include.v
// Version : 6.1.17
// =============================================================================
`include "lm32_include.v"
/////////////////////////////////////////////////////
// Module interface
/////////////////////////////////////////////////////
module lm32_logic_op (
// ----- Inputs -------
logic_op_x,
operand_0_x,
operand_1_x,
// ----- Outputs -------
logic_result_x
);
/////////////////////////////////////////////////////
// Inputs
/////////////////////////////////////////////////////
input [`LM32_LOGIC_OP_RNG] logic_op_x;
input [`LM32_WORD_RNG] operand_0_x;
input [`LM32_WORD_RNG] operand_1_x;
/////////////////////////////////////////////////////
// Outputs
/////////////////////////////////////////////////////
output [`LM32_WORD_RNG] logic_result_x;
reg [`LM32_WORD_RNG] logic_result_x;
/////////////////////////////////////////////////////
// Internal nets and registers
/////////////////////////////////////////////////////
integer logic_idx;
/////////////////////////////////////////////////////
// Combinational Logic
/////////////////////////////////////////////////////
always @*
begin
for(logic_idx = 0; logic_idx < `LM32_WORD_WIDTH; logic_idx = logic_idx + 1)
logic_result_x[logic_idx] = logic_op_x[{operand_1_x[logic_idx], operand_0_x[logic_idx]}];
end
endmodule

View File

@@ -0,0 +1,283 @@
// =============================================================================
// COPYRIGHT NOTICE
// Copyright 2006 (c) Lattice Semiconductor Corporation
// ALL RIGHTS RESERVED
// This confidential and proprietary software may be used only as authorised by
// a licensing agreement from Lattice Semiconductor Corporation.
// The entire notice above must be reproduced on all authorized copies and
// copies may only be made to the extent permitted by a licensing agreement from
// Lattice Semiconductor Corporation.
//
// Lattice Semiconductor Corporation TEL : 1-800-Lattice (USA and Canada)
// 5555 NE Moore Court 408-826-6000 (other locations)
// Hillsboro, OR 97124 web : http://www.latticesemi.com/
// U.S.A email: techsupport@latticesemi.com
// =============================================================================/
// FILE DETAILS
// Project : LatticeMico32
// File : lm_mc_arithmetic.v
// Title : Multi-cycle arithmetic unit.
// Dependencies : lm32_include.v
// Version : 6.1.17
// =============================================================================
`include "lm32_include.v"
`define LM32_MC_STATE_RNG 2:0
`define LM32_MC_STATE_IDLE 3'b000
`define LM32_MC_STATE_MULTIPLY 3'b001
`define LM32_MC_STATE_MODULUS 3'b010
`define LM32_MC_STATE_DIVIDE 3'b011
`define LM32_MC_STATE_SHIFT_LEFT 3'b100
`define LM32_MC_STATE_SHIFT_RIGHT 3'b101
/////////////////////////////////////////////////////
// Module interface
/////////////////////////////////////////////////////
module lm32_mc_arithmetic (
// ----- Inputs -----
clk_i,
rst_i,
stall_d,
kill_x,
`ifdef CFG_MC_DIVIDE_ENABLED
divide_d,
modulus_d,
`endif
`ifdef CFG_MC_MULTIPLY_ENABLED
multiply_d,
`endif
`ifdef CFG_MC_BARREL_SHIFT_ENABLED
shift_left_d,
shift_right_d,
sign_extend_d,
`endif
operand_0_d,
operand_1_d,
// ----- Ouputs -----
result_x,
`ifdef CFG_MC_DIVIDE_ENABLED
divide_by_zero_x,
`endif
stall_request_x
);
/////////////////////////////////////////////////////
// Inputs
/////////////////////////////////////////////////////
input clk_i; // Clock
input rst_i; // Reset
input stall_d; // Stall instruction in D stage
input kill_x; // Kill instruction in X stage
`ifdef CFG_MC_DIVIDE_ENABLED
input divide_d; // Perform divide
input modulus_d; // Perform modulus
`endif
`ifdef CFG_MC_MULTIPLY_ENABLED
input multiply_d; // Perform multiply
`endif
`ifdef CFG_MC_BARREL_SHIFT_ENABLED
input shift_left_d; // Perform left shift
input shift_right_d; // Perform right shift
input sign_extend_d; // Whether to sign-extend (arithmetic) or zero-extend (logical)
`endif
input [`LM32_WORD_RNG] operand_0_d;
input [`LM32_WORD_RNG] operand_1_d;
/////////////////////////////////////////////////////
// Outputs
/////////////////////////////////////////////////////
output [`LM32_WORD_RNG] result_x; // Result of operation
reg [`LM32_WORD_RNG] result_x;
`ifdef CFG_MC_DIVIDE_ENABLED
output divide_by_zero_x; // A divide by zero was attempted
reg divide_by_zero_x;
`endif
output stall_request_x; // Request to stall pipeline from X stage back
wire stall_request_x;
/////////////////////////////////////////////////////
// Internal nets and registers
/////////////////////////////////////////////////////
reg [`LM32_WORD_RNG] p; // Temporary registers
reg [`LM32_WORD_RNG] a;
reg [`LM32_WORD_RNG] b;
`ifdef CFG_MC_DIVIDE_ENABLED
wire [32:0] t;
`endif
reg [`LM32_MC_STATE_RNG] state; // Current state of FSM
reg [5:0] cycles; // Number of cycles remaining in the operation
`ifdef CFG_MC_BARREL_SHIFT_ENABLED
reg sign_extend_x; // Whether to sign extend of zero extend right shifts
wire fill_value; // Value to fill with for right barrel-shifts
`endif
/////////////////////////////////////////////////////
// Combinational logic
/////////////////////////////////////////////////////
// Stall pipeline while any operation is being performed
assign stall_request_x = state != `LM32_MC_STATE_IDLE;
`ifdef CFG_MC_DIVIDE_ENABLED
// Subtraction
assign t = {p[`LM32_WORD_WIDTH-2:0], a[`LM32_WORD_WIDTH-1]} - b;
`endif
`ifdef CFG_MC_BARREL_SHIFT_ENABLED
// Determine fill value for right shift - Sign bit for arithmetic shift, or zero for logical shift
assign fill_value = (sign_extend_x == `TRUE) & b[`LM32_WORD_WIDTH-1];
`endif
/////////////////////////////////////////////////////
// Sequential logic
/////////////////////////////////////////////////////
// Perform right shift
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
begin
cycles <= {6{1'b0}};
p <= {`LM32_WORD_WIDTH{1'b0}};
a <= {`LM32_WORD_WIDTH{1'b0}};
b <= {`LM32_WORD_WIDTH{1'b0}};
`ifdef CFG_MC_BARREL_SHIFT_ENABLED
sign_extend_x <= 1'b0;
`endif
`ifdef CFG_MC_DIVIDE_ENABLED
divide_by_zero_x <= `FALSE;
`endif
result_x <= {`LM32_WORD_WIDTH{1'b0}};
state <= `LM32_MC_STATE_IDLE;
end
else
begin
`ifdef CFG_MC_DIVIDE_ENABLED
divide_by_zero_x <= `FALSE;
`endif
case (state)
`LM32_MC_STATE_IDLE:
begin
if (stall_d == `FALSE)
begin
cycles <= `LM32_WORD_WIDTH;
p <= 32'b0;
a <= operand_0_d;
b <= operand_1_d;
`ifdef CFG_MC_DIVIDE_ENABLED
if (divide_d == `TRUE)
state <= `LM32_MC_STATE_DIVIDE;
if (modulus_d == `TRUE)
state <= `LM32_MC_STATE_MODULUS;
`endif
`ifdef CFG_MC_MULTIPLY_ENABLED
if (multiply_d == `TRUE)
state <= `LM32_MC_STATE_MULTIPLY;
`endif
`ifdef CFG_MC_BARREL_SHIFT_ENABLED
if (shift_left_d == `TRUE)
begin
state <= `LM32_MC_STATE_SHIFT_LEFT;
sign_extend_x <= sign_extend_d;
cycles <= operand_1_d[4:0];
a <= operand_0_d;
b <= operand_0_d;
end
if (shift_right_d == `TRUE)
begin
state <= `LM32_MC_STATE_SHIFT_RIGHT;
sign_extend_x <= sign_extend_d;
cycles <= operand_1_d[4:0];
a <= operand_0_d;
b <= operand_0_d;
end
`endif
end
end
`ifdef CFG_MC_DIVIDE_ENABLED
`LM32_MC_STATE_DIVIDE:
begin
if (t[32] == 1'b0)
begin
p <= t[31:0];
a <= {a[`LM32_WORD_WIDTH-2:0], 1'b1};
end
else
begin
p <= {p[`LM32_WORD_WIDTH-2:0], a[`LM32_WORD_WIDTH-1]};
a <= {a[`LM32_WORD_WIDTH-2:0], 1'b0};
end
result_x <= a;
if ((cycles == `LM32_WORD_WIDTH'd0) || (kill_x == `TRUE))
begin
// Check for divide by zero
divide_by_zero_x <= b == {`LM32_WORD_WIDTH{1'b0}};
state <= `LM32_MC_STATE_IDLE;
end
cycles <= cycles - 1'b1;
end
`LM32_MC_STATE_MODULUS:
begin
if (t[32] == 1'b0)
begin
p <= t[31:0];
a <= {a[`LM32_WORD_WIDTH-2:0], 1'b1};
end
else
begin
p <= {p[`LM32_WORD_WIDTH-2:0], a[`LM32_WORD_WIDTH-1]};
a <= {a[`LM32_WORD_WIDTH-2:0], 1'b0};
end
result_x <= p;
if ((cycles == `LM32_WORD_WIDTH'd0) || (kill_x == `TRUE))
begin
// Check for divide by zero
divide_by_zero_x <= b == {`LM32_WORD_WIDTH{1'b0}};
state <= `LM32_MC_STATE_IDLE;
end
cycles <= cycles - 1'b1;
end
`endif
`ifdef CFG_MC_MULTIPLY_ENABLED
`LM32_MC_STATE_MULTIPLY:
begin
if (b[0] == 1'b1)
p <= p + a;
b <= {1'b0, b[`LM32_WORD_WIDTH-1:1]};
a <= {a[`LM32_WORD_WIDTH-2:0], 1'b0};
result_x <= p;
if ((cycles == `LM32_WORD_WIDTH'd0) || (kill_x == `TRUE))
state <= `LM32_MC_STATE_IDLE;
cycles <= cycles - 1'b1;
end
`endif
`ifdef CFG_MC_BARREL_SHIFT_ENABLED
`LM32_MC_STATE_SHIFT_LEFT:
begin
a <= {a[`LM32_WORD_WIDTH-2:0], 1'b0};
result_x <= a;
if ((cycles == `LM32_WORD_WIDTH'd0) || (kill_x == `TRUE))
state <= `LM32_MC_STATE_IDLE;
cycles <= cycles - 1'b1;
end
`LM32_MC_STATE_SHIFT_RIGHT:
begin
b <= {fill_value, b[`LM32_WORD_WIDTH-1:1]};
result_x <= b;
if ((cycles == `LM32_WORD_WIDTH'd0) || (kill_x == `TRUE))
state <= `LM32_MC_STATE_IDLE;
cycles <= cycles - 1'b1;
end
`endif
endcase
end
end
endmodule

View File

@@ -0,0 +1,164 @@
// =============================================================================
// COPYRIGHT NOTICE
// Copyright 2006 (c) Lattice Semiconductor Corporation
// ALL RIGHTS RESERVED
// This confidential and proprietary software may be used only as authorised by
// a licensing agreement from Lattice Semiconductor Corporation.
// The entire notice above must be reproduced on all authorized copies and
// copies may only be made to the extent permitted by a licensing agreement from
// Lattice Semiconductor Corporation.
//
// Lattice Semiconductor Corporation TEL : 1-800-Lattice (USA and Canada)
// 5555 NE Moore Court 408-826-6000 (other locations)
// Hillsboro, OR 97124 web : http://www.latticesemi.com/
// U.S.A email: techsupport@latticesemi.com
// =============================================================================/
// FILE DETAILS
// Project : LatticeMico32
// File : lm32_monitor.v
// Title : Debug monitor memory Wishbone interface
// Version : 6.1.17
// =============================================================================
`include "system_conf.v"
`include "lm32_include.v"
/////////////////////////////////////////////////////
// Module interface
/////////////////////////////////////////////////////
module lm32_monitor (
// ----- Inputs -------
clk_i,
rst_i,
MON_ADR_I,
MON_CYC_I,
MON_DAT_I,
MON_SEL_I,
MON_STB_I,
MON_WE_I,
MON_LOCK_I,
MON_CTI_I,
MON_BTE_I,
// ----- Outputs -------
MON_ACK_O,
MON_RTY_O,
MON_DAT_O,
MON_ERR_O
);
/////////////////////////////////////////////////////
// Inputs
/////////////////////////////////////////////////////
input clk_i; // Wishbone clock
input rst_i; // Wishbone reset
input [`LM32_WORD_RNG] MON_ADR_I; // Wishbone address
input MON_STB_I; // Wishbone strobe
input MON_CYC_I; // Wishbone cycle
input [`LM32_WORD_RNG] MON_DAT_I; // Wishbone write data
input [`LM32_BYTE_SELECT_RNG] MON_SEL_I; // Wishbone byte select
input MON_WE_I; // Wishbone write enable
input MON_LOCK_I; // Wishbone locked transfer
input [`LM32_CTYPE_RNG] MON_CTI_I; // Wishbone cycle type
input [`LM32_BTYPE_RNG] MON_BTE_I; // Wishbone burst type
/////////////////////////////////////////////////////
// Outputs
/////////////////////////////////////////////////////
output MON_ACK_O; // Wishbone acknowlege
reg MON_ACK_O;
output [`LM32_WORD_RNG] MON_DAT_O; // Wishbone data output
reg [`LM32_WORD_RNG] MON_DAT_O;
output MON_RTY_O; // Wishbone retry
wire MON_RTY_O;
output MON_ERR_O; // Wishbone error
wire MON_ERR_O;
/////////////////////////////////////////////////////
// Internal nets and registers
/////////////////////////////////////////////////////
reg [1:0] state; // Current state of FSM
wire [`LM32_WORD_RNG] data; // Data read from RAM
reg write_enable; // RAM write enable
reg [`LM32_WORD_RNG] write_data; // RAM write data
/////////////////////////////////////////////////////
// Instantiations
/////////////////////////////////////////////////////
lm32_monitor_ram ram (
// ----- Inputs -------
.ClockA (clk_i),
.ClockB (clk_i),
.ResetA (rst_i),
.ResetB (rst_i),
.ClockEnA (`TRUE),
.ClockEnB (`FALSE),
.AddressA (MON_ADR_I[10:2]),
.DataInA (write_data),
.WrA (write_enable),
.WrB (`FALSE),
// ----- Outputs -------
.QA (data)
);
/////////////////////////////////////////////////////
// Combinational Logic
/////////////////////////////////////////////////////
assign MON_RTY_O = `FALSE;
assign MON_ERR_O = `FALSE;
/////////////////////////////////////////////////////
// Sequential Logic
/////////////////////////////////////////////////////
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
begin
write_enable <= `FALSE;
MON_ACK_O <= `FALSE;
MON_DAT_O <= {`LM32_WORD_WIDTH{1'bx}};
state <= 2'b00;
end
else
begin
case (state)
2'b00:
begin
// Wait for a Wishbone access
if ((MON_STB_I == `TRUE) && (MON_CYC_I == `TRUE))
state <= 2'b01;
end
2'b01:
begin
// Output read data to Wishbone
MON_ACK_O <= `TRUE;
MON_DAT_O <= data;
// Sub-word writes are performed using read-modify-write
// as the Lattice EBRs don't support byte enables
if (MON_WE_I == `TRUE)
write_enable <= `TRUE;
write_data[7:0] <= MON_SEL_I[0] ? MON_DAT_I[7:0] : data[7:0];
write_data[15:8] <= MON_SEL_I[1] ? MON_DAT_I[15:8] : data[15:8];
write_data[23:16] <= MON_SEL_I[2] ? MON_DAT_I[23:16] : data[23:16];
write_data[31:24] <= MON_SEL_I[3] ? MON_DAT_I[31:24] : data[31:24];
state <= 2'b10;
end
2'b10:
begin
// Wishbone access occurs in this cycle
write_enable <= `FALSE;
MON_ACK_O <= `FALSE;
MON_DAT_O <= {`LM32_WORD_WIDTH{1'bx}};
state <= 2'b00;
end
endcase
end
end
endmodule

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,94 @@
// =============================================================================
// COPYRIGHT NOTICE
// Copyright 2006 (c) Lattice Semiconductor Corporation
// ALL RIGHTS RESERVED
// This confidential and proprietary software may be used only as authorised by
// a licensing agreement from Lattice Semiconductor Corporation.
// The entire notice above must be reproduced on all authorized copies and
// copies may only be made to the extent permitted by a licensing agreement from
// Lattice Semiconductor Corporation.
//
// Lattice Semiconductor Corporation TEL : 1-800-Lattice (USA and Canada)
// 5555 NE Moore Court 408-826-6000 (other locations)
// Hillsboro, OR 97124 web : http://www.latticesemi.com/
// U.S.A email: techsupport@latticesemi.com
// =============================================================================/
// FILE DETAILS
// Project : LatticeMico32
// File : lm32_multiplier.v
// Title : Pipelined multiplier.
// Dependencies : lm32_include.v
// Version : 6.1.17
// =============================================================================
`include "lm32_include.v"
/////////////////////////////////////////////////////
// Module interface
/////////////////////////////////////////////////////
module lm32_multiplier (
// ----- Inputs -----
clk_i,
rst_i,
stall_x,
stall_m,
operand_0,
operand_1,
// ----- Ouputs -----
result
);
/////////////////////////////////////////////////////
// Inputs
/////////////////////////////////////////////////////
input clk_i; // Clock
input rst_i; // Reset
input stall_x; // Stall instruction in X stage
input stall_m; // Stall instruction in M stage
input [`LM32_WORD_RNG] operand_0; // Muliplicand
input [`LM32_WORD_RNG] operand_1; // Multiplier
/////////////////////////////////////////////////////
// Outputs
/////////////////////////////////////////////////////
output [`LM32_WORD_RNG] result; // Product of multiplication
reg [`LM32_WORD_RNG] result;
/////////////////////////////////////////////////////
// Internal nets and registers
/////////////////////////////////////////////////////
reg [`LM32_WORD_RNG] muliplicand;
reg [`LM32_WORD_RNG] multiplier;
reg [`LM32_WORD_RNG] product;
/////////////////////////////////////////////////////
// Sequential logic
/////////////////////////////////////////////////////
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
begin
muliplicand <= {`LM32_WORD_WIDTH{1'b0}};
multiplier <= {`LM32_WORD_WIDTH{1'b0}};
product <= {`LM32_WORD_WIDTH{1'b0}};
result <= {`LM32_WORD_WIDTH{1'b0}};
end
else
begin
if (stall_x == `FALSE)
begin
muliplicand <= operand_0;
multiplier <= operand_1;
end
if (stall_m == `FALSE)
product <= muliplicand * multiplier;
result <= product;
end
end
endmodule

View File

@@ -0,0 +1,105 @@
// =============================================================================
// COPYRIGHT NOTICE
// Copyright 2006 (c) Lattice Semiconductor Corporation
// ALL RIGHTS RESERVED
// This confidential and proprietary software may be used only as authorised by
// a licensing agreement from Lattice Semiconductor Corporation.
// The entire notice above must be reproduced on all authorized copies and
// copies may only be made to the extent permitted by a licensing agreement from
// Lattice Semiconductor Corporation.
//
// Lattice Semiconductor Corporation TEL : 1-800-Lattice (USA and Canada)
// 5555 NE Moore Court 408-826-6000 (other locations)
// Hillsboro, OR 97124 web : http://www.latticesemi.com/
// U.S.A email: techsupport@latticesemi.com
// =============================================================================/
// FILE DETAILS
// Project : LatticeMico32
// File : lm32_ram.v
// Title : Pseudo dual-port RAM.
// Version : 6.1.17
// =============================================================================
`include "lm32_include.v"
/////////////////////////////////////////////////////
// Module interface
/////////////////////////////////////////////////////
module lm32_ram (
// ----- Inputs -------
read_clk,
write_clk,
reset,
enable_read,
read_address,
enable_write,
write_address,
write_data,
write_enable,
// ----- Outputs -------
read_data
);
/////////////////////////////////////////////////////
// Parameters
/////////////////////////////////////////////////////
parameter data_width = 1; // Width of the data ports
parameter address_width = 1; // Width of the address ports
/////////////////////////////////////////////////////
// Inputs
/////////////////////////////////////////////////////
input read_clk; // Read clock
input write_clk; // Write clock
input reset; // Reset
input enable_read; // Access enable
input [address_width-1:0] read_address; // Read/write address
input enable_write; // Access enable
input [address_width-1:0] write_address;// Read/write address
input [data_width-1:0] write_data; // Data to write to specified address
input write_enable; // Write enable
/////////////////////////////////////////////////////
// Outputs
/////////////////////////////////////////////////////
output [data_width-1:0] read_data; // Data read from specified addess
wire [data_width-1:0] read_data;
/////////////////////////////////////////////////////
// Internal nets and registers
/////////////////////////////////////////////////////
reg [data_width-1:0] mem[0:(1<<address_width)-1]; // The RAM
reg [address_width-1:0] ra; // Registered read address
/////////////////////////////////////////////////////
// Combinational Logic
/////////////////////////////////////////////////////
// Read port
assign read_data = mem[ra];
/////////////////////////////////////////////////////
// Sequential Logic
/////////////////////////////////////////////////////
// Write port
always @(posedge write_clk)
begin
if ((write_enable == `TRUE) && (enable_write == `TRUE))
mem[write_address] <= write_data;
end
// Register read address for use on next cycle
always @(posedge read_clk)
begin
if (enable_read)
ra <= read_address;
end
endmodule

View File

@@ -0,0 +1,129 @@
// =============================================================================
// COPYRIGHT NOTICE
// Copyright 2006 (c) Lattice Semiconductor Corporation
// ALL RIGHTS RESERVED
// This confidential and proprietary software may be used only as authorised by
// a licensing agreement from Lattice Semiconductor Corporation.
// The entire notice above must be reproduced on all authorized copies and
// copies may only be made to the extent permitted by a licensing agreement from
// Lattice Semiconductor Corporation.
//
// Lattice Semiconductor Corporation TEL : 1-800-Lattice (USA and Canada)
// 5555 NE Moore Court 408-826-6000 (other locations)
// Hillsboro, OR 97124 web : http://www.latticesemi.com/
// U.S.A email: techsupport@latticesemi.com
// =============================================================================/
// FILE DETAILS
// Project : LatticeMico32
// File : lm32_shifter.v
// Title : Barrel shifter
// Dependencies : lm32_include.v
// Version : 6.1.17
// =============================================================================
`include "lm32_include.v"
/////////////////////////////////////////////////////
// Module interface
/////////////////////////////////////////////////////
module lm32_shifter (
// ----- Inputs -------
clk_i,
rst_i,
stall_x,
direction_x,
sign_extend_x,
operand_0_x,
operand_1_x,
// ----- Outputs -------
shifter_result_m
);
/////////////////////////////////////////////////////
// Inputs
/////////////////////////////////////////////////////
input clk_i; // Clock
input rst_i; // Reset
input stall_x; // Stall instruction in X stage
input direction_x; // Direction to shift
input sign_extend_x; // Whether shift is arithmetic (1'b1) or logical (1'b0)
input [`LM32_WORD_RNG] operand_0_x; // Operand to shift
input [`LM32_WORD_RNG] operand_1_x; // Operand that specifies how many bits to shift by
/////////////////////////////////////////////////////
// Outputs
/////////////////////////////////////////////////////
output [`LM32_WORD_RNG] shifter_result_m; // Result of shift
wire [`LM32_WORD_RNG] shifter_result_m;
/////////////////////////////////////////////////////
// Internal nets and registers
/////////////////////////////////////////////////////
reg direction_m;
reg [`LM32_WORD_RNG] left_shift_result;
reg [`LM32_WORD_RNG] right_shift_result;
reg [`LM32_WORD_RNG] left_shift_operand;
wire [`LM32_WORD_RNG] right_shift_operand;
wire fill_value;
wire [`LM32_WORD_RNG] right_shift_in;
integer shift_idx_0;
integer shift_idx_1;
/////////////////////////////////////////////////////
// Combinational Logic
/////////////////////////////////////////////////////
// Select operands - To perform a left shift, we reverse the bits and perform a right shift
always @*
begin
for (shift_idx_0 = 0; shift_idx_0 < `LM32_WORD_WIDTH; shift_idx_0 = shift_idx_0 + 1)
left_shift_operand[`LM32_WORD_WIDTH-1-shift_idx_0] = operand_0_x[shift_idx_0];
end
assign right_shift_operand = direction_x == `LM32_SHIFT_OP_LEFT ? left_shift_operand : operand_0_x;
// Determine fill value for right shift - Sign bit for arithmetic shift, or zero for logical shift
assign fill_value = (sign_extend_x == `TRUE) && (direction_x == `LM32_SHIFT_OP_RIGHT)
? operand_0_x[`LM32_WORD_WIDTH-1]
: 1'b0;
// Determine bits to shift in for right shift or rotate
assign right_shift_in = {`LM32_WORD_WIDTH{fill_value}};
// Reverse bits to get left shift result
always @*
begin
for (shift_idx_1 = 0; shift_idx_1 < `LM32_WORD_WIDTH; shift_idx_1 = shift_idx_1 + 1)
left_shift_result[`LM32_WORD_WIDTH-1-shift_idx_1] = right_shift_result[shift_idx_1];
end
// Select result
assign shifter_result_m = direction_m == `LM32_SHIFT_OP_LEFT ? left_shift_result : right_shift_result;
/////////////////////////////////////////////////////
// Sequential Logic
/////////////////////////////////////////////////////
// Perform right shift
always @(posedge clk_i `CFG_RESET_SENSITIVITY)
begin
if (rst_i == `TRUE)
begin
right_shift_result <= {`LM32_WORD_WIDTH{1'b0}};
direction_m <= `FALSE;
end
else
begin
if (stall_x == `FALSE)
begin
right_shift_result <= {right_shift_in, right_shift_operand} >> operand_1_x[`LM32_SHIFT_RNG];
direction_m <= direction_x;
end
end
end
endmodule

View File

@@ -0,0 +1,165 @@
// =============================================================================/
// FILE DETAILS
// Project : LatticeMico32
// File : lm32_simtrace.v
// Title : Trace excecution in simulation
// Dependencies : lm32_include.v
// Version : soc-lm32 only
// =============================================================================
`include "lm32_include.v"
// Index of opcode field in an instruction
`define LM32_OPCODE_RNG 31:26
`define LM32_OP_RNG 30:26
/////////////////////////////////////////////////////
// Module interface
/////////////////////////////////////////////////////
module lm32_simtrace (
// ----- Inputs -------
clk_i,
rst_i,
// From pipeline
stall_x,
stall_m,
valid_w,
kill_w,
instruction_d,
pc_w
);
/////////////////////////////////////////////////////
// Inputs
/////////////////////////////////////////////////////
input clk_i;
input rst_i;
input stall_x; //
input stall_m; //
input valid_w; //
input kill_w; //
input [`LM32_INSTRUCTION_RNG] instruction_d; // Instruction to decode
input [`LM32_PC_RNG] pc_w; // PC of instruction in D stage
/////////////////////////////////////////////////////
// Internal nets and registers
/////////////////////////////////////////////////////
reg [`LM32_INSTRUCTION_RNG] instruction_x; // Instruction to decode
reg [`LM32_INSTRUCTION_RNG] instruction_m; // Instruction to decode
reg [`LM32_INSTRUCTION_RNG] instruction; // Instruction to decode
wire [`LM32_WORD_RNG] extended_immediate; // Zero or sign extended immediate
wire [`LM32_WORD_RNG] high_immediate; // Immedate as high 16 bits
wire [`LM32_WORD_RNG] immediate; // Immedate as high 16 bits
wire [`LM32_WORD_RNG] call_immediate; // Call immediate
wire [`LM32_WORD_RNG] branch_immediate; // Conditional branch immediate
/////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////
`include "lm32_functions.v"
wire [4:0] r3 = instruction[25:21];
wire [4:0] r2 = instruction[20:16];
wire [4:0] r1 = instruction[15:11];
wire [ 4:0] imm5 = instruction[ 4:0];
wire [15:0] imm16 = instruction[15:0];
wire [26:0] imm27 = instruction[26:0];
//assign high_imm = {instruction[15:0], 16'h0000};
wire [`LM32_PC_RNG] call_imm = {{ 4{instruction[25]}}, instruction[25:0]};
wire [`LM32_PC_RNG] branch_imm = {{14{instruction[15]}}, instruction[15:0] };
// synopsys translate_off
always @(posedge clk_i)
begin
if (stall_x == `FALSE)
instruction_x <= instruction_d;
if (stall_m == `FALSE)
instruction_m <= instruction_x;
instruction <= instruction_m;
if ((valid_w == `TRUE) && (!kill_w)) begin
// $write ( $stime/10 );
$writeh( " [", pc_w << 2);
$writeh( "]\t" );
case ( instruction[`LM32_OPCODE_RNG] )
6'h00: $display( "srui r%0d, r%0d, 0x%0x", r2, r3, imm5 );
6'h01: $display( "nori r%0d, r%0d, 0x%0x", r2, r3, imm16 );
6'h02: $display( "muli r%0d, r%0d, 0x%0x", r2, r3, imm16 );
6'h03: $display( "sh (r%0d + 0x%0x), r%0d", r3, r2, imm16 );
6'h04: $display( "lb r%0d, (r%0d + 0x%0x)", r2, r3, imm16 );
6'h05: $display( "sri r%0d, r%0d, 0x%0x", r2, r3, imm16 );
6'h06: $display( "xori r%0d, r%0d, 0x%0x", r2, r3, imm16 );
6'h07: $display( "lh r%0d, (r%0d + 0x%0x)", r2, r3, imm16 );
6'h08: $display( "andi r%0d, r%0d, 0x%0x", r2, r3, imm16 );
6'h09: $display( "xnori r%0d, r%0d, 0x%0x", r2, r3, imm16 );
6'h0a: $display( "lw r%0d, (r%0d + 0x%0x)", r2, r3, imm16 );
6'h0b: $display( "lhu r%0d, (r%0d + 0x%0x)", r2, r3, imm16 );
6'h0c: $display( "sb (r%0d + 0x%0x), r%0d", r3, r2, imm16 );
6'h0d: $display( "addi r%0d, r%0d, 0x%0x", r2, r3, imm16 );
6'h0e: $display( "ori r%0d, r%0d, 0x%0x", r2, r3, imm16 );
6'h0f: $display( "sli r%0d, r%0d, 0x%0x", r2, r3, imm5 );
6'h10: $display( "lbu r%0d, (r%0d + 0x%0x)", r2, r3, imm16 );
6'h11: $display( "be r%0d, r%0d, 0x%x", r2, r3, (pc_w + branch_imm ) << 2 );
6'h12: $display( "bg r%0d, r%0d, 0x%x", r2, r3, (pc_w + branch_imm ) << 2 );
6'h13: $display( "bge r%0d, r%0d, 0x%x", r2, r3, (pc_w + branch_imm ) << 2 );
6'h14: $display( "bgeu r%0d, r%0d, 0x%x", r2, r3, (pc_w + branch_imm ) << 2 );
6'h15: $display( "bgu r%0d, r%0d, 0x%x", r2, r3, (pc_w + branch_imm ) << 2 );
6'h16: $display( "sw (r%0d + 0x%0x), r%0d", r3, r2, imm16 );
6'h17: $display( "bne r%0d, r%0d, 0x%x", r2, r3, (pc_w + branch_imm ) << 2 );
6'h18: $display( "andhi r%0d, r%0d, 0x%0x", r2, r3, imm16 );
6'h19: $display( "cmpei r%0d, r%0d, 0x%0x", r2, r3, imm16 );
6'h1a: $display( "cmpgi r%0d, r%0d, 0x%0x", r2, r3, imm16 );
6'h1b: $display( "cmpgei r%0d, r%0d, 0x%0x", r2, r3, imm16 );
6'h1c: $display( "cmpgeui r%0d, r%0d, 0x%0x", r2, r3, imm16 );
6'h1d: $display( "cmpgui r%0d, r%0d, 0x%0x", r2, r3, imm16 );
6'h1e: $display( "orhi r%0d, r%0d, 0x%0x", r2, r3, imm16 );
6'h1f: $display( "cmpnei r%0d, r%0d, 0x%0x", r2, r3, imm16 );
6'h20: $display( "sru r%0d, r%0d, r%0d", r1, r3, r2 );
6'h21: $display( "nor r%0d, r%0d, r%0d", r1, r3, r2 );
6'h22: $display( "mul r%0d, r%0d, r%0d", r1, r3, r2 );
6'h23: $display( "divu r%0d, r%0d, r%0d", r1, r3, r2 );
6'h24: $display( "rcsr r%0d, csr%0d", r1, r3 );
6'h25: $display( "sr r%0d, r%0d, r%0d", r1, r3, r2 );
6'h26: $display( "xor r%0d, r%0d, r%0d", r1, r3, r2 );
6'h27: $display( "div (XXX not documented XXX)" );
6'h28: $display( "and r%0d, r%0d, r%0d", r1, r3, r2 );
6'h29: $display( "xnor r%0d, r%0d, r%0d", r1, r3, r2 );
6'h2a: $display( "XXX" );
6'h2b: $display( "raise (XXX: scall or break)" );
6'h2c: $display( "sextb r%0d, r%0d", r1, r3 );
6'h2d: $display( "add r%0d, r%0d, r%0d", r1, r3, r2 );
6'h2e: $display( "or r%0d, r%0d, r%0d", r1, r3, r2 );
6'h2f: $display( "sl r%0d, r%0d, r%0d", r1, r3, r2 );
6'h30: $display( "b r%0d", r3 );
6'h31: $display( "modu r%0d, r%0d, r%0d", r1, r3, r2 );
6'h32: $display( "sub r%0d, r%0d, r%0d", r1, r3, r2 );
6'h33: $display( "XXX" );
6'h34: $display( "wcsr csr%0d, r%0d", r3, r2 );
6'h35: $display( "modu r%0d, r%0d, r%0d", r1, r3, r2 );
6'h36: $display( "call r%0d", r3 );
6'h37: $display( "sexth r%0d, r%0d", r1, r3 );
6'h38: $display( "bi 0x%x", (pc_w + call_imm) << 2 );
6'h39: $display( "cmpe r%0d, r%0d, r%0d", r1, r3, r2 );
6'h3a: $display( "cmpg r%0d, r%0d, r%0d", r1, r3, r2 );
6'h3b: $display( "cmpge r%0d, r%0d, r%0d", r1, r3, r2 );
6'h3c: $display( "cmpgeu r%0d, r%0d, r%0d", r1, r3, r2 );
6'h3d: $display( "cmpgu r%0d, r%0d, r%0d", r1, r3, r2 );
6'h3e: $display( "calli 0x%x", (pc_w + call_imm) << 2 );
6'h3f: $display( "cmpne r%0d, r%0d, r%0d", r1, r3, r2 );
endcase
end
end
// synopsys translate_on
endmodule

View File

@@ -0,0 +1,370 @@
// =============================================================================
// COPYRIGHT NOTICE
// Copyright 2006 (c) Lattice Semiconductor Corporation
// ALL RIGHTS RESERVED
// This confidential and proprietary software may be used only as authorised by
// a licensing agreement from Lattice Semiconductor Corporation.
// The entire notice above must be reproduced on all authorized copies and
// copies may only be made to the extent permitted by a licensing agreement from
// Lattice Semiconductor Corporation.
//
// Lattice Semiconductor Corporation TEL : 1-800-Lattice (USA and Canada)
// 5555 NE Moore Court 408-826-6000 (other locations)
// Hillsboro, OR 97124 web : http://www.latticesemi.com/
// U.S.A email: techsupport@latticesemi.com
// =============================================================================/
// FILE DETAILS
// Project : LatticeMico32
// File : lm32_top.v
// Title : Top-level of CPU.
// Dependencies : lm32_include.v
// Version : 6.1.17
// =============================================================================
`include "lm32_include.v"
/////////////////////////////////////////////////////
// Module interface
/////////////////////////////////////////////////////
module lm32_top (
// ----- Inputs -------
clk_i,
rst_i,
// From external devices
`ifdef CFG_INTERRUPTS_ENABLED
interrupt_n,
`endif
// From user logic
`ifdef CFG_USER_ENABLED
user_result,
user_complete,
`endif
`ifdef CFG_IWB_ENABLED
// Instruction Wishbone master
I_DAT_I,
I_ACK_I,
I_ERR_I,
I_RTY_I,
`endif
// Data Wishbone master
D_DAT_I,
D_ACK_I,
D_ERR_I,
D_RTY_I,
// Debug Slave port WishboneInterface
DEBUG_ADR_I,
DEBUG_DAT_I,
DEBUG_SEL_I,
DEBUG_WE_I,
DEBUG_CTI_I,
DEBUG_BTE_I,
DEBUG_LOCK_I,
DEBUG_CYC_I,
DEBUG_STB_I,
// ----- Outputs -------
`ifdef CFG_USER_ENABLED
user_valid,
user_opcode,
user_operand_0,
user_operand_1,
`endif
`ifdef CFG_IWB_ENABLED
// Instruction Wishbone master
I_DAT_O,
I_ADR_O,
I_CYC_O,
I_SEL_O,
I_STB_O,
I_WE_O,
I_CTI_O,
I_LOCK_O,
I_BTE_O,
`endif
// Data Wishbone master
D_DAT_O,
D_ADR_O,
D_CYC_O,
D_SEL_O,
D_STB_O,
D_WE_O,
D_CTI_O,
D_LOCK_O,
D_BTE_O,
// Debug Slave port WishboneInterface
DEBUG_ACK_O,
DEBUG_ERR_O,
DEBUG_RTY_O,
DEBUG_DAT_O
);
/////////////////////////////////////////////////////
// Inputs
/////////////////////////////////////////////////////
input clk_i; // Clock
input rst_i; // Reset
`ifdef CFG_INTERRUPTS_ENABLED
input [`LM32_INTERRUPT_RNG] interrupt_n; // Interrupt pins, active-low
`endif
`ifdef CFG_USER_ENABLED
input [`LM32_WORD_RNG] user_result; // User-defined instruction result
input user_complete; // Indicates the user-defined instruction result is valid
`endif
`ifdef CFG_IWB_ENABLED
input [`LM32_WORD_RNG] I_DAT_I; // Instruction Wishbone interface read data
input I_ACK_I; // Instruction Wishbone interface acknowledgement
input I_ERR_I; // Instruction Wishbone interface error
input I_RTY_I; // Instruction Wishbone interface retry
`endif
input [`LM32_WORD_RNG] D_DAT_I; // Data Wishbone interface read data
input D_ACK_I; // Data Wishbone interface acknowledgement
input D_ERR_I; // Data Wishbone interface error
input D_RTY_I; // Data Wishbone interface retry
input [`LM32_WORD_RNG] DEBUG_ADR_I; // Debug monitor Wishbone interface address
input [`LM32_WORD_RNG] DEBUG_DAT_I; // Debug monitor Wishbone interface write data
input [`LM32_BYTE_SELECT_RNG] DEBUG_SEL_I; // Debug monitor Wishbone interface byte select
input DEBUG_WE_I; // Debug monitor Wishbone interface write enable
input [`LM32_CTYPE_RNG] DEBUG_CTI_I; // Debug monitor Wishbone interface cycle type
input [`LM32_BTYPE_RNG] DEBUG_BTE_I; // Debug monitor Wishbone interface burst type
input DEBUG_LOCK_I; // Debug monitor Wishbone interface locked transfer
input DEBUG_CYC_I; // Debug monitor Wishbone interface cycle
input DEBUG_STB_I; // Debug monitor Wishbone interface strobe
/////////////////////////////////////////////////////
// Outputs
/////////////////////////////////////////////////////
`ifdef CFG_USER_ENABLED
output user_valid; // Indicates that user_opcode and user_operand_* are valid
wire user_valid;
output [`LM32_USER_OPCODE_RNG] user_opcode; // User-defined instruction opcode
reg [`LM32_USER_OPCODE_RNG] user_opcode;
output [`LM32_WORD_RNG] user_operand_0; // First operand for user-defined instruction
wire [`LM32_WORD_RNG] user_operand_0;
output [`LM32_WORD_RNG] user_operand_1; // Second operand for user-defined instruction
wire [`LM32_WORD_RNG] user_operand_1;
`endif
`ifdef CFG_IWB_ENABLED
output [`LM32_WORD_RNG] I_DAT_O; // Instruction Wishbone interface write data
wire [`LM32_WORD_RNG] I_DAT_O;
output [`LM32_WORD_RNG] I_ADR_O; // Instruction Wishbone interface address
wire [`LM32_WORD_RNG] I_ADR_O;
output I_CYC_O; // Instruction Wishbone interface cycle
wire I_CYC_O;
output [`LM32_BYTE_SELECT_RNG] I_SEL_O; // Instruction Wishbone interface byte select
wire [`LM32_BYTE_SELECT_RNG] I_SEL_O;
output I_STB_O; // Instruction Wishbone interface strobe
wire I_STB_O;
output I_WE_O; // Instruction Wishbone interface write enable
wire I_WE_O;
output [`LM32_CTYPE_RNG] I_CTI_O; // Instruction Wishbone interface cycle type
wire [`LM32_CTYPE_RNG] I_CTI_O;
output I_LOCK_O; // Instruction Wishbone interface lock bus
wire I_LOCK_O;
output [`LM32_BTYPE_RNG] I_BTE_O; // Instruction Wishbone interface burst type
wire [`LM32_BTYPE_RNG] I_BTE_O;
`endif
output [`LM32_WORD_RNG] D_DAT_O; // Data Wishbone interface write data
wire [`LM32_WORD_RNG] D_DAT_O;
output [`LM32_WORD_RNG] D_ADR_O; // Data Wishbone interface address
wire [`LM32_WORD_RNG] D_ADR_O;
output D_CYC_O; // Data Wishbone interface cycle
wire D_CYC_O;
output [`LM32_BYTE_SELECT_RNG] D_SEL_O; // Data Wishbone interface byte select
wire [`LM32_BYTE_SELECT_RNG] D_SEL_O;
output D_STB_O; // Data Wishbone interface strobe
wire D_STB_O;
output D_WE_O; // Data Wishbone interface write enable
wire D_WE_O;
output [`LM32_CTYPE_RNG] D_CTI_O; // Data Wishbone interface cycle type
wire [`LM32_CTYPE_RNG] D_CTI_O;
output D_LOCK_O; // Date Wishbone interface lock bus
wire D_LOCK_O;
output [`LM32_BTYPE_RNG] D_BTE_O; // Data Wishbone interface burst type
wire [`LM32_BTYPE_RNG] D_BTE_O;
output DEBUG_ACK_O; // Debug monitor Wishbone ack
wire DEBUG_ACK_O;
output DEBUG_ERR_O; // Debug monitor Wishbone error
wire DEBUG_ERR_O;
output DEBUG_RTY_O; // Debug monitor Wishbone retry
wire DEBUG_RTY_O;
output [`LM32_WORD_RNG] DEBUG_DAT_O; // Debug monitor Wishbone read data
wire [`LM32_WORD_RNG] DEBUG_DAT_O;
/////////////////////////////////////////////////////
// Internal nets and registers
/////////////////////////////////////////////////////
`ifdef CFG_JTAG_ENABLED
// Signals between JTAG interface and CPU
wire [`LM32_BYTE_RNG] jtag_reg_d;
wire [`LM32_BYTE_RNG] jtag_reg_q;
wire jtag_update;
wire [2:0] jtag_reg_addr_d;
wire [2:0] jtag_reg_addr_q;
wire jtck;
wire jrstn;
`endif
`ifdef CFG_TRACE_ENABLED
// PC trace signals
wire [`LM32_PC_RNG] trace_pc; // PC to trace (address of next non-sequential instruction)
wire trace_pc_valid; // Indicates that a new trace PC is valid
wire trace_exception; // Indicates an exception has occured
wire [`LM32_EID_RNG] trace_eid; // Indicates what type of exception has occured
wire trace_eret; // Indicates an eret instruction has been executed
`ifdef CFG_DEBUG_ENABLED
wire trace_bret; // Indicates a bret instruction has been executed
`endif
`endif
/////////////////////////////////////////////////////
// Functions
/////////////////////////////////////////////////////
`include "lm32_functions.v"
/////////////////////////////////////////////////////
// Instantiations
/////////////////////////////////////////////////////
// LM32 CPU
lm32_cpu cpu (
// ----- Inputs -------
.clk_i (clk_i),
`ifdef CFG_EBR_NEGEDGE_REGISTER_FILE
.clk_n_i (clk_n),
`endif
.rst_i (rst_i),
// From external devices
`ifdef CFG_INTERRUPTS_ENABLED
.interrupt_n (interrupt_n),
`endif
// From user logic
`ifdef CFG_USER_ENABLED
.user_result (user_result),
.user_complete (user_complete),
`endif
`ifdef CFG_JTAG_ENABLED
// From JTAG
.jtag_clk (jtck),
.jtag_update (jtag_update),
.jtag_reg_q (jtag_reg_q),
.jtag_reg_addr_q (jtag_reg_addr_q),
`endif
`ifdef CFG_IWB_ENABLED
// Instruction Wishbone master
.I_DAT_I (I_DAT_I),
.I_ACK_I (I_ACK_I),
.I_ERR_I (I_ERR_I),
.I_RTY_I (I_RTY_I),
`endif
// Data Wishbone master
.D_DAT_I (D_DAT_I),
.D_ACK_I (D_ACK_I),
.D_ERR_I (D_ERR_I),
.D_RTY_I (D_RTY_I),
// ----- Outputs -------
`ifdef CFG_TRACE_ENABLED
.trace_pc (trace_pc),
.trace_pc_valid (trace_pc_valid),
.trace_exception (trace_exception),
.trace_eid (trace_eid),
.trace_eret (trace_eret),
`ifdef CFG_DEBUG_ENABLED
.trace_bret (trace_bret),
`endif
`endif
`ifdef CFG_JTAG_ENABLED
.jtag_reg_d (jtag_reg_d),
.jtag_reg_addr_d (jtag_reg_addr_d),
`endif
`ifdef CFG_USER_ENABLED
.user_valid (user_valid),
.user_opcode (user_opcode),
.user_operand_0 (user_operand_0),
.user_operand_1 (user_operand_1),
`endif
`ifdef CFG_IWB_ENABLED
// Instruction Wishbone master
.I_DAT_O (I_DAT_O),
.I_ADR_O (I_ADR_O),
.I_CYC_O (I_CYC_O),
.I_SEL_O (I_SEL_O),
.I_STB_O (I_STB_O),
.I_WE_O (I_WE_O),
.I_CTI_O (I_CTI_O),
.I_LOCK_O (I_LOCK_O),
.I_BTE_O (I_BTE_O),
`endif
// Data Wishbone master
.D_DAT_O (D_DAT_O),
.D_ADR_O (D_ADR_O),
.D_CYC_O (D_CYC_O),
.D_SEL_O (D_SEL_O),
.D_STB_O (D_STB_O),
.D_WE_O (D_WE_O),
.D_CTI_O (D_CTI_O),
.D_LOCK_O (D_LOCK_O),
.D_BTE_O (D_BTE_O)
);
`ifdef DEBUG_ROM
// ROM monitor
lm32_monitor debug_rom (
// ----- Inputs -------
.clk_i (clk_i),
.rst_i (rst_i),
.MON_ADR_I (DEBUG_ADR_I),
.MON_STB_I (DEBUG_STB_I),
.MON_CYC_I (DEBUG_CYC_I),
.MON_WE_I (DEBUG_WE_I),
.MON_SEL_I (DEBUG_SEL_I),
.MON_DAT_I (DEBUG_DAT_I),
.MON_CTI_I (DEBUG_CTI_I),
.MON_BTE_I (DEBUG_BTE_I),
.MON_LOCK_I (DEBUG_LOCK_I),
// ----- Outputs ------
.MON_RTY_O (DEBUG_RTY_O),
.MON_ERR_O (DEBUG_ERR_O),
.MON_ACK_O (DEBUG_ACK_O),
.MON_DAT_O (DEBUG_DAT_O)
);
`endif
`ifdef CFG_JTAG_ENABLED
// JTAG cores
jtag_cores jtag_cores (
// ----- Inputs -----
`ifdef INCLUDE_LM32
.reg_d (jtag_reg_d),
.reg_addr_d (jtag_reg_addr_d),
`endif
`ifdef INCLUDE_SPI
.spi_q (spi_q),
`endif
// ----- Outputs -----
`ifdef INCLUDE_LM32
.reg_update (jtag_update),
.reg_q (jtag_reg_q),
.reg_addr_q (jtag_reg_addr_q),
`endif
`ifdef INCLUDE_SPI
.spi_c (spi_c),
.spi_d (spi_d),
.spi_sn (spi_sn),
`endif
.jtck (jtck),
.jrstn (jrstn)
);
`endif
endmodule

View File

@@ -0,0 +1,159 @@
//---------------------------------------------------------------------------
//
//Name : SPIPROG.v
//
//Description:
//
// This module contains the ER2 regsiters of SPI Serial FLASH programmer IP
// core. There are only three ER2 registers, one control register and two
// data registers, in this IP core. The control register is a 8-bit wide
// register for selecting which data register will be accessed when the
// Control/Data# bit in ER1 register is low. Data register 0 is a readonly
// ID register. It is composed of three register fields -- an 8-bit
// "implementer", a 16-bit "IP_functionality", and a 12-bit "revision".
// Data register 1 is a variable length register for sending commands to or
// receiving readback data from the SPI Serial FLASH device.
//
//$Log: spiprog.vhd,v $
//Revision 1.2 2004-09-09 11:43:26-07 jhsin
//1. Reduced the the ID register (DR0) length from 36 bits to 8 bits.
//2. Same as TYPEA and TYPEB modules, use falling edge clock
// for all TCK Flip-Flops.
//
//Revision 1.1 2004-08-12 13:22:05-07 jhsin
//Added 7 delay Flip-Flops so that the DR1 readback data from SPI Serial FLASH is in the byte boundary.
//
//Revision 1.0 2004-08-03 18:35:56-07 jhsin
//Initial revision
//
//
//$Header: \\\\hqfs2\\ip\040cores\\rcs\\hqfs2\\ip\040cores\\rcswork\\isptracy\\VHDL\\Implementation\\spiprog.vhd,v 1.2 2004-09-09 11:43:26-07 jhsin Exp $
//
//Copyright (C) 2004 Lattice Semiconductor Corp. All rights reserved.
//
//---------------------------------------------------------------------------
module SPIPROG (input JTCK ,
input JTDI ,
output JTDO2 ,
input JSHIFT ,
input JUPDATE ,
input JRSTN ,
input JCE2 ,
input SPIPROG_ENABLE ,
input CONTROL_DATAN ,
output SPI_C ,
output SPI_D ,
output SPI_SN ,
input SPI_Q);
wire er2Cr_enable ;
wire er2Dr0_enable;
wire er2Dr1_enable;
wire tdo_er2Cr ;
wire tdo_er2Dr0;
wire tdo_er2Dr1;
wire [7:0] encodedDrSelBits ;
wire [8:0] er2CrTdiBit ;
wire [8:0] er2Dr0TdiBit ;
wire captureDrER2;
reg spi_s ;
reg [6:0] spi_q_dly;
wire [7:0] ip_functionality_id;
genvar i;
// ------ Control Register 0 ------
assign er2Cr_enable = JCE2 & SPIPROG_ENABLE & CONTROL_DATAN;
assign tdo_er2Cr = er2CrTdiBit[0];
// CR_BIT0_BIT7
generate
for(i=0; i<=7; i=i+1)
begin:CR_BIT0_BIT7
TYPEA BIT_N (.CLK (JTCK),
.RESET_N (JRSTN),
.CLKEN (er2Cr_enable),
.TDI (er2CrTdiBit[i + 1]),
.TDO (er2CrTdiBit[i]),
.DATA_OUT (encodedDrSelBits[i]),
.DATA_IN (encodedDrSelBits[i]),
.CAPTURE_DR (captureDrER2),
.UPDATE_DR (JUPDATE));
end
endgenerate // CR_BIT0_BIT7
assign er2CrTdiBit[8] = JTDI;
// ------ Data Register 0 ------
assign er2Dr0_enable = (JCE2 & SPIPROG_ENABLE & ~CONTROL_DATAN & (encodedDrSelBits == 8'b00000000)) ? 1'b1 : 1'b0;
assign tdo_er2Dr0 = er2Dr0TdiBit[0];
assign ip_functionality_id = 8'b00000001; //-- SPI Serial FLASH Programmer (0x01)
// DR0_BIT0_BIT7
generate
for(i=0; i<=7; i=i+1)
begin:DR0_BIT0_BIT7
TYPEB BIT_N (.CLK (JTCK),
.RESET_N (JRSTN),
.CLKEN (er2Dr0_enable),
.TDI (er2Dr0TdiBit[i + 1]),
.TDO (er2Dr0TdiBit[i]),
.DATA_IN (ip_functionality_id[i]),
.CAPTURE_DR (captureDrER2));
end
endgenerate // DR0_BIT0_BIT7
assign er2Dr0TdiBit[8] = JTDI;
// ------ Data Register 1 ------
assign er2Dr1_enable = (JCE2 & JSHIFT & SPIPROG_ENABLE & ~CONTROL_DATAN & (encodedDrSelBits == 8'b00000001)) ? 1'b1 : 1'b0;
assign SPI_C = ~ (JTCK & er2Dr1_enable & spi_s);
assign SPI_D = JTDI & er2Dr1_enable;
// SPI_S_Proc
always @(negedge JTCK or negedge JRSTN)
begin
if (~JRSTN)
spi_s <= 1'b0;
else
if (JUPDATE)
spi_s <= 1'b0;
else
spi_s <= er2Dr1_enable;
end
assign SPI_SN = ~spi_s;
// SPI_Q_Proc
always @(negedge JTCK or negedge JRSTN)
begin
if (~JRSTN)
spi_q_dly <= 'b0;
else
if (er2Dr1_enable)
spi_q_dly <= {spi_q_dly[5:0],SPI_Q};
end
assign tdo_er2Dr1 = spi_q_dly[6];
// ------ JTDO2 MUX ------
assign JTDO2 = CONTROL_DATAN ? tdo_er2Cr :
(encodedDrSelBits == 8'b00000000) ? tdo_er2Dr0 :
(encodedDrSelBits == 8'b00000001) ? tdo_er2Dr1 : 1'b0;
assign captureDrER2 = ~JSHIFT & JCE2;
endmodule

View File

@@ -0,0 +1,58 @@
# Synplicity, Inc. constraint file
# C:\ispTOOLS6_0\micosystem\components\lm32_top\rtl\verilog\system.sdc
# Written on Thu Apr 06 13:56:58 2006
# by Synplify for Lattice, Synplify for Lattice 8.5D Scope Editor
#
# Clocks
#
define_clock -name {clk_i} -freq 25.000 -clockgroup default_clkgroup_0
#
# Clock to Clock
#
#
# Inputs/Outputs
#
#
# Registers
#
#
# Multicycle Path
#
#
# False Path
#
#
# Path Delay
#
#
# Attributes
#
define_attribute {clk_i} loc {a10}
define_attribute {reset_n} loc {h6}
define_attribute {uartSIN} loc {m2}
define_attribute {uartSOUT} loc {l1}
define_attribute {sramsram_csn} loc {y4}
define_attribute {sramsram_oen} loc {aa6}
define_attribute {sramsram_wen} loc {ab6}
define_attribute {sramsram_be[3:0]} loc {aa3,ab3,aa4,ab4}
define_attribute {sramsram_data[31:0]} loc {v7,w7,y7,aa7,ab7,v8,w8,y8,aa8,ab8,v9,w9,y9,aa9,ab9,v10,w10,y10,aa10,w11,y11,aa11,y13,aa13,w14,y14,aa14,ab14,u15,v15,w15,y15}
define_attribute {sramsram_addr[22:0]} loc {u16,v16,w16,y16,aa16,ab16,u17,v17,w17,y17,aa17,ab17,w18,y18,aa18,ab18,y19,aa19,ab19,aa20,ab20,y20,w20}
define_attribute {gpio_LCDPIO_OUT[15:0]} loc {h5,t13,t17,u13,v13,p5,p3,p4,n5,n4,n3,n2,n1,m5,m4,m3}
define_attribute {gpio_LEDPIO_OUT[9:0]} loc {u11,v5,u6,u4,g5,g4,f5,f4,e5,e4}
define_attribute {gpio_KeypadPIO_IN[3:0]} loc {R1,T3,T2,T1}
#
# I/O standards
#
#
# Other Constraints
#

View File

@@ -0,0 +1,74 @@
/*-- ---------------------------------------------------------------------------
--
-- Name : TYPEA.v
--
-- Description:
--
-- This is one of the two types of cells that are used to create ER1/ER2
-- register bits.
--
-- $Log: typea.vhd,v $
-- Revision 1.2 2002-11-13 18:33:59-08 jhsin
-- The SHIFT_DR_CAPTURE_DR and ENABLE_ER1/2 signals of the
-- dedicate logic JTAG_PORT didn't act as what their names implied.
-- The SHIFT_DR_CAPTURE_DR actually acts as SHIFT_DR.
-- The ENABLE_ER1/2 actually acts as SHIFT_DR_CAPTURE_DR.
-- These had caused a lot of headaches for a long time and now they are
-- fixed by:
-- (1) Use SHIFT_DR_CAPTURE_DR and ENABLE_ER1/2 to create
-- CAPTURE_DR for all typeA, typeB bits in the ER1, ER2 registers.
-- (2) Use ENABLE_ER1 or the enESR, enCSR, enBAR (these 3 signals
-- have the same waveform of ENABLE_ER2) directly to be the CLKEN
-- of all typeA, typeB bits in the ER1, ER2 registers.
-- (3) Modify typea.vhd to use only UPDATE_DR signal for the clock enable
-- of the holding flip-flop.
-- These changes caused ispTracy.vhd and cge.dat changes and the new
-- CGE.exe version will be 1.3.5.
--
-- Revision 1.1 2002-05-01 18:13:51-07 jhsin
-- Added RCS version control header to file. No code changes.
--
-- $Header: \\\\hqfile2\\ipcores\\rcs\\hqfile2\\ipcores\\rcswork\\isptracy\\VHDL\\Implementation\\typea.vhd,v 1.2 2002-11-13 18:33:59-08 jhsin Exp $
--
-- Copyright (C) 2002 Lattice Semiconductor Corp. All rights reserved.
--
-- ---------------------------------------------------------------------------*/
module TYPEA(
input CLK,
input RESET_N,
input CLKEN,
input TDI,
output TDO,
output reg DATA_OUT,
input DATA_IN,
input CAPTURE_DR,
input UPDATE_DR
);
reg tdoInt;
always @ (negedge CLK or negedge RESET_N)
begin
if (RESET_N == 1'b0)
tdoInt <= 1'b0;
else if (CLK == 1'b0)
if (CLKEN == 1'b1)
if (CAPTURE_DR == 1'b0)
tdoInt <= TDI;
else
tdoInt <= DATA_IN;
end
assign TDO = tdoInt;
always @ (negedge CLK or negedge RESET_N)
begin
if (RESET_N == 1'b0)
DATA_OUT <= 1'b0;
else if (CLK == 1'b0)
if (UPDATE_DR == 1'b1)
DATA_OUT <= tdoInt;
end
endmodule

View File

@@ -0,0 +1,50 @@
/*-- ---------------------------------------------------------------------------
--
-- Name : TYPEB.vhd
--
-- Description:
--
-- This is one of the two types of cells that are used to create ER1/ER2
-- register bits.
--
-- $Log: typeb.vhd,v $
-- Revision 1.2 2002-08-01 16:39:33-07 jhsin
-- Modified typeb module to remove redundant DATA_OUT port.
--
-- Revision 1.1 2002-05-01 18:13:51-07 jhsin
-- Added RCS version control header to file. No code changes.
--
-- $Header: \\\\hqfile2\\ipcores\\rcs\\hqfile2\\ipcores\\rcswork\\isptracy\\VHDL\\Implementation\\typeb.vhd,v 1.2 2002-08-01 16:39:33-07 jhsin Exp $
--
-- Copyright (C) 2002 Lattice Semiconductor Corp. All rights reserved.
--
-- ---------------------------------------------------------------------------*/
module TYPEB
(
input CLK,
input RESET_N,
input CLKEN,
input TDI,
output TDO,
input DATA_IN,
input CAPTURE_DR
);
reg tdoInt;
always @ (negedge CLK or negedge RESET_N)
begin
if (RESET_N== 1'b0)
tdoInt <= 1'b0;
else if (CLK == 1'b0)
if (CLKEN==1'b1)
if (CAPTURE_DR==1'b0)
tdoInt <= TDI;
else
tdoInt <= DATA_IN;
end
assign TDO = tdoInt;
endmodule

View File

@@ -0,0 +1,62 @@
//-----------------------------------------------------------------
// Wishbone BlockRAM
//-----------------------------------------------------------------
module wb_bram #(
parameter mem_file_name = "none",
parameter adr_width = 11
) (
input clk_i,
input rst_i,
//
input wb_stb_i,
input wb_cyc_i,
input wb_we_i,
output wb_ack_o,
input [31:0] wb_adr_i,
output reg [31:0] wb_dat_o,
input [31:0] wb_dat_i,
input [ 3:0] wb_sel_i
);
//-----------------------------------------------------------------
// Storage depth in 32 bit words
//-----------------------------------------------------------------
parameter word_width = adr_width - 2;
parameter word_depth = (1 << word_width);
//-----------------------------------------------------------------
//
//-----------------------------------------------------------------
reg [31:0] ram [0:word_depth-1]; // actual RAM
reg ack;
wire [word_width-1:0] adr;
assign adr = wb_adr_i[adr_width-1:2]; //
assign wb_ack_o = wb_stb_i & ack;
always @(posedge clk_i)
begin
if (wb_stb_i && wb_cyc_i)
begin
if (wb_we_i)
ram[ adr ] <= wb_dat_i;
wb_dat_o <= ram[ adr ];
ack <= ~ack;
end else
ack <= 0;
end
initial
begin
if (mem_file_name != "none")
begin
$readmemh(mem_file_name, ram);
end
end
endmodule

View File

@@ -0,0 +1,252 @@
/////////////////////////////////////////////////////////////////////
//// ////
//// General Round Robin Arbiter ////
//// ////
//// ////
//// Author: Rudolf Usselmann ////
//// rudi@asics.ws ////
//// ////
//// ////
//// Downloaded from: http://www.opencores.org/cores/wb_conmax/ ////
//// ////
/////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2000-2002 Rudolf Usselmann ////
//// www.asics.ws ////
//// rudi@asics.ws ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer.////
//// ////
//// THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY ////
//// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED ////
//// TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS ////
//// FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL THE AUTHOR ////
//// OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, ////
//// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES ////
//// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE ////
//// GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR ////
//// BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF ////
//// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT ////
//// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT ////
//// OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE ////
//// POSSIBILITY OF SUCH DAMAGE. ////
//// ////
/////////////////////////////////////////////////////////////////////
//
// copy from wb_conmax
//
//
//
//
//
`include "wb_conbus_defines.v"
module wb_conbus_arb(clk, rst, req, gnt);
input clk;
input rst;
input [7:0] req; // Req input
output [2:0] gnt; // Grant output
//input next; // Next Target
///////////////////////////////////////////////////////////////////////
//
// Parameters
//
parameter [2:0]
grant0 = 3'h0,
grant1 = 3'h1,
grant2 = 3'h2,
grant3 = 3'h3,
grant4 = 3'h4,
grant5 = 3'h5,
grant6 = 3'h6,
grant7 = 3'h7;
///////////////////////////////////////////////////////////////////////
//
// Local Registers and Wires
//
reg [2:0] state, next_state;
///////////////////////////////////////////////////////////////////////
//
// Misc Logic
//
assign gnt = state;
always@(posedge clk or posedge rst)
if(rst) state <= grant0;
else state <= next_state;
///////////////////////////////////////////////////////////////////////
//
// Next State Logic
// - implements round robin arbitration algorithm
// - switches grant if current req is dropped or next is asserted
// - parks at last grant
//
always@(state or req )
begin
next_state = state; // Default Keep State
case(state) // synopsys parallel_case full_case
grant0:
// if this req is dropped or next is asserted, check for other req's
if(!req[0] )
begin
if(req[1]) next_state = grant1;
else
if(req[2]) next_state = grant2;
else
if(req[3]) next_state = grant3;
else
if(req[4]) next_state = grant4;
else
if(req[5]) next_state = grant5;
else
if(req[6]) next_state = grant6;
else
if(req[7]) next_state = grant7;
end
grant1:
// if this req is dropped or next is asserted, check for other req's
if(!req[1] )
begin
if(req[2]) next_state = grant2;
else
if(req[3]) next_state = grant3;
else
if(req[4]) next_state = grant4;
else
if(req[5]) next_state = grant5;
else
if(req[6]) next_state = grant6;
else
if(req[7]) next_state = grant7;
else
if(req[0]) next_state = grant0;
end
grant2:
// if this req is dropped or next is asserted, check for other req's
if(!req[2] )
begin
if(req[3]) next_state = grant3;
else
if(req[4]) next_state = grant4;
else
if(req[5]) next_state = grant5;
else
if(req[6]) next_state = grant6;
else
if(req[7]) next_state = grant7;
else
if(req[0]) next_state = grant0;
else
if(req[1]) next_state = grant1;
end
grant3:
// if this req is dropped or next is asserted, check for other req's
if(!req[3] )
begin
if(req[4]) next_state = grant4;
else
if(req[5]) next_state = grant5;
else
if(req[6]) next_state = grant6;
else
if(req[7]) next_state = grant7;
else
if(req[0]) next_state = grant0;
else
if(req[1]) next_state = grant1;
else
if(req[2]) next_state = grant2;
end
grant4:
// if this req is dropped or next is asserted, check for other req's
if(!req[4] )
begin
if(req[5]) next_state = grant5;
else
if(req[6]) next_state = grant6;
else
if(req[7]) next_state = grant7;
else
if(req[0]) next_state = grant0;
else
if(req[1]) next_state = grant1;
else
if(req[2]) next_state = grant2;
else
if(req[3]) next_state = grant3;
end
grant5:
// if this req is dropped or next is asserted, check for other req's
if(!req[5] )
begin
if(req[6]) next_state = grant6;
else
if(req[7]) next_state = grant7;
else
if(req[0]) next_state = grant0;
else
if(req[1]) next_state = grant1;
else
if(req[2]) next_state = grant2;
else
if(req[3]) next_state = grant3;
else
if(req[4]) next_state = grant4;
end
grant6:
// if this req is dropped or next is asserted, check for other req's
if(!req[6] )
begin
if(req[7]) next_state = grant7;
else
if(req[0]) next_state = grant0;
else
if(req[1]) next_state = grant1;
else
if(req[2]) next_state = grant2;
else
if(req[3]) next_state = grant3;
else
if(req[4]) next_state = grant4;
else
if(req[5]) next_state = grant5;
end
grant7:
// if this req is dropped or next is asserted, check for other req's
if(!req[7] )
begin
if(req[0]) next_state = grant0;
else
if(req[1]) next_state = grant1;
else
if(req[2]) next_state = grant2;
else
if(req[3]) next_state = grant3;
else
if(req[4]) next_state = grant4;
else
if(req[5]) next_state = grant5;
else
if(req[6]) next_state = grant6;
end
endcase
end
endmodule

View File

@@ -0,0 +1,42 @@
/////////////////////////////////////////////////////////////////////
//// ////
//// WISHBONE Connection ShareBus Definitions ////
//// ////
//// ////
//// Author: Johny Chi ////
//// chisuhua@yahoo.com.cn ////
//// ////
//// ////
//// Downloaded from: http://www.opencores.org/cores/wb_conmax/ ////
//// ////
/////////////////////////////////////////////////////////////////////
/// ////
//// Copyright (C) 2000 Authors and OPENCORES.ORG ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
`timescale 1ns / 10ps

View File

@@ -0,0 +1,655 @@
/////////////////////////////////////////////////////////////////////
//// ////
//// WISHBONE Connection Bus Top Level ////
//// ////
//// ////
//// Author: Johny Chi ////
//// chisuhua@yahoo.com.cn ////
//// ////
//// ////
//// ////
/////////////////////////////////////////////////////////////////////
//// ////
//// Copyright (C) 2000 Authors and OPENCORES.ORG ////
//// ////
//// This source file may be used and distributed without ////
//// restriction provided that this copyright statement is not ////
//// removed from the file and that any derivative work contains ////
//// the original copyright notice and the associated disclaimer. ////
//// ////
//// This source file is free software; you can redistribute it ////
//// and/or modify it under the terms of the GNU Lesser General ////
//// Public License as published by the Free Software Foundation; ////
//// either version 2.1 of the License, or (at your option) any ////
//// later version. ////
//// ////
//// This source is distributed in the hope that it will be ////
//// useful, but WITHOUT ANY WARRANTY; without even the implied ////
//// warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR ////
//// PURPOSE. See the GNU Lesser General Public License for more ////
//// details. ////
//// ////
//// You should have received a copy of the GNU Lesser General ////
//// Public License along with this source; if not, download it ////
//// from http://www.opencores.org/lgpl.shtml ////
//// ////
//////////////////////////////////////////////////////////////////////
//
// Description
// 1. Up to 8 masters and 8 slaves share bus Wishbone connection
// 2. no priorty arbitor , 8 masters are processed in a round
// robin way,
// 3. if WB_USE_TRISTATE was defined, the share bus is a tristate
// bus, and use less logic resource.
// 4. wb_conbus was synthesis to XC2S100-5-PQ208 using synplify,
// Max speed >60M , and 374 SLICE if using Multiplexor bus
// or 150 SLICE if using tri-state bus.
//
`include "wb_conbus_defines.v"
`define dw 32 // Data bus Width
`define aw 32 // Address bus Width
`define sw `dw / 8 // Number of Select Lines
`define mbusw `aw + `sw + `dw +4 //address width + byte select width + dat width + cyc + we + stb +cab , input from master interface
`define sbusw 3 // ack + err + rty, input from slave interface
`define mselectw 8 // number of masters
`define sselectw 8 // number of slavers
//`define WB_USE_TRISTATE
module wb_conbus_top #(
parameter s0_addr_w = 4 , // slave 0 address decode width -- bit 31 is always ignored!
parameter s0_addr = 4'h0, // slave 0 address
parameter s1_addr_w = 4 , // slave 1 address decode width -- bit 31 is always ignored!
parameter s1_addr = 4'h1, // slave 1 address
parameter s27_addr_w = 8 , // slave 2 to slave 7 address decode width -- bit 31 is always ignored!
parameter s2_addr = 8'h92, // slave 2 address
parameter s3_addr = 8'h93, // slave 3 address
parameter s4_addr = 8'h94, // slave 4 address
parameter s5_addr = 8'h95, // slave 5 address
parameter s6_addr = 8'h96, // slave 6 address
parameter s7_addr = 8'h97 // slave 7 address
) (
clk_i, rst_i,
// Master 0 Interface
m0_dat_i, m0_dat_o, m0_adr_i, m0_sel_i, m0_we_i, m0_cyc_i,
m0_stb_i, m0_ack_o, m0_err_o, m0_rty_o, m0_cab_i,
// Master 1 Interface
m1_dat_i, m1_dat_o, m1_adr_i, m1_sel_i, m1_we_i, m1_cyc_i,
m1_stb_i, m1_ack_o, m1_err_o, m1_rty_o, m1_cab_i,
// Master 2 Interface
m2_dat_i, m2_dat_o, m2_adr_i, m2_sel_i, m2_we_i, m2_cyc_i,
m2_stb_i, m2_ack_o, m2_err_o, m2_rty_o, m2_cab_i,
// Master 3 Interface
m3_dat_i, m3_dat_o, m3_adr_i, m3_sel_i, m3_we_i, m3_cyc_i,
m3_stb_i, m3_ack_o, m3_err_o, m3_rty_o, m3_cab_i,
// Master 4 Interface
m4_dat_i, m4_dat_o, m4_adr_i, m4_sel_i, m4_we_i, m4_cyc_i,
m4_stb_i, m4_ack_o, m4_err_o, m4_rty_o, m4_cab_i,
// Master 5 Interface
m5_dat_i, m5_dat_o, m5_adr_i, m5_sel_i, m5_we_i, m5_cyc_i,
m5_stb_i, m5_ack_o, m5_err_o, m5_rty_o, m5_cab_i,
// Master 6 Interface
m6_dat_i, m6_dat_o, m6_adr_i, m6_sel_i, m6_we_i, m6_cyc_i,
m6_stb_i, m6_ack_o, m6_err_o, m6_rty_o, m6_cab_i,
// Master 7 Interface
m7_dat_i, m7_dat_o, m7_adr_i, m7_sel_i, m7_we_i, m7_cyc_i,
m7_stb_i, m7_ack_o, m7_err_o, m7_rty_o, m7_cab_i,
// Slave 0 Interface
s0_dat_i, s0_dat_o, s0_adr_o, s0_sel_o, s0_we_o, s0_cyc_o,
s0_stb_o, s0_ack_i, s0_err_i, s0_rty_i, s0_cab_o,
// Slave 1 Interface
s1_dat_i, s1_dat_o, s1_adr_o, s1_sel_o, s1_we_o, s1_cyc_o,
s1_stb_o, s1_ack_i, s1_err_i, s1_rty_i, s1_cab_o,
// Slave 2 Interface
s2_dat_i, s2_dat_o, s2_adr_o, s2_sel_o, s2_we_o, s2_cyc_o,
s2_stb_o, s2_ack_i, s2_err_i, s2_rty_i, s2_cab_o,
// Slave 3 Interface
s3_dat_i, s3_dat_o, s3_adr_o, s3_sel_o, s3_we_o, s3_cyc_o,
s3_stb_o, s3_ack_i, s3_err_i, s3_rty_i, s3_cab_o,
// Slave 4 Interface
s4_dat_i, s4_dat_o, s4_adr_o, s4_sel_o, s4_we_o, s4_cyc_o,
s4_stb_o, s4_ack_i, s4_err_i, s4_rty_i, s4_cab_o,
// Slave 5 Interface
s5_dat_i, s5_dat_o, s5_adr_o, s5_sel_o, s5_we_o, s5_cyc_o,
s5_stb_o, s5_ack_i, s5_err_i, s5_rty_i, s5_cab_o,
// Slave 6 Interface
s6_dat_i, s6_dat_o, s6_adr_o, s6_sel_o, s6_we_o, s6_cyc_o,
s6_stb_o, s6_ack_i, s6_err_i, s6_rty_i, s6_cab_o,
// Slave 7 Interface
s7_dat_i, s7_dat_o, s7_adr_o, s7_sel_o, s7_we_o, s7_cyc_o,
s7_stb_o, s7_ack_i, s7_err_i, s7_rty_i, s7_cab_o
);
////////////////////////////////////////////////////////////////////
//
// Module Parameters
//
////////////////////////////////////////////////////////////////////
//
// Module IOs
//
input clk_i, rst_i;
// Master 0 Interface
input [`dw-1:0] m0_dat_i;
output [`dw-1:0] m0_dat_o;
input [`aw-1:0] m0_adr_i;
input [`sw-1:0] m0_sel_i;
input m0_we_i;
input m0_cyc_i;
input m0_stb_i;
input m0_cab_i;
output m0_ack_o;
output m0_err_o;
output m0_rty_o;
// Master 1 Interface
input [`dw-1:0] m1_dat_i;
output [`dw-1:0] m1_dat_o;
input [`aw-1:0] m1_adr_i;
input [`sw-1:0] m1_sel_i;
input m1_we_i;
input m1_cyc_i;
input m1_stb_i;
input m1_cab_i;
output m1_ack_o;
output m1_err_o;
output m1_rty_o;
// Master 2 Interface
input [`dw-1:0] m2_dat_i;
output [`dw-1:0] m2_dat_o;
input [`aw-1:0] m2_adr_i;
input [`sw-1:0] m2_sel_i;
input m2_we_i;
input m2_cyc_i;
input m2_stb_i;
input m2_cab_i;
output m2_ack_o;
output m2_err_o;
output m2_rty_o;
// Master 3 Interface
input [`dw-1:0] m3_dat_i;
output [`dw-1:0] m3_dat_o;
input [`aw-1:0] m3_adr_i;
input [`sw-1:0] m3_sel_i;
input m3_we_i;
input m3_cyc_i;
input m3_stb_i;
input m3_cab_i;
output m3_ack_o;
output m3_err_o;
output m3_rty_o;
// Master 4 Interface
input [`dw-1:0] m4_dat_i;
output [`dw-1:0] m4_dat_o;
input [`aw-1:0] m4_adr_i;
input [`sw-1:0] m4_sel_i;
input m4_we_i;
input m4_cyc_i;
input m4_stb_i;
input m4_cab_i;
output m4_ack_o;
output m4_err_o;
output m4_rty_o;
// Master 5 Interface
input [`dw-1:0] m5_dat_i;
output [`dw-1:0] m5_dat_o;
input [`aw-1:0] m5_adr_i;
input [`sw-1:0] m5_sel_i;
input m5_we_i;
input m5_cyc_i;
input m5_stb_i;
input m5_cab_i;
output m5_ack_o;
output m5_err_o;
output m5_rty_o;
// Master 6 Interface
input [`dw-1:0] m6_dat_i;
output [`dw-1:0] m6_dat_o;
input [`aw-1:0] m6_adr_i;
input [`sw-1:0] m6_sel_i;
input m6_we_i;
input m6_cyc_i;
input m6_stb_i;
input m6_cab_i;
output m6_ack_o;
output m6_err_o;
output m6_rty_o;
// Master 7 Interface
input [`dw-1:0] m7_dat_i;
output [`dw-1:0] m7_dat_o;
input [`aw-1:0] m7_adr_i;
input [`sw-1:0] m7_sel_i;
input m7_we_i;
input m7_cyc_i;
input m7_stb_i;
input m7_cab_i;
output m7_ack_o;
output m7_err_o;
output m7_rty_o;
// Slave 0 Interface
input [`dw-1:0] s0_dat_i;
output [`dw-1:0] s0_dat_o;
output [`aw-1:0] s0_adr_o;
output [`sw-1:0] s0_sel_o;
output s0_we_o;
output s0_cyc_o;
output s0_stb_o;
output s0_cab_o;
input s0_ack_i;
input s0_err_i;
input s0_rty_i;
// Slave 1 Interface
input [`dw-1:0] s1_dat_i;
output [`dw-1:0] s1_dat_o;
output [`aw-1:0] s1_adr_o;
output [`sw-1:0] s1_sel_o;
output s1_we_o;
output s1_cyc_o;
output s1_stb_o;
output s1_cab_o;
input s1_ack_i;
input s1_err_i;
input s1_rty_i;
// Slave 2 Interface
input [`dw-1:0] s2_dat_i;
output [`dw-1:0] s2_dat_o;
output [`aw-1:0] s2_adr_o;
output [`sw-1:0] s2_sel_o;
output s2_we_o;
output s2_cyc_o;
output s2_stb_o;
output s2_cab_o;
input s2_ack_i;
input s2_err_i;
input s2_rty_i;
// Slave 3 Interface
input [`dw-1:0] s3_dat_i;
output [`dw-1:0] s3_dat_o;
output [`aw-1:0] s3_adr_o;
output [`sw-1:0] s3_sel_o;
output s3_we_o;
output s3_cyc_o;
output s3_stb_o;
output s3_cab_o;
input s3_ack_i;
input s3_err_i;
input s3_rty_i;
// Slave 4 Interface
input [`dw-1:0] s4_dat_i;
output [`dw-1:0] s4_dat_o;
output [`aw-1:0] s4_adr_o;
output [`sw-1:0] s4_sel_o;
output s4_we_o;
output s4_cyc_o;
output s4_stb_o;
output s4_cab_o;
input s4_ack_i;
input s4_err_i;
input s4_rty_i;
// Slave 5 Interface
input [`dw-1:0] s5_dat_i;
output [`dw-1:0] s5_dat_o;
output [`aw-1:0] s5_adr_o;
output [`sw-1:0] s5_sel_o;
output s5_we_o;
output s5_cyc_o;
output s5_stb_o;
output s5_cab_o;
input s5_ack_i;
input s5_err_i;
input s5_rty_i;
// Slave 6 Interface
input [`dw-1:0] s6_dat_i;
output [`dw-1:0] s6_dat_o;
output [`aw-1:0] s6_adr_o;
output [`sw-1:0] s6_sel_o;
output s6_we_o;
output s6_cyc_o;
output s6_stb_o;
output s6_cab_o;
input s6_ack_i;
input s6_err_i;
input s6_rty_i;
// Slave 7 Interface
input [`dw-1:0] s7_dat_i;
output [`dw-1:0] s7_dat_o;
output [`aw-1:0] s7_adr_o;
output [`sw-1:0] s7_sel_o;
output s7_we_o;
output s7_cyc_o;
output s7_stb_o;
output s7_cab_o;
input s7_ack_i;
input s7_err_i;
input s7_rty_i;
////////////////////////////////////////////////////////////////////
//
// Local wires
//
wire [`mselectw -1:0] i_gnt_arb;
wire [2:0] gnt;
reg [`sselectw -1:0] i_ssel_dec;
`ifdef WB_USE_TRISTATE
wire [`mbusw -1:0] i_bus_m;
`else
reg [`mbusw -1:0] i_bus_m; // internal share bus, master data and control to slave
`endif
wire [`dw -1:0] i_dat_s; // internal share bus , slave data to master
wire [`sbusw -1:0] i_bus_s; // internal share bus , slave control to master
////////////////////////////////////////////////////////////////////
//
// Master output Interfaces
//
// master0
assign m0_dat_o = i_dat_s;
assign {m0_ack_o, m0_err_o, m0_rty_o} = i_bus_s & {3{i_gnt_arb[0]}};
// master1
assign m1_dat_o = i_dat_s;
assign {m1_ack_o, m1_err_o, m1_rty_o} = i_bus_s & {3{i_gnt_arb[1]}};
// master2
assign m2_dat_o = i_dat_s;
assign {m2_ack_o, m2_err_o, m2_rty_o} = i_bus_s & {3{i_gnt_arb[2]}};
// master3
assign m3_dat_o = i_dat_s;
assign {m3_ack_o, m3_err_o, m3_rty_o} = i_bus_s & {3{i_gnt_arb[3]}};
// master4
assign m4_dat_o = i_dat_s;
assign {m4_ack_o, m4_err_o, m4_rty_o} = i_bus_s & {3{i_gnt_arb[4]}};
// master5
assign m5_dat_o = i_dat_s;
assign {m5_ack_o, m5_err_o, m5_rty_o} = i_bus_s & {3{i_gnt_arb[5]}};
// master6
assign m6_dat_o = i_dat_s;
assign {m6_ack_o, m6_err_o, m6_rty_o} = i_bus_s & {3{i_gnt_arb[6]}};
// master7
assign m7_dat_o = i_dat_s;
assign {m7_ack_o, m7_err_o, m7_rty_o} = i_bus_s & {3{i_gnt_arb[7]}};
assign i_bus_s = {s0_ack_i | s1_ack_i | s2_ack_i | s3_ack_i | s4_ack_i | s5_ack_i | s6_ack_i | s7_ack_i ,
s0_err_i | s1_err_i | s2_err_i | s3_err_i | s4_err_i | s5_err_i | s6_err_i | s7_err_i ,
s0_rty_i | s1_rty_i | s2_rty_i | s3_rty_i | s4_rty_i | s5_rty_i | s6_rty_i | s7_rty_i };
////////////////////////////////
// Slave output interface
//
// slave0
assign {s0_adr_o, s0_sel_o, s0_dat_o, s0_we_o, s0_cab_o,s0_cyc_o} = i_bus_m[`mbusw -1:1];
assign s0_stb_o = i_bus_m[1] & i_bus_m[0] & i_ssel_dec[0]; // stb_o = cyc_i & stb_i & i_ssel_dec
// slave1
assign {s1_adr_o, s1_sel_o, s1_dat_o, s1_we_o, s1_cab_o, s1_cyc_o} = i_bus_m[`mbusw -1:1];
assign s1_stb_o = i_bus_m[1] & i_bus_m[0] & i_ssel_dec[1];
// slave2
assign {s2_adr_o, s2_sel_o, s2_dat_o, s2_we_o, s2_cab_o, s2_cyc_o} = i_bus_m[`mbusw -1:1];
assign s2_stb_o = i_bus_m[1] & i_bus_m[0] & i_ssel_dec[2];
// slave3
assign {s3_adr_o, s3_sel_o, s3_dat_o, s3_we_o, s3_cab_o, s3_cyc_o} = i_bus_m[`mbusw -1:1];
assign s3_stb_o = i_bus_m[1] & i_bus_m[0] & i_ssel_dec[3];
// slave4
assign {s4_adr_o, s4_sel_o, s4_dat_o, s4_we_o, s4_cab_o, s4_cyc_o} = i_bus_m[`mbusw -1:1];
assign s4_stb_o = i_bus_m[1] & i_bus_m[0] & i_ssel_dec[4];
// slave5
assign {s5_adr_o, s5_sel_o, s5_dat_o, s5_we_o, s5_cab_o, s5_cyc_o} = i_bus_m[`mbusw -1:1];
assign s5_stb_o = i_bus_m[1] & i_bus_m[0] & i_ssel_dec[5];
// slave6
assign {s6_adr_o, s6_sel_o, s6_dat_o, s6_we_o, s6_cab_o, s6_cyc_o} = i_bus_m[`mbusw -1:1];
assign s6_stb_o = i_bus_m[1] & i_bus_m[0] & i_ssel_dec[6];
// slave7
assign {s7_adr_o, s7_sel_o, s7_dat_o, s7_we_o, s7_cab_o, s7_cyc_o} = i_bus_m[`mbusw -1:1];
assign s7_stb_o = i_bus_m[1] & i_bus_m[0] & i_ssel_dec[7];
///////////////////////////////////////
// Master and Slave input interface
//
`ifdef WB_USE_TRISTATE
// input from master interface
assign i_bus_m = i_gnt_arb[0] ? {m0_adr_i, m0_sel_i, m0_dat_i, m0_we_i, m0_cab_i, m0_cyc_i, m0_stb_i} : 72'bz ;
assign i_bus_m = i_gnt_arb[1] ? {m1_adr_i, m1_sel_i, m1_dat_i, m1_we_i, m1_cab_i,m1_cyc_i, m1_stb_i} : 72'bz ;
assign i_bus_m = i_gnt_arb[2] ? {m2_adr_i, m2_sel_i, m2_dat_i, m2_we_i, m2_cab_i, m2_cyc_i, m2_stb_i} : 72'bz ;
assign i_bus_m = i_gnt_arb[3] ? {m3_adr_i, m3_sel_i, m3_dat_i, m3_we_i, m3_cab_i, m3_cyc_i, m3_stb_i} : 72'bz ;
assign i_bus_m = i_gnt_arb[4] ? {m4_adr_i, m4_sel_i, m4_dat_i, m4_we_i, m4_cab_i, m4_cyc_i, m4_stb_i} : 72'bz ;
assign i_bus_m = i_gnt_arb[5] ? {m5_adr_i, m5_sel_i, m5_dat_i, m5_we_i, m5_cab_i, m5_cyc_i, m5_stb_i} : 72'bz ;
assign i_bus_m = i_gnt_arb[6] ? {m6_adr_i, m6_sel_i, m6_dat_i, m6_we_i, m6_cab_i, m6_cyc_i, m6_stb_i} : 72'bz ;
assign i_bus_m = i_gnt_arb[7] ? {m7_adr_i, m7_sel_i, m7_dat_i, m7_we_i, m7_cab_i, m7_cyc_i,m7_stb_i} : 72'bz ;
// input from slave interface
assign i_dat_s = i_ssel_dec[0] ? s0_dat_i: 32'bz;
assign i_dat_s = i_ssel_dec[1] ? s1_dat_i: 32'bz;
assign i_dat_s = i_ssel_dec[2] ? s2_dat_i: 32'bz;
assign i_dat_s = i_ssel_dec[3] ? s3_dat_i: 32'bz;
assign i_dat_s = i_ssel_dec[4] ? s4_dat_i: 32'bz;
assign i_dat_s = i_ssel_dec[5] ? s5_dat_i: 32'bz;
assign i_dat_s = i_ssel_dec[6] ? s6_dat_i: 32'bz;
assign i_dat_s = i_ssel_dec[7] ? s7_dat_i: 32'bz;
`else
always @(gnt , m0_adr_i, m0_sel_i, m0_dat_i, m0_we_i, m0_cab_i, m0_cyc_i,m0_stb_i,
m1_adr_i, m1_sel_i, m1_dat_i, m1_we_i, m1_cab_i, m1_cyc_i,m1_stb_i,
m2_adr_i, m2_sel_i, m2_dat_i, m2_we_i, m2_cab_i, m2_cyc_i,m2_stb_i,
m3_adr_i, m3_sel_i, m3_dat_i, m3_we_i, m3_cab_i, m3_cyc_i,m3_stb_i,
m4_adr_i, m4_sel_i, m4_dat_i, m4_we_i, m4_cab_i, m4_cyc_i,m4_stb_i,
m5_adr_i, m5_sel_i, m5_dat_i, m5_we_i, m5_cab_i, m5_cyc_i,m5_stb_i,
m6_adr_i, m6_sel_i, m6_dat_i, m6_we_i, m6_cab_i, m6_cyc_i,m6_stb_i,
m7_adr_i, m7_sel_i, m7_dat_i, m7_we_i, m7_cab_i, m7_cyc_i,m7_stb_i)
case(gnt)
3'h0: i_bus_m = {m0_adr_i, m0_sel_i, m0_dat_i, m0_we_i, m0_cab_i, m0_cyc_i,m0_stb_i};
3'h1: i_bus_m = {m1_adr_i, m1_sel_i, m1_dat_i, m1_we_i, m1_cab_i, m1_cyc_i,m1_stb_i};
3'h2: i_bus_m = {m2_adr_i, m2_sel_i, m2_dat_i, m2_we_i, m2_cab_i, m2_cyc_i,m2_stb_i};
3'h3: i_bus_m = {m3_adr_i, m3_sel_i, m3_dat_i, m3_we_i, m3_cab_i, m3_cyc_i,m3_stb_i};
3'h4: i_bus_m = {m4_adr_i, m4_sel_i, m4_dat_i, m4_we_i, m4_cab_i, m4_cyc_i,m4_stb_i};
3'h5: i_bus_m = {m5_adr_i, m5_sel_i, m5_dat_i, m5_we_i, m5_cab_i, m5_cyc_i,m5_stb_i};
3'h6: i_bus_m = {m6_adr_i, m6_sel_i, m6_dat_i, m6_we_i, m6_cab_i, m6_cyc_i,m6_stb_i};
3'h7: i_bus_m = {m7_adr_i, m7_sel_i, m7_dat_i, m7_we_i, m7_cab_i, m7_cyc_i,m7_stb_i};
default:i_bus_m = 72'b0;//{m0_adr_i, m0_sel_i, m0_dat_i, m0_we_i, m0_cab_i, m0_cyc_i,m0_stb_i};
endcase
assign i_dat_s = i_ssel_dec[0] ? s0_dat_i :
i_ssel_dec[1] ? s1_dat_i :
i_ssel_dec[2] ? s2_dat_i :
i_ssel_dec[3] ? s3_dat_i :
i_ssel_dec[4] ? s4_dat_i :
i_ssel_dec[5] ? s5_dat_i :
i_ssel_dec[6] ? s6_dat_i :
i_ssel_dec[7] ? s7_dat_i : {`dw{1'b0}};
`endif
//
// arbitor
//
assign i_gnt_arb[0] = (gnt == 3'd0);
assign i_gnt_arb[1] = (gnt == 3'd1);
assign i_gnt_arb[2] = (gnt == 3'd2);
assign i_gnt_arb[3] = (gnt == 3'd3);
assign i_gnt_arb[4] = (gnt == 3'd4);
assign i_gnt_arb[5] = (gnt == 3'd5);
assign i_gnt_arb[6] = (gnt == 3'd6);
assign i_gnt_arb[7] = (gnt == 3'd7);
wb_conbus_arb wb_conbus_arb(
.clk(clk_i),
.rst(rst_i),
.req({ m7_cyc_i,
m6_cyc_i,
m5_cyc_i,
m4_cyc_i,
m3_cyc_i,
m2_cyc_i,
m1_cyc_i,
m0_cyc_i}),
.gnt(gnt)
);
//////////////////////////////////
// address decode logic
//
wire [7:0] m0_ssel_dec, m1_ssel_dec, m2_ssel_dec, m3_ssel_dec, m4_ssel_dec, m5_ssel_dec, m6_ssel_dec, m7_ssel_dec;
always @(gnt, m0_ssel_dec, m1_ssel_dec, m2_ssel_dec, m3_ssel_dec, m4_ssel_dec, m5_ssel_dec, m6_ssel_dec, m7_ssel_dec)
case(gnt)
3'h0: i_ssel_dec = m0_ssel_dec;
3'h1: i_ssel_dec = m1_ssel_dec;
3'h2: i_ssel_dec = m2_ssel_dec;
3'h3: i_ssel_dec = m3_ssel_dec;
3'h4: i_ssel_dec = m4_ssel_dec;
3'h5: i_ssel_dec = m5_ssel_dec;
3'h6: i_ssel_dec = m6_ssel_dec;
3'h7: i_ssel_dec = m7_ssel_dec;
default: i_ssel_dec = 7'b0;
endcase
//
// decode all master address before arbitor for running faster
//
assign m0_ssel_dec[0] = (m0_adr_i[`aw -2 : `aw -1 - s0_addr_w ] == s0_addr);
assign m0_ssel_dec[1] = (m0_adr_i[`aw -2 : `aw -1 - s1_addr_w ] == s1_addr);
assign m0_ssel_dec[2] = (m0_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s2_addr);
assign m0_ssel_dec[3] = (m0_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s3_addr);
assign m0_ssel_dec[4] = (m0_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s4_addr);
assign m0_ssel_dec[5] = (m0_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s5_addr);
assign m0_ssel_dec[6] = (m0_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s6_addr);
assign m0_ssel_dec[7] = (m0_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s7_addr);
assign m1_ssel_dec[0] = (m1_adr_i[`aw -2 : `aw -1 - s0_addr_w ] == s0_addr);
assign m1_ssel_dec[1] = (m1_adr_i[`aw -2 : `aw -1 - s1_addr_w ] == s1_addr);
assign m1_ssel_dec[2] = (m1_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s2_addr);
assign m1_ssel_dec[3] = (m1_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s3_addr);
assign m1_ssel_dec[4] = (m1_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s4_addr);
assign m1_ssel_dec[5] = (m1_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s5_addr);
assign m1_ssel_dec[6] = (m1_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s6_addr);
assign m1_ssel_dec[7] = (m1_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s7_addr);
assign m2_ssel_dec[0] = (m2_adr_i[`aw -2 : `aw -1 - s0_addr_w ] == s0_addr);
assign m2_ssel_dec[1] = (m2_adr_i[`aw -2 : `aw -1 - s1_addr_w ] == s1_addr);
assign m2_ssel_dec[2] = (m2_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s2_addr);
assign m2_ssel_dec[3] = (m2_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s3_addr);
assign m2_ssel_dec[4] = (m2_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s4_addr);
assign m2_ssel_dec[5] = (m2_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s5_addr);
assign m2_ssel_dec[6] = (m2_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s6_addr);
assign m2_ssel_dec[7] = (m2_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s7_addr);
assign m3_ssel_dec[0] = (m3_adr_i[`aw -2 : `aw -1 - s0_addr_w ] == s0_addr);
assign m3_ssel_dec[1] = (m3_adr_i[`aw -2 : `aw -1 - s1_addr_w ] == s1_addr);
assign m3_ssel_dec[2] = (m3_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s2_addr);
assign m3_ssel_dec[3] = (m3_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s3_addr);
assign m3_ssel_dec[4] = (m3_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s4_addr);
assign m3_ssel_dec[5] = (m3_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s5_addr);
assign m3_ssel_dec[6] = (m3_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s6_addr);
assign m3_ssel_dec[7] = (m3_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s7_addr);
assign m4_ssel_dec[0] = (m4_adr_i[`aw -2 : `aw -1 - s0_addr_w ] == s0_addr);
assign m4_ssel_dec[1] = (m4_adr_i[`aw -2 : `aw -1 - s1_addr_w ] == s1_addr);
assign m4_ssel_dec[2] = (m4_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s2_addr);
assign m4_ssel_dec[3] = (m4_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s3_addr);
assign m4_ssel_dec[4] = (m4_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s4_addr);
assign m4_ssel_dec[5] = (m4_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s5_addr);
assign m4_ssel_dec[6] = (m4_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s6_addr);
assign m4_ssel_dec[7] = (m4_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s7_addr);
assign m5_ssel_dec[0] = (m5_adr_i[`aw -2 : `aw -1 - s0_addr_w ] == s0_addr);
assign m5_ssel_dec[1] = (m5_adr_i[`aw -2 : `aw -1 - s1_addr_w ] == s1_addr);
assign m5_ssel_dec[2] = (m5_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s2_addr);
assign m5_ssel_dec[3] = (m5_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s3_addr);
assign m5_ssel_dec[4] = (m5_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s4_addr);
assign m5_ssel_dec[5] = (m5_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s5_addr);
assign m5_ssel_dec[6] = (m5_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s6_addr);
assign m5_ssel_dec[7] = (m5_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s7_addr);
assign m6_ssel_dec[0] = (m6_adr_i[`aw -2 : `aw -1 - s0_addr_w ] == s0_addr);
assign m6_ssel_dec[1] = (m6_adr_i[`aw -2 : `aw -1 - s1_addr_w ] == s1_addr);
assign m6_ssel_dec[2] = (m6_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s2_addr);
assign m6_ssel_dec[3] = (m6_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s3_addr);
assign m6_ssel_dec[4] = (m6_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s4_addr);
assign m6_ssel_dec[5] = (m6_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s5_addr);
assign m6_ssel_dec[6] = (m6_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s6_addr);
assign m6_ssel_dec[7] = (m6_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s7_addr);
assign m7_ssel_dec[0] = (m7_adr_i[`aw -2 : `aw -1 - s0_addr_w ] == s0_addr);
assign m7_ssel_dec[1] = (m7_adr_i[`aw -2 : `aw -1 - s1_addr_w ] == s1_addr);
assign m7_ssel_dec[2] = (m7_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s2_addr);
assign m7_ssel_dec[3] = (m7_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s3_addr);
assign m7_ssel_dec[4] = (m7_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s4_addr);
assign m7_ssel_dec[5] = (m7_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s5_addr);
assign m7_ssel_dec[6] = (m7_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s6_addr);
assign m7_ssel_dec[7] = (m7_adr_i[`aw -2 : `aw -1 - s27_addr_w ] == s7_addr);
//assign i_ssel_dec[0] = (i_bus_m[`mbusw -1 : `mbusw - s0_addr_w ] == s0_addr);
//assign i_ssel_dec[1] = (i_bus_m[`mbusw -1 : `mbusw - s1_addr_w ] == s1_addr);
//assign i_ssel_dec[2] = (i_bus_m[`mbusw -1 : `mbusw - s27_addr_w ] == s2_addr);
//assign i_ssel_dec[3] = (i_bus_m[`mbusw -1 : `mbusw - s27_addr_w ] == s3_addr);
//assign i_ssel_dec[4] = (i_bus_m[`mbusw -1 : `mbusw - s27_addr_w ] == s4_addr);
//assign i_ssel_dec[5] = (i_bus_m[`mbusw -1 : `mbusw - s27_addr_w ] == s5_addr);
//assign i_ssel_dec[6] = (i_bus_m[`mbusw -1 : `mbusw - s27_addr_w ] == s6_addr);
//assign i_ssel_dec[7] = (i_bus_m[`mbusw -1 : `mbusw - s27_addr_w ] == s7_addr);
endmodule

View File

@@ -0,0 +1,116 @@
//==========================================
// Function : Asynchronous FIFO (w/ 2 asynchronous clocks).
// Coder : Alex Claros F.
// Date : 15/May/2005.
// Notes : This implementation is based on the article
// 'Asynchronous FIFO in Virtex-II FPGAs'
// writen by Peter Alfke. This TechXclusive
// article can be downloaded from the
// Xilinx website. It has some minor modifications.
//=========================================
`timescale 1ns / 1ps
module async_fifo
#(parameter DATA_WIDTH = 8,
ADDRESS_WIDTH = 4,
FIFO_DEPTH = (1 << ADDRESS_WIDTH))
//Reading port
(output wire [DATA_WIDTH-1:0] Data_out,
output reg Empty_out,
input wire ReadEn_in,
input wire RClk,
//Writing port.
input wire [DATA_WIDTH-1:0] Data_in,
output reg Full_out,
input wire WriteEn_in,
input wire WClk,
input wire Clear_in);
/////Internal connections & variables//////
reg [DATA_WIDTH-1:0] Mem [FIFO_DEPTH-1:0];
wire [ADDRESS_WIDTH-1:0] pNextWordToWrite, pNextWordToRead;
wire EqualAddresses;
wire NextWriteAddressEn, NextReadAddressEn;
wire Set_Status, Rst_Status;
reg Status;
wire PresetFull, PresetEmpty;
//////////////Code///////////////
//Data ports logic:
//(Uses a dual-port RAM).
//'Data_out' logic:
assign Data_out = Mem[pNextWordToRead];
// always @ (posedge RClk)
// if (!PresetEmpty)
// Data_out <= Mem[pNextWordToRead];
// if (ReadEn_in & !Empty_out)
//'Data_in' logic:
always @ (posedge WClk)
if (WriteEn_in & !Full_out)
Mem[pNextWordToWrite] <= Data_in;
//Fifo addresses support logic:
//'Next Addresses' enable logic:
assign NextWriteAddressEn = WriteEn_in & ~Full_out;
assign NextReadAddressEn = ReadEn_in & ~Empty_out;
//Addreses (Gray counters) logic:
GrayCounter #(
.COUNTER_WIDTH( ADDRESS_WIDTH )
) GrayCounter_pWr (
.GrayCount_out(pNextWordToWrite),
.Enable_in(NextWriteAddressEn),
.Clear_in(Clear_in),
.Clk(WClk)
);
GrayCounter #(
.COUNTER_WIDTH( ADDRESS_WIDTH )
) GrayCounter_pRd (
.GrayCount_out(pNextWordToRead),
.Enable_in(NextReadAddressEn),
.Clear_in(Clear_in),
.Clk(RClk)
);
//'EqualAddresses' logic:
assign EqualAddresses = (pNextWordToWrite == pNextWordToRead);
//'Quadrant selectors' logic:
assign Set_Status = (pNextWordToWrite[ADDRESS_WIDTH-2] ~^ pNextWordToRead[ADDRESS_WIDTH-1]) &
(pNextWordToWrite[ADDRESS_WIDTH-1] ^ pNextWordToRead[ADDRESS_WIDTH-2]);
assign Rst_Status = (pNextWordToWrite[ADDRESS_WIDTH-2] ^ pNextWordToRead[ADDRESS_WIDTH-1]) &
(pNextWordToWrite[ADDRESS_WIDTH-1] ~^ pNextWordToRead[ADDRESS_WIDTH-2]);
//'Status' latch logic:
always @ (Set_Status, Rst_Status, Clear_in) //D Latch w/ Asynchronous Clear & Preset.
if (Rst_Status | Clear_in)
Status = 0; //Going 'Empty'.
else if (Set_Status)
Status = 1; //Going 'Full'.
//'Full_out' logic for the writing port:
assign PresetFull = Status & EqualAddresses; //'Full' Fifo.
always @ (posedge WClk, posedge PresetFull) //D Flip-Flop w/ Asynchronous Preset.
if (PresetFull)
Full_out <= 1;
else
Full_out <= 0;
//'Empty_out' logic for the reading port:
assign PresetEmpty = ~Status & EqualAddresses; //'Empty' Fifo.
always @ (posedge RClk, posedge PresetEmpty) //D Flip-Flop w/ Asynchronous Preset.
if (PresetEmpty)
Empty_out <= 1;
else
Empty_out <= 0;
endmodule

View File

@@ -0,0 +1,224 @@
//---------------------------------------------------------------------------
// Wishbone DDR Controller
//
// (c) Joerg Bornschein (<jb@capsec.org>)
//---------------------------------------------------------------------------
`timescale 1ns / 1ps
`include "ddr_include.v"
module ddr_clkgen
#(
parameter phase_shift = 0,
parameter clk_multiply = 13,
parameter clk_divide = 5
) (
input clk,
input reset,
output locked,
//
output read_clk,
output write_clk,
output write_clk90,
// DCM phase shift control
output reg ps_ready,
input ps_up,
input ps_down
);
//----------------------------------------------------------------------------
// ~133 MHz DDR Clock generator
//----------------------------------------------------------------------------
wire read_clk_u;
wire dcm_fx_locked;
DCM #(
.CLKDV_DIVIDE(2.0), // Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5
// 7.0,7.5,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0 or 16.0
.CLKFX_DIVIDE(clk_divide), // Can be any integer from 1 to 32
.CLKFX_MULTIPLY(clk_multiply), // Can be any integer from 2 to 32
.CLKIN_DIVIDE_BY_2("FALSE"), // TRUE/FALSE to enable CLKIN divide by two feature
.CLKIN_PERIOD(), // Specify period of input clock
.CLKOUT_PHASE_SHIFT("NONE"), // Specify phase shift of NONE, FIXED or VARIABLE
.CLK_FEEDBACK("NONE"), // Specify clock feedback of NONE, 1X or 2X
.DESKEW_ADJUST("SOURCE_SYNCHRONOUS"), // SOURCE_SYNCHRONOUS, SYSTEM_SYNCHRONOUS or
// an integer from 0 to 15
.DFS_FREQUENCY_MODE("LOW"), // HIGH or LOW frequency mode for frequency synthesis
.DLL_FREQUENCY_MODE("LOW"), // HIGH or LOW frequency mode for DLL
.DUTY_CYCLE_CORRECTION("TRUE"), // Duty cycle correction, TRUE or FALSE
.FACTORY_JF(16'hC080), // FACTORY JF values
.PHASE_SHIFT(0), // Amount of fixed phase shift from -255 to 255
.STARTUP_WAIT("FALSE") // Delay configuration DONE until DCM LOCK, TRUE/FALSE
) dcm_fx (
.DSSEN(),
.CLK0(), // 0 degree DCM CLK output
.CLK180(), // 180 degree DCM CLK output
.CLK270(), // 270 degree DCM CLK output
.CLK2X(), // 2X DCM CLK output
.CLK2X180(), // 2X, 180 degree DCM CLK out
.CLK90(), // 90 degree DCM CLK output
.CLKDV(), // Divided DCM CLK out (CLKDV_DIVIDE)
.CLKFX( read_clk_u ), // DCM CLK synthesis out (M/D)
.CLKFX180(), // 180 degree CLK synthesis out
.LOCKED( dcm_fx_locked), // DCM LOCK status output
.PSDONE(), // Dynamic phase adjust done output
.STATUS(), // 8-bit DCM status bits output
.CLKFB(), // DCM clock feedback
.CLKIN( clk ), // Clock input (from IBUFG, BUFG or DCM)
.PSCLK( gnd ), // Dynamic phase adjust clock input
.PSEN( gnd ), // Dynamic phase adjust enable input
.PSINCDEC( gnd ), // Dynamic phase adjust increment/decrement
.RST( reset ) // DCM asynchronous reset input
);
//----------------------------------------------------------------------------
// BUFG read clock
//----------------------------------------------------------------------------
BUFG bufg_fx_clk (
.O(read_clk), // Clock buffer output
.I(read_clk_u) // Clock buffer input
);
//----------------------------------------------------------------------------
// Phase shifted clock for write path
//----------------------------------------------------------------------------
wire phase_dcm_reset;
wire phase_dcm_locked;
wire write_clk_u, write_clk90_u, write_clk180_u, write_clk270_u;
reg psen, psincdec;
wire psdone;
DCM #(
.CLKDV_DIVIDE(2.0), // Divide by: 1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5
// 7.0,7.5,8.0,9.0,10.0,11.0,12.0,13.0,14.0,15.0 or 16.0
.CLKFX_DIVIDE(2), // Can be any integer from 1 to 32
.CLKFX_MULTIPLY(2), // Can be any integer from 2 to 32
.CLKIN_DIVIDE_BY_2("FALSE"), // TRUE/FALSE to enable CLKIN divide by two feature
.CLKIN_PERIOD(), // Specify period of input clock
.CLK_FEEDBACK("1X"), // Specify clock feedback of NONE, 1X or 2X
.DESKEW_ADJUST("SYSTEM_SYNCHRONOUS"), // SOURCE_SYNCHRONOUS, SYSTEM_SYNCHRONOUS or
// an integer from 0 to 15
.DFS_FREQUENCY_MODE("LOW"), // HIGH or LOW frequency mode for frequency synthesis
.DLL_FREQUENCY_MODE("LOW"), // HIGH or LOW frequency mode for DLL
.DUTY_CYCLE_CORRECTION("TRUE"), // Duty cycle correction, TRUE or FALSE
.FACTORY_JF(16'hC080), // FACTORY JF values
.CLKOUT_PHASE_SHIFT("VARIABLE"), // Specify phase shift of NONE, FIXED or VARIABLE
.PHASE_SHIFT( phase_shift ), // Amount of fixed phase shift from -255 to 255
.STARTUP_WAIT("FALSE") // Delay configuration DONE until DCM LOCK, TRUE/FALSE
) dcm_phase (
.DSSEN(),
.CLK0( write_clk_u ), // 0 degree DCM CLK output
.CLK90( write_clk90_u ), // 90 degree DCM CLK output
.CLK180( write_clk180_u ), // 180 degree DCM CLK output
.CLK270( write_clk270_u ), // 270 degree DCM CLK output
.CLK2X(), // 2X DCM CLK output
.CLK2X180(), // 2X, 180 degree DCM CLK out
.CLKDV(), // Divided DCM CLK out (CLKDV_DIVIDE)
.CLKFX(), // DCM CLK synthesis out (M/D)
.CLKFX180(), // 180 degree CLK synthesis out
.LOCKED( phase_dcm_locked ), // DCM LOCK status output
.STATUS(), // 8-bit DCM status bits output
.CLKFB( write_clk ), // DCM clock feedback
.CLKIN( read_clk ), // Clock input (from IBUFG, BUFG or DCM)
.PSCLK( clk ), // Dynamic phase adjust clock input
.PSEN( psen ), // Dynamic phase adjust enable input
.PSINCDEC( psincdec ), // Dynamic phase adjust increment/decrement
.PSDONE( psdone ), // Dynamic phase adjust done output
.RST( phase_dcm_reset ) // DCM asynchronous reset input
);
// delayed reset for phase shifting DCM
reg [3:0] reset_counter;
assign phase_dcm_reset = reset | (reset_counter != 0);
always @(posedge clk)
begin
if (reset)
reset_counter <= 1;
else begin
if (dcm_fx_locked & (reset_counter != 0))
reset_counter <= reset_counter + 1;
end
end
//----------------------------------------------------------------------------
// DCM phase shifting state machine
//----------------------------------------------------------------------------
parameter s_init = 0;
parameter s_idle = 1;
parameter s_waitdone = 2;
parameter s_waitdone2= 3;
reg [1:0] state;
always @(posedge clk)
begin
if (reset) begin
state <= s_init;
psen <= 0;
ps_ready <= 0;
end else begin
case (state)
s_init: begin
if (phase_dcm_locked) begin
ps_ready <= 1;
state <= s_idle;
end
end
s_idle: begin
if (ps_up) begin
ps_ready <= 0;
psen <= 1;
psincdec <= 1;
state <= s_waitdone;
end else if (ps_down) begin
ps_ready <= 0;
psen <= 1;
psincdec <= 0;
state <= s_waitdone;
end
end
s_waitdone: begin
psen <= 0;
if (psdone) begin
state <= s_waitdone2;
end
end
s_waitdone2: begin
if (~ps_up && ~ps_down) begin
ps_ready <= 1;
state <= s_idle;
end
end
endcase
end
end
//----------------------------------------------------------------------------
// BUFG write clock
//----------------------------------------------------------------------------
BUFG bufg_write_clk (
.O(write_clk ), // Clock buffer output
.I(write_clk_u) // Clock buffer input
);
BUFG bufg_write_clk90 (
.O(write_clk90 ), // Clock buffer output
.I(write_clk90_u) // Clock buffer input
);
//----------------------------------------------------------------------------
// LOCKED logic
//----------------------------------------------------------------------------
reg phase_dcm_locked_delayed;
always @(posedge write_clk)
begin
phase_dcm_locked_delayed <= phase_dcm_locked;
end
assign locked = ~reset & phase_dcm_locked_delayed;
endmodule

View File

@@ -0,0 +1,370 @@
//----------------------------------------------------------------------------
// Pipelined, asyncronous DDR Controller
//
// (c) Joerg Bornschein (<jb@capsec.org>)
//----------------------------------------------------------------------------
module ddr_ctrl
#(
parameter phase_shift = 0,
parameter clk_freq = 100000000,
parameter clk_multiply = 12,
parameter clk_divide = 5,
parameter wait200_init = 26
) (
input clk,
input reset,
// DDR ports
output [2:0] ddr_clk,
output [2:0] ddr_clk_n,
input ddr_clk_fb,
output ddr_ras_n,
output ddr_cas_n,
output ddr_we_n,
output [1:0] ddr_cke,
output [1:0] ddr_cs_n,
output [ `A_RNG] ddr_a,
output [ `BA_RNG] ddr_ba,
inout [ `DQ_RNG] ddr_dq,
inout [`DQS_RNG] ddr_dqs,
output [ `DM_RNG] ddr_dm,
// FML (FastMemoryLink)
output reg fml_done,
input [`FML_ADR_RNG] fml_adr,
input fml_rd,
input fml_wr,
input [`FML_DAT_RNG] fml_wdat,
input [`FML_BE_RNG] fml_wbe,
input fml_wnext,
output fml_rempty,
input fml_rnext,
output [`FML_DAT_RNG] fml_rdat,
// DCM phase shift control
output ps_ready,
input ps_up,
input ps_down,
// Logic Probe
output probe_clk,
input [7:0] probe_sel,
output reg [7:0] probe
);
wire [ `DQ_RNG] ddr_dq_i, ddr_dq_o;
wire [`DQS_RNG] ddr_dqs_i, ddr_dqs_o;
wire ddr_dqs_oe;
//----------------------------------------------------------------------------
// clock generator
//----------------------------------------------------------------------------
wire clk_locked;
wire write_clk, write_clk90;
wire read_clk;
wire reset_int = reset | ~clk_locked;
ddr_clkgen #(
.phase_shift( phase_shift ),
.clk_multiply( clk_multiply ),
.clk_divide( clk_divide )
) clkgen (
.clk( clk ),
.reset( reset ),
.locked( clk_locked ),
// ddr-clk
.read_clk( read_clk ),
.write_clk( write_clk ),
.write_clk90( write_clk90 ),
// phase shift control
.ps_ready( ps_ready ),
.ps_up( ps_up ),
.ps_down( ps_down )
);
//----------------------------------------------------------------------------
// async_fifos (cmd, wdata, rdata)
//----------------------------------------------------------------------------
wire cba_fifo_full;
reg [`CBA_RNG] cba_fifo_din;
reg cba_fifo_we;
wire wfifo_full;
wire [`WFIFO_RNG] wfifo_din;
wire wfifo_we;
wire [`RFIFO_RNG] rfifo_dout;
wire rfifo_empty;
wire rfifo_next;
assign wfifo_din = { ~fml_wbe, fml_wdat };
assign wfifo_we = fml_wnext;
assign fml_rdat = rfifo_dout;
assign fml_rempty = rfifo_empty;
assign rfifo_next = fml_rnext;
//----------------------------------------------------------------------------
// High-speed cmd, write and read datapath
//----------------------------------------------------------------------------
ddr_wpath wpath0 (
.clk( write_clk ),
.clk90( write_clk90 ),
.reset( reset_int ),
// CBA async fifo
.cba_clk( clk ),
.cba_din( cba_fifo_din ),
.cba_wr( cba_fifo_we ),
.cba_full( cba_fifo_full ),
// WDATA async fifo
.wdata_clk( clk ),
.wdata_din( wfifo_din ),
.wdata_wr( wfifo_we ),
.wdata_full( wfifo_full ),
//
.sample( sample ),
// DDR
.ddr_clk( ddr_clk ),
.ddr_clk_n( ddr_clk_n ),
.ddr_ras_n( ddr_ras_n ),
.ddr_cas_n( ddr_cas_n ),
.ddr_we_n( ddr_we_n ),
.ddr_a( ddr_a ),
.ddr_ba( ddr_ba ),
.ddr_dm( ddr_dm ),
.ddr_dq( ddr_dq_o ),
.ddr_dqs( ddr_dqs_o ),
.ddr_dqs_oe( ddr_dqs_oe )
);
ddr_rpath rpath0 (
.clk( read_clk ),
.reset( reset_int ),
//
.sample( sample ),
//
.rfifo_clk( clk ),
.rfifo_empty( rfifo_empty),
.rfifo_dout( rfifo_dout ),
.rfifo_next( rfifo_next ),
// DDR
.ddr_dq( ddr_dq_i ),
.ddr_dqs( ddr_dqs_i )
);
//----------------------------------------------------------------------------
// 7.8 us pulse generator
//----------------------------------------------------------------------------
wire pulse78;
reg ar_req;
reg ar_done;
ddr_pulse78 #(
.clk_freq( clk_freq )
) pulse78_gen (
.clk( clk ),
.reset( reset_int ),
.pulse78( pulse78 )
);
//----------------------------------------------------------------------------
// Auto Refresh request generator
//----------------------------------------------------------------------------
always @(posedge clk)
if (reset_int)
ar_req <= 0;
else
ar_req <= pulse78 | (ar_req & ~ar_done);
// operations we might want to submit
wire [`CBA_RNG] ar_pre_cba;
wire [`CBA_RNG] ar_ar_cba;
assign ar_pre_cba = { `DDR_CMD_PRE, 2'b00, 13'b1111111111111 };
assign ar_ar_cba = { `DDR_CMD_AR, 2'b00, 13'b0000000000000 };
//----------------------------------------------------------------------------
// Init & management
//----------------------------------------------------------------------------
wire init_req;
reg init_ack;
wire [`CBA_RNG] init_cba;
wire init_done;
wire wait200;
ddr_init #(
.wait200_init( wait200_init )
) init (
.clk( clk ),
.reset( reset_int ),
.pulse78( pulse78 ),
.wait200( wait200 ),
.init_done( init_done ),
//
.mngt_req( init_req ),
.mngt_ack( init_ack ),
.mngt_cba( init_cba )
);
//----------------------------------------------------------------------------
// Active Bank Information
//----------------------------------------------------------------------------
reg [`ROW_RNG] ba_row [3:0];
reg [3:0] ba_active;
//----------------------------------------------------------------------------
// FML decoding
//----------------------------------------------------------------------------
wire [`FML_ADR_BA_RNG] fml_ba = fml_adr[`FML_ADR_BA_RNG];
wire [`FML_ADR_ROW_RNG] fml_row = fml_adr[`FML_ADR_ROW_RNG];
wire [`FML_ADR_COL_RNG] fml_col = fml_adr[`FML_ADR_COL_RNG];
wire [`FML_ADR_ROW_RNG] fml_cur_row; // current active row in sel. bank
assign fml_cur_row = ba_row[fml_ba];
wire fml_row_active; // is row in selected ba really active?
assign fml_row_active = ba_active[fml_ba];
/*
wire fml_row_active = (fml_ba == 0) ? ba0_active : // is row in selected
(fml_ba == 1) ? ba1_active : // bank really active?
(fml_ba == 2) ? ba2_active :
ba3_active ;
*/
// request operation iff correct bank is active
wire fml_req = fml_rd | fml_wr;
wire fml_row_match = (fml_row == fml_cur_row) & fml_row_active;
wire fml_pre_req = fml_req & ~fml_row_match & fml_row_active;
wire fml_act_req = fml_req & ~fml_row_active;
wire fml_read_req = fml_rd & fml_row_match & ~fml_done;
wire fml_write_req = fml_wr & fml_row_match & ~fml_done;
// actual operations we might want to submit
wire [`CBA_RNG] fml_pre_cba;
wire [`CBA_RNG] fml_act_cba;
wire [`CBA_RNG] fml_read_cba;
wire [`CBA_RNG] fml_write_cba;
assign fml_pre_cba = { `DDR_CMD_PRE, fml_ba, 13'b0 };
assign fml_act_cba = { `DDR_CMD_ACT, fml_ba, fml_row };
assign fml_read_cba = { `DDR_CMD_READ, fml_ba, {3'b000}, fml_col, {3'b000} };
assign fml_write_cba = { `DDR_CMD_WRITE, fml_ba, {3'b000}, fml_col, {3'b000} };
//----------------------------------------------------------------------------
// Schedule and issue commands
//----------------------------------------------------------------------------
parameter s_init = 0;
parameter s_idle = 1;
parameter s_ar = 2;
parameter s_reading = 3;
reg [1:0] state;
always @(posedge clk)
begin
if (reset_int) begin
state <= s_init;
ba_active <= 0;
ba_row[0] <= 0;
ba_row[1] <= 0;
ba_row[2] <= 0;
ba_row[3] <= 0;
fml_done <= 0;
init_ack <= 0;
cba_fifo_we <= 0;
ar_done <= 0;
end else begin
fml_done <= 0;
init_ack <= 0;
cba_fifo_we <= 0;
ar_done <= 0;
case (state)
s_init: begin
if (init_done)
state <= s_idle;
if (init_req & ~cba_fifo_full) begin
cba_fifo_we <= 1;
cba_fifo_din <= init_cba;
init_ack <= 1;
end
end
s_idle: begin
if (fml_read_req & ~cba_fifo_full) begin
cba_fifo_we <= 1;
cba_fifo_din <= fml_read_cba;
fml_done <= 1;
end else if (fml_write_req & ~cba_fifo_full) begin
cba_fifo_we <= 1;
cba_fifo_din <= fml_write_cba;
fml_done <= 1;
end else if (ar_req & ~cba_fifo_full) begin
cba_fifo_we <= 1;
cba_fifo_din <= ar_pre_cba;
ar_done <= 1;
ba_active <= 'b0;
state <= s_ar;
end else if (fml_pre_req & ~cba_fifo_full) begin
cba_fifo_we <= 1;
cba_fifo_din <= fml_pre_cba;
ba_active[fml_ba] <= 0;
end else if (fml_act_req & ~cba_fifo_full) begin
cba_fifo_we <= 1;
cba_fifo_din <= fml_act_cba;
ba_active[fml_ba] <= 1;
ba_row[fml_ba] <= fml_row;
end
end
s_ar: begin
if (~cba_fifo_full) begin
cba_fifo_we <= 1;
cba_fifo_din <= ar_ar_cba;
state <= s_idle;
end
end
endcase
end
end
//----------------------------------------------------------------------------
// Demux dqs and dq
//----------------------------------------------------------------------------
assign ddr_cke = {~wait200, ~wait200}; // bring up CKE as soon 200us wait is finished
assign ddr_dqs = ddr_dqs_oe!=1'b0 ? ddr_dqs_o : 'bz;
assign ddr_dq = ddr_dqs_oe!=1'b0 ? ddr_dq_o : 'bz;
assign ddr_dqs_i = ddr_dqs;
assign ddr_dq_i = ddr_dq;
assign ddr_cs_n = 2'b00;
//----------------------------------------------------------------------------
// Probes
//----------------------------------------------------------------------------
assign probe_clk = clk;
always @(*)
begin
case (probe_sel)
8'h00: probe <= { cba_fifo_we, wfifo_we, rfifo_next, 1'b0, cba_fifo_full, wfifo_full, rfifo_empty, 1'b0 };
8'h01: probe <= { write_clk, write_clk90, read_clk, 5'b00000 };
8'h10: probe <= { rfifo_empty, rfifo_next, rfifo_dout[ 5: 0] };
8'h11: probe <= { rfifo_empty, rfifo_next, rfifo_dout[13: 8] };
8'h12: probe <= { rfifo_empty, rfifo_next, rfifo_dout[21:16] };
8'h13: probe <= { rfifo_empty, rfifo_next, rfifo_dout[29:24] };
8'h20: probe <= wfifo_din[ 7:0];
8'h21: probe <= wfifo_din[15:8];
8'h20: probe <= wfifo_din[23:16];
8'h21: probe <= wfifo_din[31:24];
8'h30: probe <= cba_fifo_din[17:10];
8'h31: probe <= cba_fifo_din[ 9:2];
default: probe <= 0'b0;
endcase
end
endmodule

View File

@@ -0,0 +1,122 @@
//----------------------------------------------------------------------------
// Wishbone DDR Controller
//
// (c) Joerg Bornschein (<jb@capsec.org>)
//----------------------------------------------------------------------------
`ifdef WBDDR_INCLUDE_V
`else
`define WBDDR_INCLUDE_V
`timescale 1ns/10ps
//----------------------------------------------------------------------------
// Frequency and timeouts
//----------------------------------------------------------------------------
`define SYS_CLK_FREQUENCY 50000 // in kHz
`define DDR_CLK_MULTIPLY 5
`define DDR_CLK_DIVIDE 2
//----------------------------------------------------------------------------
// Width
//----------------------------------------------------------------------------
`define CMD_WIDTH 3
`define A_WIDTH 13
`define BA_WIDTH 2
`define DQ_WIDTH 16
`define DQS_WIDTH 2
`define DM_WIDTH 2
`define RFIFO_WIDTH (2 * `DQ_WIDTH )
`define WFIFO_WIDTH (2 * (`DQ_WIDTH + `DM_WIDTH))
`define CBA_WIDTH (`CMD_WIDTH+`BA_WIDTH+`A_WIDTH)
// Ranges
`define CMD_RNG (`CMD_WIDTH-1):0
`define A_RNG (`A_WIDTH-1):0
`define BA_RNG (`BA_WIDTH-1):0
`define DQ_RNG (`DQ_WIDTH-1):0
`define DQS_RNG (`DQS_WIDTH-1):0
`define DM_RNG (`DM_WIDTH-1):0
`define RFIFO_RNG (`RFIFO_WIDTH-1):0
`define WFIFO_RNG (`WFIFO_WIDTH-1):0
`define WFIFO_D0_RNG (1*`DQ_WIDTH-1):0
`define WFIFO_D1_RNG (2*`DQ_WIDTH-1):(`DQ_WIDTH)
`define WFIFO_M0_RNG (2*`DQ_WIDTH+1*`DM_WIDTH-1):(2*`DQ_WIDTH+0*`DM_WIDTH)
`define WFIFO_M1_RNG (2*`DQ_WIDTH+2*`DM_WIDTH-1):(2*`DQ_WIDTH+1*`DM_WIDTH)
`define CBA_RNG (`CBA_WIDTH-1):0
`define CBA_CMD_RNG (`CBA_WIDTH-1):(`CBA_WIDTH-3)
`define CBA_BA_RNG (`CBA_WIDTH-4):(`CBA_WIDTH-5)
`define CBA_A_RNG (`CBA_WIDTH-6):0
`define ROW_RNG 12:0
//----------------------------------------------------------------------------
// Configuration registers
//----------------------------------------------------------------------------
`define DDR_INIT_EMRS `A_WIDTH'b0000000000000 // DLL enable
`define DDR_INIT_MRS1 `A_WIDTH'b0000101100011 // BURST=8, CL=2.5, DLL RESET
`define DDR_INIT_MRS2 `A_WIDTH'b0000001100011 // BURST=8, CL=2.5
//----------------------------------------------------------------------------
// FML constants
//----------------------------------------------------------------------------
`define FML_ADR_RNG 25:4
`define FML_ADR_BA_RNG 25:24
`define FML_ADR_ROW_RNG 23:11
`define FML_ADR_COL_RNG 10:4
`define FML_DAT_RNG 31:0
`define FML_BE_RNG 3:0
//----------------------------------------------------------------------------
// DDR constants
//----------------------------------------------------------------------------
`define DDR_CMD_NOP 3'b111
`define DDR_CMD_ACT 3'b011
`define DDR_CMD_READ 3'b101
`define DDR_CMD_WRITE 3'b100
`define DDR_CMD_TERM 3'b110
`define DDR_CMD_PRE 3'b010
`define DDR_CMD_AR 3'b001
`define DDR_CMD_MRS 3'b000
`define ADR_BA_RNG 25:24
`define ADR_ROW_RNG 23:11
`define ADR_COL_RNG 10:4
`define T_MRD 2 // Mode register set
`define T_RP 2 // Precharge Command Period
`define T_RFC 8 // Precharge Command Period
//----------------------------------------------------------------------------
// Buffer Cache
//----------------------------------------------------------------------------
`define WAY_WIDTH (`WB_DAT_WIDTH + `WB_SEL_WIDTH)
`define WAY_LINE_RNG (`WAY_WIDTH-1):0
`define WAY_DAT_RNG 31:0
`define WAY_VALID_RNG 35:32
`define TAG_LINE_RNG 32:0
`define TAG_LINE_TAG0_RNG 14:0
`define TAG_LINE_TAG1_RNG 29:15
`define TAG_LINE_DIRTY0_RNG 30
`define TAG_LINE_DIRTY1_RNG 31
`define TAG_LINE_LRU_RNG 32
//----------------------------------------------------------------------------
// Whishbone constants
//----------------------------------------------------------------------------
`define WB_ADR_WIDTH 32
`define WB_DAT_WIDTH 32
`define WB_SEL_WIDTH 4
`define WB_ADR_RNG (`WB_ADR_WIDTH-1):0
`define WB_DAT_RNG (`WB_DAT_WIDTH-1):0
`define WB_SEL_RNG (`WB_SEL_WIDTH-1):0
`define WB_WORD_RNG 3:2
`define WB_SET_RNG 10:4
`define WB_TAG_RNG 25:11
`endif

View File

@@ -0,0 +1,164 @@
//----------------------------------------------------------------------------
// Wishbone DDR Controller
//
// (c) Joerg Bornschein (<jb@capsec.org>)
//----------------------------------------------------------------------------
`include "ddr_include.v"
module ddr_init
#(
parameter wait200_init = 26
) (
input clk,
input reset,
input pulse78,
output wait200,
output init_done,
//
output mngt_req,
input mngt_ack,
output [`CBA_RNG] mngt_cba // CMD, BA and ADDRESS
);
reg cmd_req_reg;
reg [`CMD_RNG] cmd_cmd_reg;
reg [ `BA_RNG] cmd_ba_reg;
reg [ `A_RNG] cmd_a_reg;
reg [7:0] cmd_idle_reg;
//---------------------------------------------------------------------------
// Initial 200us delay
//---------------------------------------------------------------------------
// `define WAIT200_INIT 26
// `define WAIT200_INIT 1
reg [4:0] wait200_counter;
reg wait200_reg;
always @(posedge clk)
begin
if (reset) begin
wait200_reg <= 1;
wait200_counter <= wait200_init;
end else begin
if (wait200_counter == 0)
wait200_reg <= 0;
if (wait200_reg & pulse78)
wait200_counter <= wait200_counter - 1;
end
end
assign wait200 = wait200_reg;
//----------------------------------------------------------------------------
// DDR Initialization State Machine
//----------------------------------------------------------------------------
parameter s_wait200 = 0;
parameter s_init1 = 1;
parameter s_init2 = 2;
parameter s_init3 = 3;
parameter s_init4 = 4;
parameter s_init5 = 5;
parameter s_init6 = 6;
parameter s_waitack = 7;
parameter s_idle = 8;
reg [3:0] state;
reg init_done_reg;
assign mngt_cba = {cmd_cmd_reg, cmd_ba_reg, cmd_a_reg};
assign mngt_req = cmd_req_reg;
assign mngt_pri_req = ~init_done_reg;
assign init_done = init_done_reg;
always @(posedge clk or posedge reset)
begin
if (reset) begin
init_done_reg <= 0;
state <= s_wait200;
cmd_idle_reg <= 0;
cmd_req_reg <= 0;
cmd_cmd_reg <= 'b0;
cmd_ba_reg <= 'b0;
cmd_a_reg <= 'b0;
end else begin
case (state)
s_wait200: begin
if (~wait200_reg) begin
state <= s_init1;
cmd_req_reg <= 1;
cmd_cmd_reg <= `DDR_CMD_PRE; // PRE ALL
cmd_a_reg[10] <= 1'b1;
end
end
s_init1: begin
if (mngt_ack) begin
state <= s_init2;
cmd_req_reg <= 1;
cmd_cmd_reg <= `DDR_CMD_MRS; // EMRS
cmd_ba_reg <= 2'b01;
cmd_a_reg <= `DDR_INIT_EMRS;
end
end
s_init2: begin
if (mngt_ack) begin
state <= s_init3;
cmd_req_reg <= 1;
cmd_cmd_reg <= `DDR_CMD_MRS; // MRS
cmd_ba_reg <= 2'b00;
cmd_a_reg <= `DDR_INIT_MRS1;
end
end
s_init3: begin
if (mngt_ack) begin
state <= s_init4;
cmd_req_reg <= 1;
cmd_cmd_reg <= `DDR_CMD_PRE; // PRE ALL
cmd_a_reg[10] <= 1'b1;
end
end
s_init4: begin
if (mngt_ack) begin
state <= s_init5;
cmd_req_reg <= 1;
cmd_cmd_reg <= `DDR_CMD_AR; // AR
end
end
s_init5: begin
if (mngt_ack) begin
state <= s_init6;
cmd_req_reg <= 1;
cmd_cmd_reg <= `DDR_CMD_AR; // AR
end
end
s_init6: begin
if (mngt_ack) begin
init_done_reg <= 1;
state <= s_waitack;
cmd_req_reg <= 1;
cmd_cmd_reg <= `DDR_CMD_MRS; // MRS
cmd_ba_reg <= 2'b00;
cmd_a_reg <= `DDR_INIT_MRS2;
end
end
s_waitack: begin
if (mngt_ack) begin
state <= s_idle;
cmd_req_reg <= 0;
cmd_cmd_reg <= 'b0;
cmd_ba_reg <= 'b0;
cmd_a_reg <= 'b0;
end
end
s_idle: begin
end
endcase ///////////////////////////////////////// INIT STATE MACHINE ///
end
end
endmodule

View File

@@ -0,0 +1,43 @@
//----------------------------------------------------------------------------
// Wishbone DDR Controller
//
// (c) Joerg Bornschein (<jb@capsec.org>)
//----------------------------------------------------------------------------
`include "ddr_include.v"
module ddr_pulse78 #(
parameter clk_freq = 50000000
) (
input clk,
input reset,
//
output reg pulse78
);
//----------------------------------------------------------------------------
//
//----------------------------------------------------------------------------
`define PULSE78_RNG 10:0
parameter pulse78_init = 78 * (clk_freq/10000000);
reg [`PULSE78_RNG] counter;
always @(posedge clk)
begin
if (reset) begin
counter <= pulse78_init;
pulse78 <= 0;
end else begin
if (counter == 0) begin
counter <= pulse78_init;
pulse78 <= 1'b1;
end else begin
counter <= counter - 1;
pulse78 <= 0;
end
end
end
endmodule

View File

@@ -0,0 +1,112 @@
//----------------------------------------------------------------------------
// Wishbone DDR Controller
//
// (c) Joerg Bornschein (<jb@capsec.org>)
//----------------------------------------------------------------------------
`include "ddr_include.v"
module ddr_rpath
(
input clk,
input reset,
// sample activate
input sample,
// RDATA async fifo
input rfifo_clk,
output rfifo_empty,
output [`RFIFO_RNG] rfifo_dout,
input rfifo_next,
// DDR
input [ `DQ_RNG] ddr_dq,
input [`DQS_RNG] ddr_dqs
);
//----------------------------------------------------------------------------
// RDATA async. fifo
//----------------------------------------------------------------------------
wire [`RFIFO_RNG] rfifo_din;
wire rfifo_wr;
wire rfifo_full;
async_fifo #(
.DATA_WIDTH( `RFIFO_WIDTH ),
.ADDRESS_WIDTH( 4 )
) rfifo (
.Data_out( rfifo_dout ),
.Empty_out( rfifo_empty ),
.ReadEn_in( rfifo_next ),
.RClk( rfifo_clk ),
//
.Data_in( rfifo_din ),
.WriteEn_in( rfifo_wr ),
.Full_out( rfifo_full ),
.WClk( ~clk ),
.Clear_in( reset )
);
//----------------------------------------------------------------------------
// Clean up incoming 'sample' signal and generate sample_dq
//----------------------------------------------------------------------------
// anti-meta-state
//reg sample180;
//always @(negedge clk) sample180 <= sample;
wire sample180 = sample;
reg sample_dq; // authoritive sample flag (after cleanup)
reg sample_dq_delayed; // write to rfifo?
reg [3:0] sample_count; // make sure sample_dq is up exactly
// BURSTLENGTH/2 cycles
always @(posedge clk or posedge reset)
begin
if (reset) begin
sample_dq <= 0;
sample_dq_delayed <= 0;
sample_count <= 0;
end else begin
sample_dq_delayed <= sample_dq;
if (sample_count == 0) begin
if (sample180) begin
sample_dq <= 1;
sample_count <= 1;
end
end else if (sample_count == 4) begin
sample_dq <= 0;
sample_count <= 0;
end else
sample_count <= sample_count + 1;
end
end
//----------------------------------------------------------------------------
// Sampe DQ and fill RFIFO
//----------------------------------------------------------------------------
reg [15:0] ddr_dq_low, ddr_dq_high;
always @(negedge clk )
begin
if (reset)
ddr_dq_low <= 'b0;
else
ddr_dq_low <= ddr_dq;
end
always @(posedge clk)
begin
if (reset)
ddr_dq_high <= 'b0;
else
ddr_dq_high <= ddr_dq;
end
assign rfifo_wr = sample_dq_delayed;
assign rfifo_din = { ddr_dq_high, ddr_dq_low };
endmodule

View File

@@ -0,0 +1,286 @@
//----------------------------------------------------------------------------
// Wishbone DDR Controller -- fast write data-path
//
// (c) Joerg Bornschein (<jb@capsec.org>)
//----------------------------------------------------------------------------
`include "ddr_include.v"
module ddr_wpath (
input clk,
input clk90,
input reset,
// CBA async fifo
input cba_clk,
input [`CBA_RNG] cba_din,
input cba_wr,
output cba_full,
// WDATA async fifo
input wdata_clk,
input [`WFIFO_RNG] wdata_din,
input wdata_wr,
output wdata_full,
// sample to rdata
output sample,
// DDR
output [2:0] ddr_clk,
output [2:0] ddr_clk_n,
output ddr_ras_n,
output ddr_cas_n,
output ddr_we_n,
output [ `A_RNG] ddr_a,
output [ `BA_RNG] ddr_ba,
output [ `DM_RNG] ddr_dm,
output [ `DQ_RNG] ddr_dq,
output [`DQS_RNG] ddr_dqs,
output ddr_dqs_oe
);
wire gnd = 1'b0;
wire vcc = 1'b1;
//----------------------------------------------------------------------------
// CBA async. fifo
//----------------------------------------------------------------------------
wire [`CBA_RNG] cba_data;
wire cba_empty;
wire cba_ack;
wire cba_avail = ~cba_empty;
async_fifo #(
.DATA_WIDTH( `CBA_WIDTH ),
.ADDRESS_WIDTH( 4 )
) cba_fifo (
.Data_out( cba_data ),
.Empty_out( cba_empty ),
.ReadEn_in( cba_ack ),
.RClk( clk ),
//
.Data_in( cba_din ),
.WriteEn_in( cba_wr ),
.Full_out( cba_full ),
.WClk( cba_clk ),
.Clear_in( reset )
);
//----------------------------------------------------------------------------
// WDATA async. fifo
//----------------------------------------------------------------------------
wire [`WFIFO_RNG] wdata_data;
wire wdata_empty;
wire wdata_ack;
wire wdata_avail = ~wdata_empty;
async_fifo #(
.DATA_WIDTH( `WFIFO_WIDTH ),
.ADDRESS_WIDTH( 4 )
) wdata_fifo (
.Data_out( wdata_data ),
.Empty_out( wdata_empty ),
.ReadEn_in( wdata_ack ),
.RClk( ~clk90 ),
//
.Data_in( wdata_din ),
.WriteEn_in( wdata_wr ),
.Full_out( wdata_full ),
.WClk( wdata_clk ),
.Clear_in( reset )
);
//----------------------------------------------------------------------------
// Handle CBA
//----------------------------------------------------------------------------
reg [3:0] delay_count;
reg [`CBA_RNG] ddr_cba;
wire [`CBA_RNG] CBA_NOP = { `DDR_CMD_NOP, 15'b0 };
assign cba_ack = cba_avail & (delay_count == 0);
wire [`CMD_RNG] cba_cmd = cba_data[(`CBA_WIDTH-1):(`CBA_WIDTH-3)];
always @(posedge clk)
begin
if (reset) begin
delay_count <= 0;
ddr_cba <= CBA_NOP;
end else begin
if (delay_count != 0) begin
delay_count <= delay_count - 1;
ddr_cba <= CBA_NOP;
end
if (!cba_ack) begin
ddr_cba <= CBA_NOP;
end else begin
ddr_cba <= cba_data;
case (cba_cmd)
`DDR_CMD_MRS : delay_count <= 2;
`DDR_CMD_AR : delay_count <= 14;
`DDR_CMD_ACT : delay_count <= 4;
`DDR_CMD_PRE : delay_count <= 2;
`DDR_CMD_READ : delay_count <= 6; // XXX
`DDR_CMD_WRITE : delay_count <= 8; // XXX
endcase
end
end
end
//----------------------------------------------------------------------------
// READ-SHIFT-REGISTER
//----------------------------------------------------------------------------
reg [7:0] read_shr;
wire read_cmd = (cba_cmd == `DDR_CMD_READ) & cba_ack;
assign sample = read_shr[6];
always @(posedge clk)
begin
if (reset)
read_shr <= 'b0;
else begin
if (read_cmd)
read_shr <= { 8'b00011000 };
else
read_shr <= { read_shr[6:0], 1'b0 };
end
end
//----------------------------------------------------------------------------
// WRITE-SHIFT-REGISTER
//----------------------------------------------------------------------------
reg [0:4] write_shr;
wire write_cmd = (cba_cmd == `DDR_CMD_WRITE) & cba_ack;
always @(posedge clk)
begin
if (reset)
write_shr <= 'b0;
else begin
if (write_cmd)
write_shr <= { 5'b11111 };
else
write_shr <= { write_shr[1:4], 1'b0 };
end
end
//----------------------------------------------------------------------------
// DDR_DQS, DDR_DQS_OE
//----------------------------------------------------------------------------
genvar i;
reg ddr_dqs_oe_reg;
assign ddr_dqs_oe = ddr_dqs_oe_reg;
always @(negedge clk)
begin
ddr_dqs_oe_reg <= write_shr[0];
end
generate
for (i=0; i<3; i=i+1) begin : CLK
FDDRRSE ddr_clk_reg (
.Q( ddr_clk[i] ),
.C0( clk90 ),
.C1( ~clk90 ),
.CE( vcc ),
.D0( vcc ),
.D1( gnd ),
.R( gnd ),
.S( gnd )
);
FDDRRSE ddr_clk_n_reg (
.Q( ddr_clk_n[i] ),
.C0( clk90 ),
.C1( ~clk90 ),
.CE( vcc ),
.D0( gnd ),
.D1( vcc ),
.R( gnd ),
.S( gnd )
);
end
endgenerate
generate
for (i=0; i<`DQS_WIDTH; i=i+1) begin : DQS
FDDRRSE ddr_dqs_reg (
.Q( ddr_dqs[i] ),
.C0( clk ),
.C1( ~clk ),
.CE( vcc ),
.D0( write_shr[1] ),
.D1( gnd ),
.R( gnd ),
.S( gnd )
);
end
endgenerate
//----------------------------------------------------------------------------
// DQ data output
//----------------------------------------------------------------------------
wire [`DQ_RNG] buf_d0;
wire [`DM_RNG] buf_m0;
reg [`DQ_RNG] buf_d1; // pipleine high word data
reg [`DM_RNG] buf_m1; // pipleine high word mask
assign buf_d0 = wdata_data[`WFIFO_D0_RNG];
assign buf_m0 = wdata_data[`WFIFO_M0_RNG];
always @(negedge clk90)
begin
buf_d1 <= wdata_data[`WFIFO_D1_RNG];
buf_m1 <= wdata_data[`WFIFO_M1_RNG];
end
assign wdata_ack = write_shr[1];
// generate DDR_DQ register
generate
for (i=0; i<`DQ_WIDTH; i=i+1) begin : DQ_REG
FDDRRSE ddr_dq_reg (
.Q( ddr_dq[i] ),
.C0( ~clk90 ),
.C1( clk90 ),
.CE( vcc ),
.D0( buf_d0[i] ),
.D1( buf_d1[i] ),
.R( gnd ),
.S( gnd )
);
end
endgenerate
// generate DDR_DM register
generate
for (i=0; i<`DM_WIDTH; i=i+1) begin : DM_REG
FDDRRSE ddr_dm_reg (
.Q( ddr_dm[i] ),
.C0( ~clk90 ),
.C1( clk90 ),
.CE( vcc ),
.D0( buf_m0[i] ),
.D1( buf_m1[i] ),
.R( gnd ),
.S( gnd )
);
end
endgenerate
//----------------------------------------------------------------------------
// Connect ddr_cba to actual DDR pins
//----------------------------------------------------------------------------
assign ddr_a = ddr_cba[(`A_WIDTH-1):0];
assign ddr_ba = ddr_cba[(`A_WIDTH+`BA_WIDTH-1):(`A_WIDTH)];
assign ddr_ras_n = ddr_cba[(`CBA_WIDTH-1)];
assign ddr_cas_n = ddr_cba[(`CBA_WIDTH-2)];
assign ddr_we_n = ddr_cba[(`CBA_WIDTH-3)];
endmodule

View File

@@ -0,0 +1,64 @@
//----------------------------------------------------------------------------
// Wishbone DDR Controller
//
// (c) Joerg Bornschein (<jb@capsec.org>)
//----------------------------------------------------------------------------
module dpram
#(
parameter adr_width = 9,
parameter dat_width = 36
) (
input clk,
// Port 0
input [adr_width-1:0] adr0,
input we0,
input [dat_width-1:0] din0,
output reg [dat_width-1:0] dout0,
// Port 1
input [adr_width-1:0] adr1,
input we1,
input [dat_width-1:0] din1,
output reg [dat_width-1:0] dout1
);
parameter depth = (1 << adr_width);
// actual ram
reg [dat_width-1:0] ram [0:depth-1];
//------------------------------------------------------------------
// Syncronous Dual Port RAM Access
//------------------------------------------------------------------
always @(posedge clk)
begin
// Frst port
if (we0)
ram[adr0] <= din0;
dout0 <= ram[adr0];
end
always @(posedge clk)
begin
// Second port
if (we1)
ram[adr1] <= din1;
dout1 <= ram[adr1];
end
//------------------------------------------------------------------
// Initialize content to Zero
//------------------------------------------------------------------
integer i;
initial
begin
for(i=0; i<depth; i=i+1)
ram[i] <= 'b0;
end
endmodule

View File

@@ -0,0 +1,35 @@
//==========================================
// Function : Code Gray counter.
// Coder : Alex Claros F.
// Date : 15/May/2005.
//=======================================
`timescale 1ns/1ps
module GrayCounter
#(parameter COUNTER_WIDTH = 2)
(output reg [COUNTER_WIDTH-1:0] GrayCount_out, //'Gray' code count output.
input wire Enable_in, //Count enable.
input wire Clear_in, //Count reset.
input wire Clk);
/////////Internal connections & variables///////
reg [COUNTER_WIDTH-1:0] BinaryCount;
/////////Code///////////////////////
always @ (posedge Clk)
if (Clear_in) begin
BinaryCount <= {COUNTER_WIDTH{1'b 0}} + 1; //Gray count begins @ '1' with
GrayCount_out <= {COUNTER_WIDTH{1'b 0}}; // first 'Enable_in'.
end
else if (Enable_in) begin
BinaryCount <= BinaryCount + 1;
GrayCount_out <= {BinaryCount[COUNTER_WIDTH-1],
BinaryCount[COUNTER_WIDTH-2:0] ^ BinaryCount[COUNTER_WIDTH-1:1]};
end
endmodule

View File

@@ -0,0 +1,621 @@
//----------------------------------------------------------------------------
// Wishbone DDR Controller
//
// (c) Joerg Bornschein (<jb@capsec.org>)
//----------------------------------------------------------------------------
`include "ddr_include.v"
module wb_ddr
#(
parameter clk_freq = 100000000,
parameter clk_multiply = 12,
parameter clk_divide = 5,
parameter phase_shift = 0,
parameter wait200_init = 26
) (
input clk,
input reset,
// DDR ports
output [2:0] ddr_clk,
output [2:0] ddr_clk_n,
input ddr_clk_fb,
output ddr_ras_n,
output ddr_cas_n,
output ddr_we_n,
output [1:0] ddr_cke,
output [1:0] ddr_cs_n,
output [ `A_RNG] ddr_a,
output [ `BA_RNG] ddr_ba,
inout [ `DQ_RNG] ddr_dq,
inout [`DQS_RNG] ddr_dqs,
output [ `DM_RNG] ddr_dm,
// Wishbone Slave Interface
input [`WB_ADR_RNG] wb_adr_i,
input [`WB_DAT_RNG] wb_dat_i,
output reg [`WB_DAT_RNG] wb_dat_o,
input [`WB_SEL_RNG] wb_sel_i,
input wb_cyc_i,
input wb_stb_i,
input wb_we_i,
output reg wb_ack_o,
// XXX Temporary DCM control input XXX
output ps_ready,
input ps_up,
input ps_down,
// XXX probe wires XXX
output probe_clk,
input [7:0] probe_sel,
output reg [7:0] probe
);
//----------------------------------------------------------------------------
// Wishbone handling
//----------------------------------------------------------------------------
wire wb_rd = wb_stb_i & wb_cyc_i & ~wb_we_i;
wire wb_wr = wb_stb_i & wb_cyc_i & wb_we_i;
wire [`WB_WORD_RNG] wb_adr_word = wb_adr_i[`WB_WORD_RNG]; // word in bufferline
wire [`WB_SET_RNG] wb_adr_set = wb_adr_i[`WB_SET_RNG]; // index into wayX_ram
wire [`WB_TAG_RNG] wb_adr_tag = wb_adr_i[`WB_TAG_RNG]; // more significant bits
//----------------------------------------------------------------------------
// TAG RAM (2-way set assioziative)
//----------------------------------------------------------------------------
wire [`TAG_LINE_RNG] tag_load;
wire [`TAG_LINE_RNG] tag_store;
wire tag_we;
wire [`WB_TAG_RNG] tag_load_set0 = tag_load[`TAG_LINE_TAG0_RNG];
wire [`WB_TAG_RNG] tag_load_set1 = tag_load[`TAG_LINE_TAG1_RNG];
wire tag_load_dirty0 = tag_load[`TAG_LINE_DIRTY0_RNG];
wire tag_load_dirty1 = tag_load[`TAG_LINE_DIRTY1_RNG];
wire tag_load_lru = tag_load[`TAG_LINE_LRU_RNG];
reg [`WB_TAG_RNG] tag_store_set0;
reg [`WB_TAG_RNG] tag_store_set1;
reg tag_store_dirty0;
reg tag_store_dirty1;
reg tag_store_lru;
assign tag_store[`TAG_LINE_TAG0_RNG] = tag_store_set0;
assign tag_store[`TAG_LINE_TAG1_RNG] = tag_store_set1;
assign tag_store[`TAG_LINE_DIRTY0_RNG] = tag_store_dirty0;
assign tag_store[`TAG_LINE_DIRTY1_RNG] = tag_store_dirty1;
assign tag_store[`TAG_LINE_LRU_RNG] = tag_store_lru;
wire [`WB_SET_RNG] ls_tag_adr;
wire [`TAG_LINE_RNG] ls_tag_load;
reg [`TAG_LINE_RNG] ls_tag_store;
reg ls_tag_we;
dpram #(
.adr_width( 7 ),
.dat_width( 33 )
) tag_ram (
.clk ( clk ),
//
.adr0( wb_adr_set ),
.dout0( tag_load ),
.din0( tag_store ),
.we0( tag_we ),
//
.adr1( ls_tag_adr ),
.dout1( ls_tag_load ),
.din1( ls_tag_store ),
.we1( ls_tag_we )
);
wire tag_load_match0 = (tag_load_set0 == wb_adr_tag);
wire tag_load_match1 = (tag_load_set1 == wb_adr_tag);
wire tag_load_match = tag_load_match0 | tag_load_match1;
//----------------------------------------------------------------------------
// Buffer cache ram (2 ways)
//----------------------------------------------------------------------------
wire [8:0] wayX_adr = { wb_adr_set, wb_adr_word };
wire [`WAY_LINE_RNG] way0_load, way1_load;
wire [`WAY_LINE_RNG] wayX_store;
wire [31:0] way0_load_dat = way0_load[`WAY_DAT_RNG];
wire [31:0] way1_load_dat = way1_load[`WAY_DAT_RNG];
wire [3:0] way0_load_valid = way0_load[`WAY_VALID_RNG];
wire [3:0] way1_load_valid = way1_load[`WAY_VALID_RNG];
wire way0_we;
wire way1_we;
reg [31:0] wayX_store_dat;
reg [3:0] wayX_store_valid;
assign wayX_store[`WAY_DAT_RNG] = wayX_store_dat;
assign wayX_store[`WAY_VALID_RNG] = wayX_store_valid;
wire [8:0] ls_wayX_adr;
wire [`WAY_LINE_RNG] ls_way0_load;
wire [`WAY_LINE_RNG] ls_way1_load;
wire [`WAY_LINE_RNG] ls_wayX_store;
wire ls_way0_we;
wire ls_way1_we;
reg ls_wayX_we;
wire way0_sel_valid = ( (~way0_load_valid & wb_sel_i) == 'b0);
wire way1_sel_valid = ( (~way1_load_valid & wb_sel_i) == 'b0);
wire wayX_sel_valid = (tag_load_match0) ? way0_sel_valid : way1_sel_valid;
// synthesis attribute ram_style of way0_ram is block
dpram #(
.adr_width( 9 ),
.dat_width( 36 )
) way0_ram (
.clk( clk ),
//
.adr0( wayX_adr ),
.dout0( way0_load ),
.din0( wayX_store ),
.we0( way0_we ),
//
.adr1( ls_wayX_adr ),
.dout1( ls_way0_load ),
.we1( ls_way0_we ),
.din1( ls_wayX_store )
);
// synthesis attribute ram_style of way1_ram is block
dpram #(
.adr_width( 9 ),
.dat_width( 36 )
) way1_ram (
.clk( clk ),
//
.adr0( wayX_adr ),
.dout0( way1_load ),
.din0( wayX_store ),
.we0( way1_we ),
//
.adr1( ls_wayX_adr ),
.dout1( ls_way1_load ),
.we1( ls_way1_we ),
.din1( ls_wayX_store )
);
//----------------------------------------------------------------------------
// Write/update buffer cache from wishbone side
//----------------------------------------------------------------------------
wire store_to_way0 = tag_load_lru & ~tag_load_dirty0; // store new data into way0? XXX spill_done XXX
wire store_to_way1 = ~tag_load_lru & ~tag_load_dirty1; // store new data into way1? XXX spill_done XXX
wire store_to_way = store_to_way0 | store_to_way1;
reg update_lru0; //
reg update_lru1;
reg update_way0; //
reg update_way1;
assign way0_we = update_way0;
assign way1_we = update_way1;
assign tag_we = way0_we | way1_we | update_lru0 | update_lru1;
//----------------------------------------------------------------------------
// MUX wayX_store input
//----------------------------------------------------------------------------
integer i;
always @(*)
begin
/*
for(i=0; i<4; i=i+1) begin
if (wb_sel_i[i]) begin
wayX_store_dat[8*i+7:8*i] = wb_dat_i[8*i+7:8*i];
wayX_store_valid[i] = 1;
end else if (update_way0) begin
wayX_store_dat[8*i+7:8*i] = way0_load_dat[8*i+7:8*i];
wayX_store_valid[i] = way0_load_valid[i];
end else begin
wayX_store_dat[8*i+7:8*i] = way1_load_dat[8*i+7:8*i];
wayX_store_valid[i] = way1_load_valid[i];
end
end
*/
if (wb_sel_i[0]) begin
wayX_store_dat[8*0+7:8*0] = wb_dat_i[8*0+7:8*0];
wayX_store_valid[0] = 1;
end else if (update_way0) begin
wayX_store_dat[8*0+7:8*0] = way0_load_dat[8*0+7:8*0];
wayX_store_valid[0] = way0_load_valid[0];
end else begin
wayX_store_dat[8*0+7:8*0] = way1_load_dat[8*0+7:8*0];
wayX_store_valid[0] = way1_load_valid[0];
end
if (wb_sel_i[1]) begin
wayX_store_dat[8*1+7:8*1] = wb_dat_i[8*1+7:8*1];
wayX_store_valid[1] = 1;
end else if (update_way0) begin
wayX_store_dat[8*1+7:8*1] = way0_load_dat[8*1+7:8*1];
wayX_store_valid[1] = way0_load_valid[1];
end else begin
wayX_store_dat[8*1+7:8*1] = way1_load_dat[8*1+7:8*1];
wayX_store_valid[1] = way1_load_valid[1];
end
if (wb_sel_i[2]) begin
wayX_store_dat[8*2+7:8*2] = wb_dat_i[8*2+7:8*2];
wayX_store_valid[2] = 1;
end else if (update_way0) begin
wayX_store_dat[8*2+7:8*2] = way0_load_dat[8*2+7:8*2];
wayX_store_valid[2] = way0_load_valid[2];
end else begin
wayX_store_dat[8*2+7:8*2] = way1_load_dat[8*2+7:8*2];
wayX_store_valid[2] = way1_load_valid[2];
end
if (wb_sel_i[3]) begin
wayX_store_dat[8*3+7:8*3] = wb_dat_i[8*3+7:8*3];
wayX_store_valid[3] = 1;
end else if (update_way0) begin
wayX_store_dat[8*3+7:8*3] = way0_load_dat[8*3+7:8*3];
wayX_store_valid[3] = way0_load_valid[3];
end else begin
wayX_store_dat[8*3+7:8*3] = way1_load_dat[8*3+7:8*3];
wayX_store_valid[3] = way1_load_valid[3];
end
end
always @(*)
begin
if (update_way0) begin
tag_store_set0 = wb_adr_tag;
tag_store_dirty0 = 1;
end else begin
tag_store_set0 = tag_load_set0;
tag_store_dirty0 = tag_load_dirty0;
end
if (update_way1) begin
tag_store_set1 = wb_adr_tag;
tag_store_dirty1 = 1;
end else begin
tag_store_set1 = tag_load_set1;
tag_store_dirty1 = tag_load_dirty1;
end
if (update_lru0)
tag_store_lru = 0;
else if (update_lru1)
tag_store_lru = 1;
else
tag_store_lru = tag_load_lru;
end
//----------------------------------------------------------------------------
// Wishbone FSM
//----------------------------------------------------------------------------
reg ls_fill;
reg ls_spill;
reg ls_way;
wire ls_busy;
reg [`WB_TAG_RNG] ls_adr_tag;
reg [`WB_SET_RNG] ls_adr_set;
reg [`WB_WORD_RNG] ls_adr_word;
reg [2:0] state;
parameter s_idle = 0;
parameter s_read = 1;
parameter s_rspill = 2;
parameter s_rfill = 3;
parameter s_write = 4;
parameter s_wspill = 5;
// Syncronous part of FSM
always @(posedge clk)
begin
if (reset) begin
state <= s_idle;
ls_spill <= 0;
ls_fill <= 0;
ls_way <= 0;
end else begin
ls_fill <= 0;
ls_spill <= 0;
case (state)
s_idle: begin
if (wb_rd)
state <= s_read;
if (wb_wr)
state <= s_write;
end
s_read: begin
if ((tag_load_match0 & way0_sel_valid) | (tag_load_match1 & way1_sel_valid)) begin
state <= s_idle;
end else if (store_to_way & ~ls_busy) begin
state <= s_rfill;
ls_fill <= 1;
ls_way <= ~tag_load_lru;
ls_adr_tag <= wb_adr_tag;
ls_adr_set <= wb_adr_set;
end else if (~ls_busy) begin
state <= s_rspill;
ls_spill <= 1;
ls_way <= ~tag_load_lru;
ls_adr_set <= wb_adr_set;
if (tag_load_lru == 1)
ls_adr_tag <= tag_load_set0;
else
ls_adr_tag <= tag_load_set1;
end
end
s_rspill: begin
if (~ls_busy) begin
state <= s_rfill;
ls_fill <= 1;
ls_way <= ~tag_load_lru;
ls_adr_tag <= wb_adr_tag;
ls_adr_set <= wb_adr_set;
end
end
s_rfill: begin
if (tag_load_match & wayX_sel_valid)
state <= s_idle;
end
s_write: begin
if (tag_load_match | store_to_way) begin
state <= s_idle;
end else if (~ls_busy) begin
state <= s_wspill;
ls_spill <= 1;
ls_way <= ~tag_load_lru;
ls_adr_set <= wb_adr_set;
if (tag_load_lru == 1)
ls_adr_tag <= tag_load_set0;
else
ls_adr_tag <= tag_load_set1;
end
end
s_wspill: begin
if (tag_load_match | store_to_way) begin
state <= s_idle;
end
end
default:
state <= s_idle;
endcase
end
end
// Asyncronous part of FSM
always @(*)
begin
update_lru0 <= 0;
update_lru1 <= 0;
update_way0 <= 0;
update_way1 <= 0;
wb_dat_o <= 0;
wb_ack_o <= 0;
case (state)
s_idle: begin end
s_read: begin
if (tag_load_match0 & way0_sel_valid) begin
update_lru0 <= 1;
wb_dat_o <= way0_load_dat;
wb_ack_o <= 1;
end else if (tag_load_match1 & way1_sel_valid) begin
update_lru1 <= 1;
wb_dat_o <= way1_load_dat;
wb_ack_o <= 1;
end
end
s_write: begin
if (tag_load_match0 | store_to_way0) begin
update_lru0 <= 1;
update_way0 <= 1;
wb_ack_o <= 1;
end else if (tag_load_match1 | store_to_way1) begin
update_lru1 <= 1;
update_way1 <= 1;
wb_ack_o <= 1;
end
end
endcase
end
//----------------------------------------------------------------------------
// DDR Controller Engine (including clkgen, [rw]-path)
//----------------------------------------------------------------------------
reg fml_rd;
reg fml_wr;
wire fml_done;
wire [`FML_ADR_RNG] fml_adr;
wire [`FML_DAT_RNG] fml_wdat;
wire [`FML_BE_RNG] fml_wbe;
reg fml_wnext;
reg fml_wnext2;
wire fml_rempty;
reg fml_rnext;
wire [`FML_DAT_RNG] fml_rdat;
ddr_ctrl #(
.phase_shift( phase_shift ),
.clk_multiply( clk_multiply ),
.clk_divide( clk_divide ),
.wait200_init( wait200_init )
) ctrl0 (
.clk( clk ),
.reset( reset ),
// DDR Ports
.ddr_clk( ddr_clk ),
.ddr_clk_n( ddr_clk_n ),
.ddr_clk_fb( ddr_clk_fb ),
.ddr_ras_n( ddr_ras_n ),
.ddr_cas_n( ddr_cas_n ),
.ddr_we_n( ddr_we_n ),
.ddr_cke( ddr_cke ),
.ddr_cs_n( ddr_cs_n ),
.ddr_a( ddr_a ),
.ddr_ba( ddr_ba ),
.ddr_dq( ddr_dq ),
.ddr_dqs( ddr_dqs ),
.ddr_dm( ddr_dm ),
// FML (FastMemoryLink)
.fml_rd( fml_rd ),
.fml_wr( fml_wr ),
.fml_done( fml_done ),
.fml_adr( fml_adr ),
.fml_wdat( fml_wdat ),
.fml_wbe( fml_wbe ),
.fml_wnext( fml_wnext2 ),
.fml_rempty( fml_rempty ),
.fml_rdat( fml_rdat ),
.fml_rnext( fml_rnext ),
// DCM phase shift control
.ps_ready( ps_ready ),
.ps_up( ps_up ),
.ps_down( ps_down )
);
assign fml_adr = { ls_adr_tag, ls_adr_set };
assign fml_wdat = (ls_way) ? ls_way1_load[`WAY_DAT_RNG] :
ls_way0_load[`WAY_DAT_RNG];
assign fml_wbe = (ls_way) ? ls_way1_load[`WAY_VALID_RNG] :
ls_way0_load[`WAY_VALID_RNG];
assign ls_tag_adr = { ls_adr_set };
assign ls_wayX_adr = { ls_adr_set, ls_adr_word };
assign ls_way0_we = ls_wayX_we & ~ls_way;
assign ls_way1_we = ls_wayX_we & ls_way;
assign ls_wayX_store[`WAY_DAT_RNG] = fml_rdat;
assign ls_wayX_store[`WAY_VALID_RNG] = 4'b1111;
//----------------------------------------------------------------------------
// LS (Load and Store) Engine
//----------------------------------------------------------------------------
parameter l_idle = 0;
parameter l_fill = 1;
parameter l_spill = 2;
parameter l_waitdone = 3;
reg [2:0] ls_state;
assign ls_busy = (ls_state != l_idle) || ls_fill || ls_spill;
// Syncronous part FSM
always @(posedge clk)
begin
if (reset) begin
ls_state <= l_idle;
ls_adr_word <= 0;
fml_wr <= 0;
fml_rd <= 0;
end else begin
fml_wnext2 <= fml_wnext;
case (ls_state)
l_idle: begin
ls_adr_word <= 0;
if (ls_spill) begin
ls_state <= l_spill;
ls_adr_word <= ls_adr_word + 1;
end
if (ls_fill) begin
ls_state <= l_fill;
fml_rd <= 1;
end
end
l_spill: begin
ls_adr_word <= ls_adr_word + 1;
if (ls_adr_word == 3) begin
ls_state <= l_waitdone;
fml_wr <= 1;
end
end
l_waitdone: begin
ls_adr_word <= 0;
if (fml_done) begin
ls_state <= l_idle;
fml_wr <= 0;
end
end
l_fill: begin
if (fml_done)
fml_rd <= 0;
if (~fml_rempty)
ls_adr_word <= ls_adr_word + 1;
if (~fml_rempty & (ls_adr_word == 3))
ls_state <= l_idle;
end
endcase
end
end
always @(*)
begin
fml_wnext <= 0;
fml_rnext <= 0;
ls_tag_we <= 0;
ls_tag_store <= ls_tag_load;
ls_wayX_we <= 0;
case (ls_state)
l_idle: begin
if (ls_spill) begin
fml_wnext <= 1;
end
end
l_spill: begin
fml_wnext <= 1;
end
l_waitdone: begin
if (ls_way == 0)
ls_tag_store[`TAG_LINE_DIRTY0_RNG] <= 0;
else
ls_tag_store[`TAG_LINE_DIRTY1_RNG] <= 0;
if (fml_done)
ls_tag_we <= 1;
end
l_fill: begin
if (ls_way == 0) begin
ls_tag_store[`TAG_LINE_DIRTY0_RNG] <= 0;
ls_tag_store[`TAG_LINE_TAG0_RNG] <= ls_adr_tag;
end else begin
ls_tag_store[`TAG_LINE_DIRTY1_RNG] <= 0;
ls_tag_store[`TAG_LINE_TAG1_RNG] <= ls_adr_tag;
end
if (~fml_rempty) begin
ls_wayX_we <= 1;
fml_rnext <= 1;
end
if (~fml_rempty & (ls_adr_word == 3))
ls_tag_we <= 1;
end
endcase
end
always @(posedge clk)
begin
if (ls_fill)
$display ("At time %t WB_DDR fill cacheline: TAG = %h, SET = %h)", $time, ls_adr_tag, ls_adr_set);
if (ls_spill)
$display ("At time %t WB_DDR spill cacheline: TAG = %h, SET = %h)", $time, ls_adr_tag, ls_adr_set);
end
endmodule

View File

@@ -0,0 +1,77 @@
//---------------------------------------------------------------------------
// Wishbone General Pupose IO Component
//
// 0x00
// 0x10 gpio_in (read-only)
// 0x14 gpio_out (read/write)
// 0x18 gpio_oe (read/write)
//
//---------------------------------------------------------------------------
module wb_gpio (
input clk,
input reset,
// Wishbone interface
input wb_stb_i,
input wb_cyc_i,
output wb_ack_o,
input wb_we_i,
input [31:0] wb_adr_i,
input [3:0] wb_sel_i,
input [31:0] wb_dat_i,
output reg [31:0] wb_dat_o,
//
output intr,
// IO Wires
input [31:0] gpio_in,
output reg [31:0] gpio_out,
output reg [31:0] gpio_oe
);
//---------------------------------------------------------------------------
//
//---------------------------------------------------------------------------
wire [31:0] gpiocr = 32'b0;
// Wishbone
reg ack;
assign wb_ack_o = wb_stb_i & wb_cyc_i & ack;
wire wb_rd = wb_stb_i & wb_cyc_i & ~wb_we_i;
wire wb_wr = wb_stb_i & wb_cyc_i & wb_we_i;
always @(posedge clk)
begin
if (reset) begin
ack <= 0;
gpio_out <= 'b0;
end else begin
// Handle WISHBONE access
ack <= 0;
if (wb_rd & ~ack) begin // read cycle
ack <= 1;
case (wb_adr_i[7:0])
'h00: wb_dat_o <= gpiocr;
'h10: wb_dat_o <= gpio_in;
'h14: wb_dat_o <= gpio_out;
'h18: wb_dat_o <= gpio_oe;
default: wb_dat_o <= 32'b0;
endcase
end else if (wb_wr & ~ack ) begin // write cycle
ack <= 1;
case (wb_adr_i[7:0])
'h00: begin
end
'h14: gpio_out <= wb_dat_i;
'h18: gpio_oe <= wb_dat_i;
endcase
end
end
end
endmodule

View File

@@ -0,0 +1,101 @@
//-----------------------------------------------------------------
// SPI Master
//-----------------------------------------------------------------
module wb_spi(
input clk;
input reset;
// Wishbone bus
input [31:0] wb_adr_i;
input [31:0] wb_dat_i;
output reg [31:0] wb_dat_o;
input [ 3:0] wb_sel_i;
input wb_cyc_i;
input wb_stb_i;
output wb_ack_o;
input wb_we_i;
// SPI
output spi_sck;
output spi_mosi;
input spi_miso;
output reg [7:0] spi_cs;
);
reg ack;
assign wb_ack_o = wb_stb_i & wb_cyc_i & ack;
wire wb_rd = wb_stb_i & wb_cyc_i & ~ack & ~wb_we_i;
wire wb_wr = wb_stb_i & wb_cyc_i & ~ack & wb_we_i;
reg [2:0] bitcount;
reg ilatch;
reg run;
reg sck;
//prescaler registers for sclk
reg [7:0] prescaler;
reg [7:0] divisor;
//data shift register
reg [7:0] sreg;
assign spi_sck = sck;
assign spi_mosi = sreg[7];
always @(posedge clk) begin
if (reset == 1'b1) begin
ack <= 0;
sck <= 1'b0;
bitcount <= 3'b000;
run <= 1'b0;
prescaler <= 8'h00;
divisor <= 8'hff;
end else begin
prescaler <= prescaler + 1;
if (prescaler == divisor) begin
prescaler <= 8'h00;
if (run == 1'b1) begin
sck <= ~sck;
if(sck == 1'b1) begin
bitcount <= bitcount + 1;
if(bitcount == 3'b111) begin
run <= 1'b0;
end
sreg [7:0] <= {sreg[6:0], ilatch};
end else begin
ilatch <= spi_miso;
end
end
end
ack <= wb_stb_i & wb_cyc_i;
if (wb_rd) begin // read cycle
case (wb_adr_i[5:2])
4'b0000: wb_dat_o <= sreg;
4'b0001: wb_dat_o <= {7'b0000000 , run};
endcase
end
if (wb_wr) begin // write cycle
case (wb_adr_i[5:2])
4'b0000: begin
sreg <= wb_dat_i[7:0];
run <= 1'b1;
end
4'b0010:
spi_cs <= wb_dat_i[7:0];
4'b0100:
divisor <= wb_dat_i[7:0];
endcase
end
end
end
endmodule

View File

@@ -0,0 +1,163 @@
//----------------------------------------------------------------------------
// Wishbone SRAM controller
//----------------------------------------------------------------------------
module wb_sram16 #(
parameter adr_width = 18,
parameter latency = 0 // 0 .. 7
) (
input clk,
input reset,
// Wishbone interface
input wb_stb_i,
input wb_cyc_i,
output reg wb_ack_o,
input wb_we_i,
input [31:0] wb_adr_i,
input [3:0] wb_sel_i,
input [31:0] wb_dat_i,
output reg [31:0] wb_dat_o,
// SRAM connection
output reg [adr_width-1:0] sram_adr,
inout [15:0] sram_dat,
output reg [1:0] sram_be_n, // Byte Enable
output reg sram_ce_n, // Chip Enable
output reg sram_oe_n, // Output Enable
output reg sram_we_n // Write Enable
);
//----------------------------------------------------------------------------
//
//----------------------------------------------------------------------------
// Wishbone handling
wire wb_rd = wb_stb_i & wb_cyc_i & ~wb_we_i & ~wb_ack_o;
wire wb_wr = wb_stb_i & wb_cyc_i & wb_we_i & ~wb_ack_o;
// Translate wishbone address to sram address
wire [adr_width-1:0] adr1 = { wb_adr_i[adr_width:2], 1'b0 };
wire [adr_width-1:0] adr2 = { wb_adr_i[adr_width:2], 1'b1 };
// Tri-State-Driver
reg [15:0] wdat;
reg wdat_oe;
assign sram_dat = wdat_oe ? wdat : 16'bz;
// Latency countdown
reg [2:0] lcount;
//----------------------------------------------------------------------------
// State Machine
//----------------------------------------------------------------------------
parameter s_idle = 0;
parameter s_read1 = 1;
parameter s_read2 = 2;
parameter s_write1 = 3;
parameter s_write2 = 4;
parameter s_write3 = 5;
reg [2:0] state;
always @(posedge clk)
begin
if (reset) begin
state <= s_idle;
lcount <= 0;
wb_ack_o <= 0;
end else begin
case (state)
s_idle: begin
wb_ack_o <= 0;
if (wb_rd) begin
sram_ce_n <= 0;
sram_oe_n <= 0;
sram_we_n <= 1;
sram_adr <= adr1;
sram_be_n <= 2'b00;
wdat_oe <= 0;
lcount <= latency;
state <= s_read1;
end else if (wb_wr) begin
sram_ce_n <= 0;
sram_oe_n <= 1;
sram_we_n <= 0;
sram_adr <= adr1;
sram_be_n <= ~wb_sel_i[1:0];
wdat <= wb_dat_i[15:0];
wdat_oe <= 1;
lcount <= latency;
state <= s_write1;
end else begin
sram_ce_n <= 1;
sram_oe_n <= 1;
sram_we_n <= 1;
end
end
s_read1: begin
if (lcount != 0) begin
lcount <= lcount - 1;
end else begin
wb_dat_o[15:0] <= sram_dat;
sram_ce_n <= 0;
sram_oe_n <= 0;
sram_we_n <= 1;
sram_adr <= adr2;
sram_be_n <= 2'b00;
wdat_oe <= 0;
lcount <= latency;
state <= s_read2;
end
end
s_read2: begin
if (lcount != 0) begin
lcount <= lcount - 1;
end else begin
wb_dat_o[31:16] <= sram_dat;
wb_ack_o <= 1;
sram_ce_n <= 1;
sram_oe_n <= 1;
sram_we_n <= 1;
state <= s_idle;
end
end
s_write1: begin
if (lcount != 0) begin
lcount <= lcount - 1;
end else begin
sram_ce_n <= 0;
sram_oe_n <= 1;
sram_we_n <= 1;
state <= s_write2;
end
end
s_write2: begin
sram_ce_n <= 0;
sram_oe_n <= 1;
sram_we_n <= 0;
sram_adr <= adr2;
sram_be_n <= ~wb_sel_i[3:2];
wdat <= wb_dat_i[31:16];
wdat_oe <= 1;
lcount <= latency;
wb_ack_o <= 1;
state <= s_write3;
end
s_write3: begin
wb_ack_o <= 0;
if (lcount != 0) begin
lcount <= lcount - 1;
end else begin
sram_ce_n <= 1;
sram_oe_n <= 1;
sram_we_n <= 1;
wdat_oe <= 0;
state <= s_idle;
end
end
endcase
end
end
endmodule

View File

@@ -0,0 +1,122 @@
//----------------------------------------------------------------------------
// Wishbone SRAM controller
//----------------------------------------------------------------------------
module wb_sram32 #(
parameter adr_width = 18,
parameter latency = 0 // 0 .. 7
) (
input clk,
input reset,
// Wishbone interface
input wb_stb_i,
input wb_cyc_i,
output reg wb_ack_o,
input wb_we_i,
input [31:0] wb_adr_i,
input [3:0] wb_sel_i,
input [31:0] wb_dat_i,
output reg [31:0] wb_dat_o,
// SRAM connection
output reg [adr_width-1:0] sram_adr,
inout [31:0] sram_dat,
output reg [3:0] sram_be_n, // Byte Enable
output reg sram_ce_n, // Chip Enable
output reg sram_oe_n, // Output Enable
output reg sram_we_n // Write Enable
);
//----------------------------------------------------------------------------
//
//----------------------------------------------------------------------------
// Wishbone handling
wire wb_rd = wb_stb_i & wb_cyc_i & ~wb_we_i & ~wb_ack_o;
wire wb_wr = wb_stb_i & wb_cyc_i & wb_we_i & ~wb_ack_o;
// Translate wishbone address to sram address
wire [adr_width-1:0] adr = wb_adr_i[adr_width+1:2];
// Tri-State-Driver
reg [31:0] wdat;
reg wdat_oe;
assign sram_dat = wdat_oe ? wdat : 32'bz;
// Latency countdown
reg [2:0] lcount;
//----------------------------------------------------------------------------
// State Machine
//----------------------------------------------------------------------------
parameter s_idle = 0;
parameter s_read = 1;
parameter s_write = 2;
reg [2:0] state;
always @(posedge clk)
begin
if (reset) begin
state <= s_idle;
lcount <= 0;
wb_ack_o <= 0;
end else begin
case (state)
s_idle: begin
wb_ack_o <= 0;
if (wb_rd) begin
sram_ce_n <= 0;
sram_oe_n <= 0;
sram_we_n <= 1;
sram_adr <= adr;
sram_be_n <= 4'b0000;
wdat_oe <= 0;
lcount <= latency;
state <= s_read;
end else if (wb_wr) begin
sram_ce_n <= 0;
sram_oe_n <= 1;
sram_we_n <= 0;
sram_adr <= adr;
sram_be_n <= ~wb_sel_i;
wdat <= wb_dat_i;
wdat_oe <= 1;
lcount <= latency;
state <= s_write;
end else begin
sram_ce_n <= 1;
sram_oe_n <= 1;
sram_we_n <= 1;
wdat_oe <= 0;
end
end
s_read: begin
if (lcount != 0) begin
lcount <= lcount - 1;
end else begin
sram_ce_n <= 1;
sram_oe_n <= 1;
sram_we_n <= 1;
wb_dat_o <= sram_dat;
wb_ack_o <= 1;
state <= s_idle;
end
end
s_write: begin
if (lcount != 0) begin
lcount <= lcount - 1;
end else begin
sram_ce_n <= 1;
sram_oe_n <= 1;
sram_we_n <= 1;
wb_ack_o <= 1; // XXX We could acknoledge write XXX
state <= s_idle; // XXX requests 1 cycle ahead XXX
end
end
endcase
end
end
endmodule

View File

@@ -0,0 +1,144 @@
//---------------------------------------------------------------------------
//
// Wishbone Timer
//
// Register Description:
//
// 0x00 TCR0
// 0x04 COMPARE0
// 0x08 COUNTER0
// 0x0C TCR1
// 0x10 COMPARE1
// 0x14 COUNTER1
//
// TCRx:
// +-------------------+-------+-------+-------+-------+
// | 28'b0 | EN | AR | IRQEN | TRIG |
// +-------------------+-------+-------+-------+-------+
//
// EN i (rw) if set to '1', COUNTERX counts upwards until it reaches
// COMPAREX
// AR (rw) AutoRecwstartload -- if COUNTER reaches COMPAREX, shall we
// restart at 1, or disable this counter?
// IRQEN (rw) Indicate interrupt condition when triggered?
// TRIG (ro)
//
//---------------------------------------------------------------------------
module wb_timer #(
parameter clk_freq = 50000000
) (
input clk,
input reset,
// Wishbone interface
input wb_stb_i,
input wb_cyc_i,
output wb_ack_o,
input wb_we_i,
input [31:0] wb_adr_i,
input [3:0] wb_sel_i,
input [31:0] wb_dat_i,
output reg [31:0] wb_dat_o,
//
output [1:0] intr
);
//---------------------------------------------------------------------------
//
//---------------------------------------------------------------------------
reg irqen0, irqen1;
reg trig0, trig1;
reg en0, en1;
reg ar0, ar1;
wire [31:0] tcr0 = { 28'b0, en0, ar0, irqen0, trig0 };
wire [31:0] tcr1 = { 28'b0, en1, ar1, irqen1, trig1 };
reg [31:0] counter0;
reg [31:0] counter1;
reg [31:0] compare0;
reg [31:0] compare1;
wire match0 = (counter0 == compare0);
wire match1 = (counter1 == compare1);
assign intr = { trig1, trig0 };
reg ack;
assign wb_ack_o = wb_stb_i & wb_cyc_i & ack;
wire wb_rd = wb_stb_i & wb_cyc_i & ~wb_we_i;
wire wb_wr = wb_stb_i & wb_cyc_i & wb_we_i;
always @(posedge clk)
begin
if (reset) begin
ack <= 0;
en0 <= 0;
en1 <= 0;
ar0 <= 0;
ar1 <= 0;
trig0 <= 0;
trig1 <= 0;
counter0 <= 0;
counter1 <= 0;
compare0 <= 32'hFFFFFFFF;
compare1 <= 32'hFFFFFFFF;
end else begin
// Handle counter 0
if ( en0 & ~match0) counter0 <= counter0 + 1;
if ( en0 & match0) trig0 <= 1;
if ( ar0 & match0) counter0 <= 1;
if (~ar0 & match0) en0 <= 0;
// Handle counter 1
if ( en1 & ~match1) counter1 <= counter1 + 1;
if ( en1 & match1) trig1 <= 1;
if ( ar1 & match1) counter1 <= 1;
if (~ar1 & match1) en1 <= 0;
// Handle WISHBONE access
ack <= 0;
if (wb_rd & ~ack) begin // read cycle
ack <= 1;
case (wb_adr_i[7:0])
'h00: wb_dat_o <= tcr0;
'h04: wb_dat_o <= compare0;
'h08: wb_dat_o <= counter0;
'h0c: wb_dat_o <= tcr1;
'h10: wb_dat_o <= compare1;
'h14: wb_dat_o <= counter1;
default: wb_dat_o <= 32'b0;
endcase
end else if (wb_wr & ~ack ) begin // write cycle
ack <= 1;
case (wb_adr_i[7:0])
'h00: begin
trig0 <= 0;
irqen0 <= wb_dat_i[1];
ar0 <= wb_dat_i[2];
en0 <= wb_dat_i[3];
end
'h04: compare0 <= wb_dat_i;
'h08: counter0 <= wb_dat_i;
'h0c: begin
trig1 <= 0;
irqen1 <= wb_dat_i[1];
ar1 <= wb_dat_i[2];
en1 <= wb_dat_i[3];
end
'h10: compare1 <= wb_dat_i;
'h14: counter1 <= wb_dat_i;
endcase
end
end
end
endmodule

View File

@@ -0,0 +1,160 @@
//-----------------------------------------------------
// Design Name : uart
// File Name : uart.v
//-----------------------------------------------------
module uart #(
parameter freq_hz = 100000000,
parameter baud = 115200
) (
input reset,
input clk,
// UART lines
input uart_rxd,
output reg uart_txd,
//
output reg [7:0] rx_data,
output reg rx_avail,
output reg rx_error,
input rx_ack,
input [7:0] tx_data,
input tx_wr,
output reg tx_busy
);
parameter divisor = freq_hz/baud/16;
//-----------------------------------------------------------------
// enable16 generator
//-----------------------------------------------------------------
reg [15:0] enable16_counter;
wire enable16;
assign enable16 = (enable16_counter == 0);
always @(posedge clk)
begin
if (reset) begin
enable16_counter <= divisor-1;
end else begin
enable16_counter <= enable16_counter - 1;
if (enable16_counter == 0) begin
enable16_counter <= divisor-1;
end
end
end
//-----------------------------------------------------------------
// syncronize uart_rxd
//-----------------------------------------------------------------
reg uart_rxd1;
reg uart_rxd2;
always @(posedge clk)
begin
uart_rxd1 <= uart_rxd;
uart_rxd2 <= uart_rxd1;
end
//-----------------------------------------------------------------
// UART RX Logic
//-----------------------------------------------------------------
reg rx_busy;
reg [3:0] rx_count16;
reg [3:0] rx_bitcount;
reg [7:0] rxd_reg;
always @ (posedge clk)
begin
if (reset) begin
rx_busy <= 0;
rx_count16 <= 0;
rx_bitcount <= 0;
rx_avail <= 0;
rx_error <= 0;
end else begin
if (rx_ack) begin
rx_avail <= 0;
rx_error <= 0;
end
if (enable16) begin
if (!rx_busy) begin // look for start bit
if (!uart_rxd2) begin // start bit found
rx_busy <= 1;
rx_count16 <= 7;
rx_bitcount <= 0;
end
end else begin
rx_count16 <= rx_count16 + 1;
if (rx_count16 == 0) begin // sample
rx_bitcount <= rx_bitcount + 1;
if (rx_bitcount == 0) begin // verify startbit
if (uart_rxd2) begin
rx_busy <= 0;
end
end else if (rx_bitcount == 9) begin // look for stop bit
rx_busy <= 0;
if (uart_rxd2) begin // stop bit ok
rx_data <= rxd_reg;
rx_avail <= 1;
rx_error <= 0;
end else begin // bas stop bit
rx_error <= 1;
end
end else begin
rxd_reg <= { uart_rxd2, rxd_reg[7:1] };
end
end
end
end
end
end
//-----------------------------------------------------------------
// UART TX Logic
//-----------------------------------------------------------------
reg [3:0] tx_bitcount;
reg [3:0] tx_count16;
reg [7:0] txd_reg;
always @ (posedge clk)
begin
if (reset) begin
tx_busy <= 0;
uart_txd <= 1;
tx_count16 <= 0;
end else begin
if (tx_wr && !tx_busy) begin
txd_reg <= tx_data;
tx_bitcount <= 0;
tx_count16 <= 0;
tx_busy <= 1;
end
if (enable16) begin
tx_count16 <= tx_count16 + 1;
if ((tx_count16 == 0) && tx_busy) begin
tx_bitcount <= tx_bitcount + 1;
if (tx_bitcount == 0) begin
uart_txd <= 'b0;
end else if (tx_bitcount == 9) begin
uart_txd <= 'b1;
end else if (tx_bitcount == 10) begin
tx_bitcount <= 0;
tx_busy <= 0;
end else begin
uart_txd <= txd_reg[0];
txd_reg <= { 1'b0, txd_reg[7:1] };
end
end
end
end
end
endmodule

View File

@@ -0,0 +1,114 @@
//---------------------------------------------------------------------------
// Wishbone UART
//
// Register Description:
//
// 0x00 UCR [ 0 | 0 | 0 | tx_busy | 0 | 0 | rx_error | rx_avail ]
// 0x04 DATA
//
//---------------------------------------------------------------------------
module wb_uart #(
parameter clk_freq = 50000000,
parameter baud = 115200
) (
input clk,
input reset,
// Wishbone interface
input wb_stb_i,
input wb_cyc_i,
output wb_ack_o,
input wb_we_i,
input [31:0] wb_adr_i,
input [3:0] wb_sel_i,
input [31:0] wb_dat_i,
output reg [31:0] wb_dat_o,
// Serial Wires
input uart_rxd,
output uart_txd
);
//---------------------------------------------------------------------------
// Actual UART engine
//---------------------------------------------------------------------------
wire [7:0] rx_data;
wire rx_avail;
wire rx_error;
reg rx_ack;
wire [7:0] tx_data;
reg tx_wr;
wire tx_busy;
uart #(
.freq_hz( clk_freq ),
.baud( baud )
) uart0 (
.clk( clk ),
.reset( reset ),
//
.uart_rxd( uart_rxd ),
.uart_txd( uart_txd ),
//
.rx_data( rx_data ),
.rx_avail( rx_avail ),
.rx_error( rx_error ),
.rx_ack( rx_ack ),
.tx_data( tx_data ),
.tx_wr( tx_wr ),
.tx_busy( tx_busy )
);
//---------------------------------------------------------------------------
//
//---------------------------------------------------------------------------
wire [7:0] ucr = { 3'b0, tx_busy, 2'b0, rx_error, rx_avail };
wire wb_rd = wb_stb_i & wb_cyc_i & ~wb_we_i;
wire wb_wr = wb_stb_i & wb_cyc_i & wb_we_i & wb_sel_i[0];
reg ack;
assign wb_ack_o = wb_stb_i & wb_cyc_i & ack;
assign tx_data = wb_dat_i[7:0];
always @(posedge clk)
begin
if (reset) begin
wb_dat_o[31:8] <= 24'b0;
tx_wr <= 0;
rx_ack <= 0;
ack <= 0;
end else begin
wb_dat_o[31:8] <= 24'b0;
tx_wr <= 0;
rx_ack <= 0;
ack <= 0;
if (wb_rd & ~ack) begin
ack <= 1;
case (wb_adr_i[3:2])
2'b00: begin
wb_dat_o[7:0] <= ucr;
end
2'b01: begin
wb_dat_o[7:0] <= rx_data;
rx_ack <= 1;
end
default: begin
wb_dat_o[7:0] <= 8'b0;
end
endcase
end else if (wb_wr & ~ack ) begin
ack <= 1;
if ((wb_adr_i[3:2] == 2'b01) && ~tx_busy) begin
tx_wr <= 1;
end
end
end
end
endmodule