--------------------------------------------------------------------- -- TITLE: Plasma Misc. Package -- AUTHOR: Steve Rhoads (rhoadss@yahoo.com) -- DATE CREATED: 2/15/01 -- FILENAME: mlite_pack.vhd -- PROJECT: Plasma CPU core -- COPYRIGHT: Software placed into the public domain by the author. -- Software 'as is' without warranty. Author liable for nothing. -- DESCRIPTION: -- Data types, constants, and add functions needed for the Plasma CPU. --------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; package mlite_pack is constant ZERO : std_logic_vector(31 downto 0) := "00000000000000000000000000000000"; constant ONES : std_logic_vector(31 downto 0) := "11111111111111111111111111111111"; --make HIGH_Z equal to ZERO if compiler complains constant HIGH_Z : std_logic_vector(31 downto 0) := "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ"; subtype alu_function_type is std_logic_vector(3 downto 0); constant ALU_NOTHING : alu_function_type := "0000"; constant ALU_ADD : alu_function_type := "0001"; constant ALU_SUBTRACT : alu_function_type := "0010"; constant ALU_LESS_THAN : alu_function_type := "0011"; constant ALU_LESS_THAN_SIGNED : alu_function_type := "0100"; constant ALU_OR : alu_function_type := "0101"; constant ALU_AND : alu_function_type := "0110"; constant ALU_XOR : alu_function_type := "0111"; constant ALU_NOR : alu_function_type := "1000"; subtype shift_function_type is std_logic_vector(1 downto 0); constant SHIFT_NOTHING : shift_function_type := "00"; constant SHIFT_LEFT_UNSIGNED : shift_function_type := "01"; constant SHIFT_RIGHT_SIGNED : shift_function_type := "11"; constant SHIFT_RIGHT_UNSIGNED : shift_function_type := "10"; subtype mult_function_type is std_logic_vector(3 downto 0); constant MULT_NOTHING : mult_function_type := "0000"; constant MULT_READ_LO : mult_function_type := "0001"; constant MULT_READ_HI : mult_function_type := "0010"; constant MULT_WRITE_LO : mult_function_type := "0011"; constant MULT_WRITE_HI : mult_function_type := "0100"; constant MULT_MULT : mult_function_type := "0101"; constant MULT_SIGNED_MULT : mult_function_type := "0110"; constant MULT_DIVIDE : mult_function_type := "0111"; constant MULT_SIGNED_DIVIDE : mult_function_type := "1000"; subtype a_source_type is std_logic_vector(1 downto 0); constant A_FROM_REG_SOURCE : a_source_type := "00"; constant A_FROM_IMM10_6 : a_source_type := "01"; constant A_FROM_PC : a_source_type := "10"; subtype b_source_type is std_logic_vector(1 downto 0); constant B_FROM_REG_TARGET : b_source_type := "00"; constant B_FROM_IMM : b_source_type := "01"; constant B_FROM_SIGNED_IMM : b_source_type := "10"; constant B_FROM_IMMX4 : b_source_type := "11"; subtype c_source_type is std_logic_vector(2 downto 0); constant C_FROM_NULL : c_source_type := "000"; constant C_FROM_ALU : c_source_type := "001"; constant C_FROM_SHIFT : c_source_type := "001"; --same as alu constant C_FROM_MULT : c_source_type := "001"; --same as alu constant C_FROM_MEMORY : c_source_type := "010"; constant C_FROM_PC : c_source_type := "011"; constant C_FROM_PC_PLUS4 : c_source_type := "100"; constant C_FROM_IMM_SHIFT16: c_source_type := "101"; constant C_FROM_REG_SOURCEN: c_source_type := "110"; subtype pc_source_type is std_logic_vector(1 downto 0); constant FROM_INC4 : pc_source_type := "00"; constant FROM_OPCODE25_0 : pc_source_type := "01"; constant FROM_BRANCH : pc_source_type := "10"; constant FROM_LBRANCH : pc_source_type := "11"; subtype branch_function_type is std_logic_vector(2 downto 0); constant BRANCH_LTZ : branch_function_type := "000"; constant BRANCH_LEZ : branch_function_type := "001"; constant BRANCH_EQ : branch_function_type := "010"; constant BRANCH_NE : branch_function_type := "011"; constant BRANCH_GEZ : branch_function_type := "100"; constant BRANCH_GTZ : branch_function_type := "101"; constant BRANCH_YES : branch_function_type := "110"; constant BRANCH_NO : branch_function_type := "111"; -- mode(32=1,16=2,8=3), signed, write subtype mem_source_type is std_logic_vector(3 downto 0); constant MEM_FETCH : mem_source_type := "0000"; constant MEM_READ32 : mem_source_type := "0100"; constant MEM_WRITE32 : mem_source_type := "0101"; constant MEM_READ16 : mem_source_type := "1000"; constant MEM_READ16S : mem_source_type := "1010"; constant MEM_WRITE16 : mem_source_type := "1001"; constant MEM_READ8 : mem_source_type := "1100"; constant MEM_READ8S : mem_source_type := "1110"; constant MEM_WRITE8 : mem_source_type := "1101"; function bv_adder(a : in std_logic_vector; b : in std_logic_vector; do_add: in std_logic) return std_logic_vector; function bv_negate(a : in std_logic_vector) return std_logic_vector; function bv_increment(a : in std_logic_vector(31 downto 2) ) return std_logic_vector; function bv_inc(a : in std_logic_vector ) return std_logic_vector; -- For Altera COMPONENT lpm_ram_dp generic ( LPM_WIDTH : natural; -- MUST be greater than 0 LPM_WIDTHAD : natural; -- MUST be greater than 0 LPM_NUMWORDS : natural := 0; LPM_INDATA : string := "REGISTERED"; LPM_OUTDATA : string := "REGISTERED"; LPM_RDADDRESS_CONTROL : string := "REGISTERED"; LPM_WRADDRESS_CONTROL : string := "REGISTERED"; LPM_FILE : string := "UNUSED"; LPM_TYPE : string := "LPM_RAM_DP"; USE_EAB : string := "OFF"; INTENDED_DEVICE_FAMILY : string := "UNUSED"; RDEN_USED : string := "TRUE"; LPM_HINT : string := "UNUSED"); port ( RDCLOCK : in std_logic := '0'; RDCLKEN : in std_logic := '1'; RDADDRESS : in std_logic_vector(LPM_WIDTHAD-1 downto 0); RDEN : in std_logic := '1'; DATA : in std_logic_vector(LPM_WIDTH-1 downto 0); WRADDRESS : in std_logic_vector(LPM_WIDTHAD-1 downto 0); WREN : in std_logic; WRCLOCK : in std_logic := '0'; WRCLKEN : in std_logic := '1'; Q : out std_logic_vector(LPM_WIDTH-1 downto 0)); END COMPONENT; -- For Altera component LPM_RAM_DQ generic ( LPM_WIDTH : natural; -- MUST be greater than 0 LPM_WIDTHAD : natural; -- MUST be greater than 0 LPM_NUMWORDS : natural := 0; LPM_INDATA : string := "REGISTERED"; LPM_ADDRESS_CONTROL: string := "REGISTERED"; LPM_OUTDATA : string := "REGISTERED"; LPM_FILE : string := "UNUSED"; LPM_TYPE : string := "LPM_RAM_DQ"; USE_EAB : string := "OFF"; INTENDED_DEVICE_FAMILY : string := "UNUSED"; LPM_HINT : string := "UNUSED"); port ( DATA : in std_logic_vector(LPM_WIDTH-1 downto 0); ADDRESS : in std_logic_vector(LPM_WIDTHAD-1 downto 0); INCLOCK : in std_logic := '0'; OUTCLOCK : in std_logic := '0'; WE : in std_logic; Q : out std_logic_vector(LPM_WIDTH-1 downto 0)); end component; -- For Xilinx component RAM16X1D -- synthesis translate_off generic (INIT : bit_vector := X"16"); -- synthesis translate_on port (DPO : out STD_ULOGIC; SPO : out STD_ULOGIC; A0 : in STD_ULOGIC; A1 : in STD_ULOGIC; A2 : in STD_ULOGIC; A3 : in STD_ULOGIC; D : in STD_ULOGIC; DPRA0 : in STD_ULOGIC; DPRA1 : in STD_ULOGIC; DPRA2 : in STD_ULOGIC; DPRA3 : in STD_ULOGIC; WCLK : in STD_ULOGIC; WE : in STD_ULOGIC); end component; component pc_next port(clk : in std_logic; reset_in : in std_logic; pc_new : in std_logic_vector(31 downto 2); take_branch : in std_logic; pause_in : in std_logic; opcode25_0 : in std_logic_vector(25 downto 0); pc_source : in pc_source_type; pc_future : out std_logic_vector(31 downto 2); pc_current : out std_logic_vector(31 downto 2); pc_plus4 : out std_logic_vector(31 downto 2)); end component; component mem_ctrl port(clk : in std_logic; reset_in : in std_logic; pause_in : in std_logic; nullify_op : in std_logic; address_pc : in std_logic_vector(31 downto 2); opcode_out : out std_logic_vector(31 downto 0); address_in : in std_logic_vector(31 downto 0); mem_source : in mem_source_type; data_write : in std_logic_vector(31 downto 0); data_read : out std_logic_vector(31 downto 0); pause_out : out std_logic; address_next : out std_logic_vector(31 downto 2); byte_we_next : out std_logic_vector(3 downto 0); address : out std_logic_vector(31 downto 2); byte_we : out std_logic_vector(3 downto 0); data_w : out std_logic_vector(31 downto 0); data_r : in std_logic_vector(31 downto 0)); end component; component control port(opcode : in std_logic_vector(31 downto 0); intr_signal : in std_logic; rs_index : out std_logic_vector(5 downto 0); rt_index : out std_logic_vector(5 downto 0); rd_index : out std_logic_vector(5 downto 0); imm_out : out std_logic_vector(15 downto 0); alu_func : out alu_function_type; shift_func : out shift_function_type; mult_func : out mult_function_type; branch_func : out branch_function_type; a_source_out : out a_source_type; b_source_out : out b_source_type; c_source_out : out c_source_type; pc_source_out: out pc_source_type; mem_source_out:out mem_source_type; exception_out: out std_logic); end component; component reg_bank generic(memory_type : string := "XILINX_16X"); port(clk : in std_logic; reset_in : in std_logic; pause : in std_logic; rs_index : in std_logic_vector(5 downto 0); rt_index : in std_logic_vector(5 downto 0); rd_index : in std_logic_vector(5 downto 0); reg_source_out : out std_logic_vector(31 downto 0); reg_target_out : out std_logic_vector(31 downto 0); reg_dest_new : in std_logic_vector(31 downto 0); intr_enable : out std_logic); end component; component bus_mux port(imm_in : in std_logic_vector(15 downto 0); reg_source : in std_logic_vector(31 downto 0); a_mux : in a_source_type; a_out : out std_logic_vector(31 downto 0); reg_target : in std_logic_vector(31 downto 0); b_mux : in b_source_type; b_out : out std_logic_vector(31 downto 0); c_bus : in std_logic_vector(31 downto 0); c_memory : in std_logic_vector(31 downto 0); c_pc : in std_logic_vector(31 downto 2); c_pc_plus4 : in std_logic_vector(31 downto 2); c_mux : in c_source_type; reg_dest_out : out std_logic_vector(31 downto 0); branch_func : in branch_function_type; take_branch : out std_logic); end component; component alu generic(alu_type : string := "DEFAULT"); port(a_in : in std_logic_vector(31 downto 0); b_in : in std_logic_vector(31 downto 0); alu_function : in alu_function_type; c_alu : out std_logic_vector(31 downto 0)); end component; component shifter generic(shifter_type : string := "DEFAULT" ); port(value : in std_logic_vector(31 downto 0); shift_amount : in std_logic_vector(4 downto 0); shift_func : in shift_function_type; c_shift : out std_logic_vector(31 downto 0)); end component; component mult generic(mult_type : string := "DEFAULT"); port(clk : in std_logic; reset_in : in std_logic; a, b : in std_logic_vector(31 downto 0); mult_func : in mult_function_type; c_mult : out std_logic_vector(31 downto 0); pause_out : out std_logic); end component; component pipeline port(clk : in std_logic; reset : in std_logic; a_bus : in std_logic_vector(31 downto 0); a_busD : out std_logic_vector(31 downto 0); b_bus : in std_logic_vector(31 downto 0); b_busD : out std_logic_vector(31 downto 0); alu_func : in alu_function_type; alu_funcD : out alu_function_type; shift_func : in shift_function_type; shift_funcD : out shift_function_type; mult_func : in mult_function_type; mult_funcD : out mult_function_type; reg_dest : in std_logic_vector(31 downto 0); reg_destD : out std_logic_vector(31 downto 0); rd_index : in std_logic_vector(5 downto 0); rd_indexD : out std_logic_vector(5 downto 0); rs_index : in std_logic_vector(5 downto 0); rt_index : in std_logic_vector(5 downto 0); pc_source : in pc_source_type; mem_source : in mem_source_type; a_source : in a_source_type; b_source : in b_source_type; c_source : in c_source_type; c_bus : in std_logic_vector(31 downto 0); pause_any : in std_logic; pause_pipeline : out std_logic); end component; component mlite_cpu generic(memory_type : string := "XILINX_16X"; --ALTERA_LPM, or DUAL_PORT_ mult_type : string := "DEFAULT"; shifter_type : string := "DEFAULT"; alu_type : string := "DEFAULT"; pipeline_stages : natural := 2); --2 or 3 port(clk : in std_logic; reset_in : in std_logic; intr_in : in std_logic; address_next : out std_logic_vector(31 downto 2); --for synch ram byte_we_next : out std_logic_vector(3 downto 0); address : out std_logic_vector(31 downto 2); byte_we : out std_logic_vector(3 downto 0); data_w : out std_logic_vector(31 downto 0); data_r : in std_logic_vector(31 downto 0); mem_pause : in std_logic); end component; component cache generic(memory_type : string := "DEFAULT"); port(clk : in std_logic; reset : in std_logic; address_next : in std_logic_vector(31 downto 2); byte_we_next : in std_logic_vector(3 downto 0); cpu_address : in std_logic_vector(31 downto 2); mem_busy : in std_logic; cache_check : out std_logic; --Stage1: address_next in first 2MB DDR cache_checking : out std_logic; --Stage2: cache checking cache_miss : out std_logic); --Stage2-3: cache miss end component; --cache component ram generic(memory_type : string := "DEFAULT"); port(clk : in std_logic; enable : in std_logic; write_byte_enable : in std_logic_vector(3 downto 0); address : in std_logic_vector(31 downto 2); data_write : in std_logic_vector(31 downto 0); data_read : out std_logic_vector(31 downto 0)); end component; --ram component uart generic(log_file : string := "UNUSED"); port(clk : in std_logic; reset : in std_logic; cs : in std_logic; nRdWr : in std_logic; data_in : in std_logic_vector(7 downto 0); data_out : out std_logic_vector(7 downto 0); uart_read : in std_logic; uart_write : out std_logic; busy_write : out std_logic; data_avail : out std_logic); end component; --uart component eth_dma port(clk : in std_logic; --25 MHz reset : in std_logic; enable_eth : in std_logic; select_eth : in std_logic; rec_isr : out std_logic; send_isr : out std_logic; address : out std_logic_vector(31 downto 2); --to DDR byte_we : out std_logic_vector(3 downto 0); data_write : out std_logic_vector(31 downto 0); data_read : in std_logic_vector(31 downto 0); pause_in : in std_logic; mem_address : in std_logic_vector(31 downto 2); --from CPU mem_byte_we : in std_logic_vector(3 downto 0); data_w : in std_logic_vector(31 downto 0); pause_out : out std_logic; E_RX_CLK : in std_logic; --2.5 MHz receive E_RX_DV : in std_logic; --data valid E_RXD : in std_logic_vector(3 downto 0); --receive nibble E_TX_CLK : in std_logic; --2.5 MHz transmit E_TX_EN : out std_logic; --transmit enable E_TXD : out std_logic_vector(3 downto 0)); --transmit nibble end component; --eth_dma component plasma generic(memory_type : string := "XILINX_X16"; --"DUAL_PORT_" "ALTERA_LPM"; log_file : string := "UNUSED"); port(clk_in : in std_logic; rst_in : in std_logic; uart_write : out std_logic; uart_read : in std_logic; addr : in std_logic_vector(12 downto 0); sram_data : in std_logic_vector(7 downto 0); nwe : in std_logic; noe : in std_logic; ncs : in std_logic; irq_pin : in std_logic; led : out std_logic); end component; --plasma component ddr_ctrl port(clk : in std_logic; clk_2x : in std_logic; reset_in : in std_logic; address : in std_logic_vector(25 downto 2); byte_we : in std_logic_vector(3 downto 0); data_w : in std_logic_vector(31 downto 0); data_r : out std_logic_vector(31 downto 0); active : in std_logic; no_start : in std_logic; no_stop : in std_logic; pause : out std_logic; SD_CK_P : out std_logic; --clock_positive SD_CK_N : out std_logic; --clock_negative SD_CKE : out std_logic; --clock_enable SD_BA : out std_logic_vector(1 downto 0); --bank_address SD_A : out std_logic_vector(12 downto 0); --address(row or col) SD_CS : out std_logic; --chip_select SD_RAS : out std_logic; --row_address_strobe SD_CAS : out std_logic; --column_address_strobe SD_WE : out std_logic; --write_enable SD_DQ : inout std_logic_vector(15 downto 0); --data SD_UDM : out std_logic; --upper_byte_enable SD_UDQS : inout std_logic; --upper_data_strobe SD_LDM : out std_logic; --low_byte_enable SD_LDQS : inout std_logic); --low_data_strobe end component; --ddr end; --package mlite_pack package body mlite_pack is function bv_adder(a : in std_logic_vector; b : in std_logic_vector; do_add: in std_logic) return std_logic_vector is variable carry_in : std_logic; variable bb : std_logic_vector(a'length-1 downto 0); variable result : std_logic_vector(a'length downto 0); begin if do_add = '1' then bb := b; carry_in := '0'; else bb := not b; carry_in := '1'; end if; for index in 0 to a'length-1 loop result(index) := a(index) xor bb(index) xor carry_in; carry_in := (carry_in and (a(index) or bb(index))) or (a(index) and bb(index)); end loop; result(a'length) := carry_in xnor do_add; return result; end; --function function bv_negate(a : in std_logic_vector) return std_logic_vector is variable carry_in : std_logic; variable not_a : std_logic_vector(a'length-1 downto 0); variable result : std_logic_vector(a'length-1 downto 0); begin not_a := not a; carry_in := '1'; for index in a'reverse_range loop result(index) := not_a(index) xor carry_in; carry_in := carry_in and not_a(index); end loop; return result; end; --function function bv_increment(a : in std_logic_vector(31 downto 2) ) return std_logic_vector is variable carry_in : std_logic; variable result : std_logic_vector(31 downto 2); begin carry_in := '1'; for index in 2 to 31 loop result(index) := a(index) xor carry_in; carry_in := a(index) and carry_in; end loop; return result; end; --function function bv_inc(a : in std_logic_vector ) return std_logic_vector is variable carry_in : std_logic; variable result : std_logic_vector(a'length-1 downto 0); begin carry_in := '1'; for index in 0 to a'length-1 loop result(index) := a(index) xor carry_in; carry_in := a(index) and carry_in; end loop; return result; end; --function end; --package body