--------------------------------------------------------------------- -- TITLE: Plasma (CPU core with memory) -- AUTHOR: Steve Rhoads (rhoadss@yahoo.com) -- DATE CREATED: 6/4/02 -- FILENAME: plasma.vhd -- PROJECT: Plasma CPU core -- COPYRIGHT: Software placed into the public domain by the author. -- Software 'as is' without warranty. Author liable for nothing. -- DESCRIPTION: -- This entity combines the CPU core with memory and a UART. -- -- Memory Map: -- 0x00000000 - 0x0000ffff Internal RAM (8KB) -- 0x10000000 - 0x100fffff External RAM (1MB) -- Access all Misc registers with 32-bit accesses -- 0x20000000 Uart Write (will pause CPU if busy) -- 0x20000000 Uart Read -- 0x20000010 IRQ Mask -- 0x20000020 IRQ Status -- 0x20000030 Peripheric 1 -- 0x20000040 Peripheric 2 -- 0x20000050 Peripheric 3 -- 0x20000060 Peripheric 4 -- IRQ bits: -- 1 ^UartWriteBusy -- 0 UartDataAvailable --------------------------------------------------------------------- library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; use work.mlite_pack.all; entity plasma is generic(memory_type : string := "XILINX_16X"; --"DUAL_PORT_" "ALTERA_LPM"; log_file : string := "UNUSED"); port(clk_in : in std_logic; rst_in : in std_logic; uart_write : out std_logic; uart_read : in std_logic; addr : in std_logic_vector(12 downto 0); sram_data : in std_logic_vector(7 downto 0); nwe : in std_logic; noe : in std_logic; ncs : in std_logic; irq_pin : out std_logic; led : out std_logic ); end; --entity plasma architecture logic of plasma is signal reset : std_logic; signal clk : std_logic; signal address_next : std_logic_vector(31 downto 2); signal byte_we_next : std_logic_vector(3 downto 0); signal cpu_address : std_logic_vector(31 downto 0); signal cpu_byte_we : std_logic_vector(3 downto 0); signal cpu_data_w : std_logic_vector(31 downto 0); signal cpu_data_r : std_logic_vector(31 downto 0); signal cpu_pause : std_logic; signal bus_dec : std_logic_vector(6 downto 0); signal data_read_uart : std_logic_vector(7 downto 0); signal data_read_pic : std_logic_vector(7 downto 0); signal write_enable : std_logic; signal mem_busy : std_logic; signal cs_pher : std_logic; signal cs_uart : std_logic; signal cs_pic : std_logic; signal cs_p1 : std_logic; signal cs_p2 : std_logic; signal cs_p3 : std_logic; signal cs_p4 : std_logic; signal uart_write_busy : std_logic; signal uart_data_avail : std_logic; signal irq_mask_reg : std_logic_vector(7 downto 0); signal irq_status : std_logic_vector(7 downto 0); signal irq : std_logic; signal cs_ram : std_logic; signal ram_byte_we : std_logic_vector(3 downto 0); signal ram_address : std_logic_vector(31 downto 2); signal ram_data_w : std_logic_vector(31 downto 0); signal ram_data_r : std_logic_vector(31 downto 0); begin --%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- CLOCK DIVIDER --%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% led <= not(rst_in); reset <= not(rst_in); irq_pin <= not(rst_in); clk_div: process(reset, clk, clk_in) begin if reset = '1' then clk <= '0'; elsif rising_edge(clk_in) then clk <= not clk; end if; end process; write_enable <= '1' when cpu_byte_we /= "0000" else '0'; cpu_pause <= (uart_write_busy and cs_uart and write_enable); --%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- PROCESSOR --%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u1_cpu: mlite_cpu generic map (memory_type => memory_type) PORT MAP ( clk => clk, reset_in => reset, intr_in => irq, address_next => address_next, --before rising_edge(clk) byte_we_next => byte_we_next, address => cpu_address(31 downto 2), --after rising_edge(clk) byte_we => cpu_byte_we, data_w => cpu_data_w, data_r => cpu_data_r, mem_pause => cpu_pause); --%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- ADDRESS DECODER --%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cpu_address(1 downto 0) <= "00"; addr_decoder: process (cpu_address) variable addr_dec : std_logic_vector(6 downto 0); begin addr_dec := cpu_address(30 downto 28) & cpu_address(7 downto 4); case addr_dec is when "0100000" => cs_uart <= '1'; cs_pic <= '0'; cs_p1 <= '0'; cs_p2 <= '0'; cs_p3 <= '0'; cs_p4 <= '0'; when "0100001" => cs_uart <= '0'; cs_pic <= '1'; cs_p1 <= '0'; cs_p2 <= '0'; cs_p3 <= '0'; cs_p4 <= '0'; when "0100010" => cs_uart <= '0'; cs_pic <= '1'; cs_p1 <= '0'; cs_p2 <= '0'; cs_p3 <= '0'; cs_p4 <= '0'; when "0100011" => cs_uart <= '0'; cs_pic <= '0'; cs_p1 <= '1'; cs_p2 <= '0'; cs_p3 <= '0'; cs_p4 <= '0'; when "0100100" => cs_uart <= '0'; cs_pic <= '0'; cs_p1 <= '0'; cs_p2 <= '1'; cs_p3 <= '0'; cs_p4 <= '0'; when "0100101" => cs_uart <= '0'; cs_pic <= '0'; cs_p1 <= '0'; cs_p2 <= '0'; cs_p3 <= '1'; cs_p4 <= '0'; when "0100110" => cs_uart <= '0'; cs_pic <= '0'; cs_p1 <= '0'; cs_p2 <= '0'; cs_p3 <= '0'; cs_p4 <= '1'; when others => cs_uart <= '0'; cs_pic <= '0'; cs_p1 <= '0'; cs_p2 <= '0'; cs_p3 <= '0'; cs_p4 <= '0'; end case; end process; --%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- BUS MULTIPLEXOR --%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% bus_mux: process (cpu_address, ram_data_r, data_read_uart, data_read_pic) variable bus_dec : std_logic_vector(4 downto 0); begin bus_dec := cpu_address(29) & cpu_address(7 downto 4); case bus_dec is when "00000" | "00001" | "00010" | "00011" | "00100" | "00101" | "00110" | "00111" | "01000" | "01001" | "01010" | "01011" | "01100" | "01101" | "01110" | "01111" => cpu_data_r <= ram_data_r; when "10000" => cpu_data_r <= ZERO(31 downto 8) & data_read_uart; when "10001" => cpu_data_r <= ZERO(31 downto 8) & data_read_pic; when "10010" => cpu_data_r <= ZERO(31 downto 8) & data_read_pic; when "10011" => cpu_data_r <= ZERO; when "10100" => cpu_data_r <= ZERO; when "10101" => cpu_data_r <= ZERO; when "10110" => cpu_data_r <= ZERO; when others => cpu_data_r <= ZERO; end case; -- end if; end process; --%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- PIC --%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% pic_proc: process(clk, reset, cpu_address, cs_pic, cpu_pause, cpu_byte_we, irq_mask_reg, irq_status, cpu_data_w, uart_write_busy, uart_data_avail) begin irq_status <= ZERO(5 downto 0) & not uart_write_busy & uart_data_avail; if cs_pic = '1' and cpu_byte_we = "0000" then case cpu_address(5 downto 4) is when "01" => data_read_pic <= irq_mask_reg; when "10" => data_read_pic <= irq_status; when others => data_read_pic <= ZERO(7 downto 0); end case; end if; if reset = '1' then irq_mask_reg <= ZERO(7 downto 0); elsif rising_edge(clk) then if cpu_pause = '0' then if cs_pic = '1' and cpu_byte_we = "1111" then if cpu_address(6 downto 4) = "001" then irq_mask_reg <= cpu_data_w(7 downto 0); end if; end if; end if; end if; if (irq_status and irq_mask_reg) /= ZERO(7 downto 0) then irq <= '1'; else irq <= '0'; end if; end process; --%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- RAM --%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% cs_ram <= '1' when address_next(30 downto 28) = "000" else '0'; ram_address(31 downto 2) <= ZERO(31 downto 13) & address_next(12 downto 2); u2_ram: ram generic map (memory_type => memory_type) port map ( clk => clk, enable => cs_ram, write_byte_enable => byte_we_next, address => ram_address, data_write => cpu_data_w, data_read => ram_data_r); --%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% -- UART --%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% u3_uart: uart generic map (log_file => log_file) port map( clk => clk, reset => reset, cs => cs_uart, nRdWr => cpu_byte_we(0), data_in => cpu_data_w(7 downto 0), data_out => data_read_uart, uart_read => uart_read, uart_write => uart_write, busy_write => uart_write_busy, data_avail => uart_data_avail); end; --architecture logic