1
0
mirror of git://projects.qi-hardware.com/nn-usb-fpga.git synced 2025-01-19 09:31:06 +02:00
nn-usb-fpga/plasma/logic/mlite_pack.vhd
2010-08-12 19:51:53 -05:00

540 lines
22 KiB
VHDL

---------------------------------------------------------------------
-- TITLE: Plasma Misc. Package
-- AUTHOR: Steve Rhoads (rhoadss@yahoo.com)
-- DATE CREATED: 2/15/01
-- FILENAME: mlite_pack.vhd
-- PROJECT: Plasma CPU core
-- COPYRIGHT: Software placed into the public domain by the author.
-- Software 'as is' without warranty. Author liable for nothing.
-- DESCRIPTION:
-- Data types, constants, and add functions needed for the Plasma CPU.
---------------------------------------------------------------------
library ieee;
use ieee.numeric_std.all;
use ieee.std_logic_1164.all;
package mlite_pack is
constant ZERO : std_logic_vector(31 downto 0) :=
"00000000000000000000000000000000";
constant ONES : std_logic_vector(31 downto 0) :=
"11111111111111111111111111111111";
--make HIGH_Z equal to ZERO if compiler complains
constant HIGH_Z : std_logic_vector(31 downto 0) :=
"ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ";
subtype alu_function_type is std_logic_vector(3 downto 0);
constant ALU_NOTHING : alu_function_type := "0000";
constant ALU_ADD : alu_function_type := "0001";
constant ALU_SUBTRACT : alu_function_type := "0010";
constant ALU_LESS_THAN : alu_function_type := "0011";
constant ALU_LESS_THAN_SIGNED : alu_function_type := "0100";
constant ALU_OR : alu_function_type := "0101";
constant ALU_AND : alu_function_type := "0110";
constant ALU_XOR : alu_function_type := "0111";
constant ALU_NOR : alu_function_type := "1000";
subtype shift_function_type is std_logic_vector(1 downto 0);
constant SHIFT_NOTHING : shift_function_type := "00";
constant SHIFT_LEFT_UNSIGNED : shift_function_type := "01";
constant SHIFT_RIGHT_SIGNED : shift_function_type := "11";
constant SHIFT_RIGHT_UNSIGNED : shift_function_type := "10";
subtype mult_function_type is std_logic_vector(3 downto 0);
constant MULT_NOTHING : mult_function_type := "0000";
constant MULT_READ_LO : mult_function_type := "0001";
constant MULT_READ_HI : mult_function_type := "0010";
constant MULT_WRITE_LO : mult_function_type := "0011";
constant MULT_WRITE_HI : mult_function_type := "0100";
constant MULT_MULT : mult_function_type := "0101";
constant MULT_SIGNED_MULT : mult_function_type := "0110";
constant MULT_DIVIDE : mult_function_type := "0111";
constant MULT_SIGNED_DIVIDE : mult_function_type := "1000";
subtype a_source_type is std_logic_vector(1 downto 0);
constant A_FROM_REG_SOURCE : a_source_type := "00";
constant A_FROM_IMM10_6 : a_source_type := "01";
constant A_FROM_PC : a_source_type := "10";
subtype b_source_type is std_logic_vector(1 downto 0);
constant B_FROM_REG_TARGET : b_source_type := "00";
constant B_FROM_IMM : b_source_type := "01";
constant B_FROM_SIGNED_IMM : b_source_type := "10";
constant B_FROM_IMMX4 : b_source_type := "11";
subtype c_source_type is std_logic_vector(2 downto 0);
constant C_FROM_NULL : c_source_type := "000";
constant C_FROM_ALU : c_source_type := "001";
constant C_FROM_SHIFT : c_source_type := "001"; --same as alu
constant C_FROM_MULT : c_source_type := "001"; --same as alu
constant C_FROM_MEMORY : c_source_type := "010";
constant C_FROM_PC : c_source_type := "011";
constant C_FROM_PC_PLUS4 : c_source_type := "100";
constant C_FROM_IMM_SHIFT16: c_source_type := "101";
constant C_FROM_REG_SOURCEN: c_source_type := "110";
subtype pc_source_type is std_logic_vector(1 downto 0);
constant FROM_INC4 : pc_source_type := "00";
constant FROM_OPCODE25_0 : pc_source_type := "01";
constant FROM_BRANCH : pc_source_type := "10";
constant FROM_LBRANCH : pc_source_type := "11";
subtype branch_function_type is std_logic_vector(2 downto 0);
constant BRANCH_LTZ : branch_function_type := "000";
constant BRANCH_LEZ : branch_function_type := "001";
constant BRANCH_EQ : branch_function_type := "010";
constant BRANCH_NE : branch_function_type := "011";
constant BRANCH_GEZ : branch_function_type := "100";
constant BRANCH_GTZ : branch_function_type := "101";
constant BRANCH_YES : branch_function_type := "110";
constant BRANCH_NO : branch_function_type := "111";
-- mode(32=1,16=2,8=3), signed, write
subtype mem_source_type is std_logic_vector(3 downto 0);
constant MEM_FETCH : mem_source_type := "0000";
constant MEM_READ32 : mem_source_type := "0100";
constant MEM_WRITE32 : mem_source_type := "0101";
constant MEM_READ16 : mem_source_type := "1000";
constant MEM_READ16S : mem_source_type := "1010";
constant MEM_WRITE16 : mem_source_type := "1001";
constant MEM_READ8 : mem_source_type := "1100";
constant MEM_READ8S : mem_source_type := "1110";
constant MEM_WRITE8 : mem_source_type := "1101";
function bv_adder(a : in std_logic_vector;
b : in std_logic_vector;
do_add: in std_logic) return std_logic_vector;
function bv_negate(a : in std_logic_vector) return std_logic_vector;
function bv_increment(a : in std_logic_vector(31 downto 2)
) return std_logic_vector;
function bv_inc(a : in std_logic_vector
) return std_logic_vector;
-- For Altera
COMPONENT lpm_ram_dp
generic (
LPM_WIDTH : natural; -- MUST be greater than 0
LPM_WIDTHAD : natural; -- MUST be greater than 0
LPM_NUMWORDS : natural := 0;
LPM_INDATA : string := "REGISTERED";
LPM_OUTDATA : string := "REGISTERED";
LPM_RDADDRESS_CONTROL : string := "REGISTERED";
LPM_WRADDRESS_CONTROL : string := "REGISTERED";
LPM_FILE : string := "UNUSED";
LPM_TYPE : string := "LPM_RAM_DP";
USE_EAB : string := "OFF";
INTENDED_DEVICE_FAMILY : string := "UNUSED";
RDEN_USED : string := "TRUE";
LPM_HINT : string := "UNUSED");
port (
RDCLOCK : in std_logic := '0';
RDCLKEN : in std_logic := '1';
RDADDRESS : in std_logic_vector(LPM_WIDTHAD-1 downto 0);
RDEN : in std_logic := '1';
DATA : in std_logic_vector(LPM_WIDTH-1 downto 0);
WRADDRESS : in std_logic_vector(LPM_WIDTHAD-1 downto 0);
WREN : in std_logic;
WRCLOCK : in std_logic := '0';
WRCLKEN : in std_logic := '1';
Q : out std_logic_vector(LPM_WIDTH-1 downto 0));
END COMPONENT;
-- For Altera
component LPM_RAM_DQ
generic (
LPM_WIDTH : natural; -- MUST be greater than 0
LPM_WIDTHAD : natural; -- MUST be greater than 0
LPM_NUMWORDS : natural := 0;
LPM_INDATA : string := "REGISTERED";
LPM_ADDRESS_CONTROL: string := "REGISTERED";
LPM_OUTDATA : string := "REGISTERED";
LPM_FILE : string := "UNUSED";
LPM_TYPE : string := "LPM_RAM_DQ";
USE_EAB : string := "OFF";
INTENDED_DEVICE_FAMILY : string := "UNUSED";
LPM_HINT : string := "UNUSED");
port (
DATA : in std_logic_vector(LPM_WIDTH-1 downto 0);
ADDRESS : in std_logic_vector(LPM_WIDTHAD-1 downto 0);
INCLOCK : in std_logic := '0';
OUTCLOCK : in std_logic := '0';
WE : in std_logic;
Q : out std_logic_vector(LPM_WIDTH-1 downto 0));
end component;
-- For Xilinx
component RAM16X1D
-- synthesis translate_off
generic (INIT : bit_vector := X"16");
-- synthesis translate_on
port (DPO : out STD_ULOGIC;
SPO : out STD_ULOGIC;
A0 : in STD_ULOGIC;
A1 : in STD_ULOGIC;
A2 : in STD_ULOGIC;
A3 : in STD_ULOGIC;
D : in STD_ULOGIC;
DPRA0 : in STD_ULOGIC;
DPRA1 : in STD_ULOGIC;
DPRA2 : in STD_ULOGIC;
DPRA3 : in STD_ULOGIC;
WCLK : in STD_ULOGIC;
WE : in STD_ULOGIC);
end component;
component pc_next
port(clk : in std_logic;
reset_in : in std_logic;
pc_new : in std_logic_vector(31 downto 2);
take_branch : in std_logic;
pause_in : in std_logic;
opcode25_0 : in std_logic_vector(25 downto 0);
pc_source : in pc_source_type;
pc_future : out std_logic_vector(31 downto 2);
pc_current : out std_logic_vector(31 downto 2);
pc_plus4 : out std_logic_vector(31 downto 2));
end component;
component mem_ctrl
port(clk : in std_logic;
reset_in : in std_logic;
pause_in : in std_logic;
nullify_op : in std_logic;
address_pc : in std_logic_vector(31 downto 2);
opcode_out : out std_logic_vector(31 downto 0);
address_in : in std_logic_vector(31 downto 0);
mem_source : in mem_source_type;
data_write : in std_logic_vector(31 downto 0);
data_read : out std_logic_vector(31 downto 0);
pause_out : out std_logic;
address_next : out std_logic_vector(31 downto 2);
byte_we_next : out std_logic_vector(3 downto 0);
address : out std_logic_vector(31 downto 2);
byte_we : out std_logic_vector(3 downto 0);
data_w : out std_logic_vector(31 downto 0);
data_r : in std_logic_vector(31 downto 0));
end component;
component control
port(opcode : in std_logic_vector(31 downto 0);
intr_signal : in std_logic;
rs_index : out std_logic_vector(5 downto 0);
rt_index : out std_logic_vector(5 downto 0);
rd_index : out std_logic_vector(5 downto 0);
imm_out : out std_logic_vector(15 downto 0);
alu_func : out alu_function_type;
shift_func : out shift_function_type;
mult_func : out mult_function_type;
branch_func : out branch_function_type;
a_source_out : out a_source_type;
b_source_out : out b_source_type;
c_source_out : out c_source_type;
pc_source_out: out pc_source_type;
mem_source_out:out mem_source_type;
exception_out: out std_logic);
end component;
component reg_bank
generic(memory_type : string := "XILINX_16X");
port(clk : in std_logic;
reset_in : in std_logic;
pause : in std_logic;
rs_index : in std_logic_vector(5 downto 0);
rt_index : in std_logic_vector(5 downto 0);
rd_index : in std_logic_vector(5 downto 0);
reg_source_out : out std_logic_vector(31 downto 0);
reg_target_out : out std_logic_vector(31 downto 0);
reg_dest_new : in std_logic_vector(31 downto 0);
intr_enable : out std_logic);
end component;
component bus_mux
port(imm_in : in std_logic_vector(15 downto 0);
reg_source : in std_logic_vector(31 downto 0);
a_mux : in a_source_type;
a_out : out std_logic_vector(31 downto 0);
reg_target : in std_logic_vector(31 downto 0);
b_mux : in b_source_type;
b_out : out std_logic_vector(31 downto 0);
c_bus : in std_logic_vector(31 downto 0);
c_memory : in std_logic_vector(31 downto 0);
c_pc : in std_logic_vector(31 downto 2);
c_pc_plus4 : in std_logic_vector(31 downto 2);
c_mux : in c_source_type;
reg_dest_out : out std_logic_vector(31 downto 0);
branch_func : in branch_function_type;
take_branch : out std_logic);
end component;
component alu
generic(alu_type : string := "DEFAULT");
port(a_in : in std_logic_vector(31 downto 0);
b_in : in std_logic_vector(31 downto 0);
alu_function : in alu_function_type;
c_alu : out std_logic_vector(31 downto 0));
end component;
component shifter
generic(shifter_type : string := "DEFAULT" );
port(value : in std_logic_vector(31 downto 0);
shift_amount : in std_logic_vector(4 downto 0);
shift_func : in shift_function_type;
c_shift : out std_logic_vector(31 downto 0));
end component;
component mult
generic(mult_type : string := "DEFAULT");
port(clk : in std_logic;
reset_in : in std_logic;
a, b : in std_logic_vector(31 downto 0);
mult_func : in mult_function_type;
c_mult : out std_logic_vector(31 downto 0);
pause_out : out std_logic);
end component;
component pipeline
port(clk : in std_logic;
reset : in std_logic;
a_bus : in std_logic_vector(31 downto 0);
a_busD : out std_logic_vector(31 downto 0);
b_bus : in std_logic_vector(31 downto 0);
b_busD : out std_logic_vector(31 downto 0);
alu_func : in alu_function_type;
alu_funcD : out alu_function_type;
shift_func : in shift_function_type;
shift_funcD : out shift_function_type;
mult_func : in mult_function_type;
mult_funcD : out mult_function_type;
reg_dest : in std_logic_vector(31 downto 0);
reg_destD : out std_logic_vector(31 downto 0);
rd_index : in std_logic_vector(5 downto 0);
rd_indexD : out std_logic_vector(5 downto 0);
rs_index : in std_logic_vector(5 downto 0);
rt_index : in std_logic_vector(5 downto 0);
pc_source : in pc_source_type;
mem_source : in mem_source_type;
a_source : in a_source_type;
b_source : in b_source_type;
c_source : in c_source_type;
c_bus : in std_logic_vector(31 downto 0);
pause_any : in std_logic;
pause_pipeline : out std_logic);
end component;
component mlite_cpu
generic(memory_type : string := "XILINX_16X"; --ALTERA_LPM, or DUAL_PORT_
mult_type : string := "DEFAULT";
shifter_type : string := "DEFAULT";
alu_type : string := "DEFAULT";
pipeline_stages : natural := 2); --2 or 3
port(clk : in std_logic;
reset_in : in std_logic;
intr_in : in std_logic;
address_next : out std_logic_vector(31 downto 2); --for synch ram
byte_we_next : out std_logic_vector(3 downto 0);
address : out std_logic_vector(31 downto 2);
byte_we : out std_logic_vector(3 downto 0);
data_w : out std_logic_vector(31 downto 0);
data_r : in std_logic_vector(31 downto 0);
mem_pause : in std_logic);
end component;
component cache
generic(memory_type : string := "DEFAULT");
port(clk : in std_logic;
reset : in std_logic;
address_next : in std_logic_vector(31 downto 2);
byte_we_next : in std_logic_vector(3 downto 0);
cpu_address : in std_logic_vector(31 downto 2);
mem_busy : in std_logic;
cache_check : out std_logic; --Stage1: address_next in first 2MB DDR
cache_checking : out std_logic; --Stage2: cache checking
cache_miss : out std_logic); --Stage2-3: cache miss
end component; --cache
component ram
generic(memory_type : string := "DEFAULT");
port(clk : in std_logic;
enable : in std_logic;
write_byte_enable : in std_logic_vector(3 downto 0);
address : in std_logic_vector(31 downto 2);
data_write : in std_logic_vector(31 downto 0);
data_read : out std_logic_vector(31 downto 0));
end component; --ram
component uart
generic(log_file : string := "UNUSED");
port(clk : in std_logic;
reset : in std_logic;
cs : in std_logic;
nRdWr : in std_logic;
data_in : in std_logic_vector(7 downto 0);
data_out : out std_logic_vector(7 downto 0);
uart_read : in std_logic;
uart_write : out std_logic;
busy_write : out std_logic;
data_avail : out std_logic);
end component; --uart
component eth_dma
port(clk : in std_logic; --25 MHz
reset : in std_logic;
enable_eth : in std_logic;
select_eth : in std_logic;
rec_isr : out std_logic;
send_isr : out std_logic;
address : out std_logic_vector(31 downto 2); --to DDR
byte_we : out std_logic_vector(3 downto 0);
data_write : out std_logic_vector(31 downto 0);
data_read : in std_logic_vector(31 downto 0);
pause_in : in std_logic;
mem_address : in std_logic_vector(31 downto 2); --from CPU
mem_byte_we : in std_logic_vector(3 downto 0);
data_w : in std_logic_vector(31 downto 0);
pause_out : out std_logic;
E_RX_CLK : in std_logic; --2.5 MHz receive
E_RX_DV : in std_logic; --data valid
E_RXD : in std_logic_vector(3 downto 0); --receive nibble
E_TX_CLK : in std_logic; --2.5 MHz transmit
E_TX_EN : out std_logic; --transmit enable
E_TXD : out std_logic_vector(3 downto 0)); --transmit nibble
end component; --eth_dma
component plasma
generic(memory_type : string := "XILINX_X16"; --"DUAL_PORT_" "ALTERA_LPM";
log_file : string := "UNUSED");
port(clk_in : in std_logic;
rst_in : in std_logic;
uart_write : out std_logic;
uart_read : in std_logic;
addr : in std_logic_vector(12 downto 0);
sram_data : in std_logic_vector(7 downto 0);
nwe : in std_logic;
noe : in std_logic;
ncs : in std_logic;
irq_pin : out std_logic;
led : out std_logic);
end component; --plasma
component ddr_ctrl
port(clk : in std_logic;
clk_2x : in std_logic;
reset_in : in std_logic;
address : in std_logic_vector(25 downto 2);
byte_we : in std_logic_vector(3 downto 0);
data_w : in std_logic_vector(31 downto 0);
data_r : out std_logic_vector(31 downto 0);
active : in std_logic;
no_start : in std_logic;
no_stop : in std_logic;
pause : out std_logic;
SD_CK_P : out std_logic; --clock_positive
SD_CK_N : out std_logic; --clock_negative
SD_CKE : out std_logic; --clock_enable
SD_BA : out std_logic_vector(1 downto 0); --bank_address
SD_A : out std_logic_vector(12 downto 0); --address(row or col)
SD_CS : out std_logic; --chip_select
SD_RAS : out std_logic; --row_address_strobe
SD_CAS : out std_logic; --column_address_strobe
SD_WE : out std_logic; --write_enable
SD_DQ : inout std_logic_vector(15 downto 0); --data
SD_UDM : out std_logic; --upper_byte_enable
SD_UDQS : inout std_logic; --upper_data_strobe
SD_LDM : out std_logic; --low_byte_enable
SD_LDQS : inout std_logic); --low_data_strobe
end component; --ddr
end; --package mlite_pack
package body mlite_pack is
function bv_adder(a : in std_logic_vector;
b : in std_logic_vector;
do_add: in std_logic) return std_logic_vector is
variable carry_in : std_logic;
variable bb : std_logic_vector(a'length-1 downto 0);
variable result : std_logic_vector(a'length downto 0);
begin
if do_add = '1' then
bb := b;
carry_in := '0';
else
bb := not b;
carry_in := '1';
end if;
for index in 0 to a'length-1 loop
result(index) := a(index) xor bb(index) xor carry_in;
carry_in := (carry_in and (a(index) or bb(index))) or
(a(index) and bb(index));
end loop;
result(a'length) := carry_in xnor do_add;
return result;
end; --function
function bv_negate(a : in std_logic_vector) return std_logic_vector is
variable carry_in : std_logic;
variable not_a : std_logic_vector(a'length-1 downto 0);
variable result : std_logic_vector(a'length-1 downto 0);
begin
not_a := not a;
carry_in := '1';
for index in a'reverse_range loop
result(index) := not_a(index) xor carry_in;
carry_in := carry_in and not_a(index);
end loop;
return result;
end; --function
function bv_increment(a : in std_logic_vector(31 downto 2)
) return std_logic_vector is
variable carry_in : std_logic;
variable result : std_logic_vector(31 downto 2);
begin
carry_in := '1';
for index in 2 to 31 loop
result(index) := a(index) xor carry_in;
carry_in := a(index) and carry_in;
end loop;
return result;
end; --function
function bv_inc(a : in std_logic_vector
) return std_logic_vector is
variable carry_in : std_logic;
variable result : std_logic_vector(a'length-1 downto 0);
begin
carry_in := '1';
for index in 0 to a'length-1 loop
result(index) := a(index) xor carry_in;
carry_in := a(index) and carry_in;
end loop;
return result;
end; --function
end; --package body