1
0
mirror of git://projects.qi-hardware.com/nn-usb-fpga.git synced 2025-01-10 00:30:14 +02:00
nn-usb-fpga/plasma/logic/mem_ctrl.vhd
2010-04-21 20:01:38 -05:00

197 lines
6.4 KiB
VHDL

---------------------------------------------------------------------
-- TITLE: Memory Controller
-- AUTHOR: Steve Rhoads (rhoadss@yahoo.com)
-- DATE CREATED: 1/31/01
-- FILENAME: mem_ctrl.vhd
-- PROJECT: Plasma CPU core
-- COPYRIGHT: Software placed into the public domain by the author.
-- Software 'as is' without warranty. Author liable for nothing.
-- DESCRIPTION:
-- Memory controller for the Plasma CPU.
-- Supports Big or Little Endian mode.
---------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use work.mlite_pack.all;
entity mem_ctrl is
port(clk : in std_logic;
reset_in : in std_logic;
pause_in : in std_logic;
nullify_op : in std_logic;
address_pc : in std_logic_vector(31 downto 2);
opcode_out : out std_logic_vector(31 downto 0);
address_in : in std_logic_vector(31 downto 0);
mem_source : in mem_source_type;
data_write : in std_logic_vector(31 downto 0);
data_read : out std_logic_vector(31 downto 0);
pause_out : out std_logic;
address_next : out std_logic_vector(31 downto 2);
byte_we_next : out std_logic_vector(3 downto 0);
address : out std_logic_vector(31 downto 2);
byte_we : out std_logic_vector(3 downto 0);
data_w : out std_logic_vector(31 downto 0);
data_r : in std_logic_vector(31 downto 0));
end; --entity mem_ctrl
architecture logic of mem_ctrl is
--"00" = big_endian; "11" = little_endian
constant ENDIAN_MODE : std_logic_vector(1 downto 0) := "00";
signal opcode_reg : std_logic_vector(31 downto 0);
signal next_opcode_reg : std_logic_vector(31 downto 0);
signal address_reg : std_logic_vector(31 downto 2);
signal byte_we_reg : std_logic_vector(3 downto 0);
signal mem_state_reg : std_logic;
constant STATE_ADDR : std_logic := '0';
constant STATE_ACCESS : std_logic := '1';
begin
mem_proc: process(clk, reset_in, pause_in, nullify_op,
address_pc, address_in, mem_source, data_write,
data_r, opcode_reg, next_opcode_reg, mem_state_reg,
address_reg, byte_we_reg)
variable address_var : std_logic_vector(31 downto 2);
variable data_read_var : std_logic_vector(31 downto 0);
variable data_write_var : std_logic_vector(31 downto 0);
variable opcode_next : std_logic_vector(31 downto 0);
variable byte_we_var : std_logic_vector(3 downto 0);
variable mem_state_next : std_logic;
variable pause_var : std_logic;
variable bits : std_logic_vector(1 downto 0);
begin
byte_we_var := "0000";
pause_var := '0';
data_read_var := ZERO;
data_write_var := ZERO;
mem_state_next := mem_state_reg;
opcode_next := opcode_reg;
case mem_source is
when MEM_READ32 =>
data_read_var := data_r;
when MEM_READ16 | MEM_READ16S =>
if address_in(1) = ENDIAN_MODE(1) then
data_read_var(15 downto 0) := data_r(31 downto 16);
else
data_read_var(15 downto 0) := data_r(15 downto 0);
end if;
if mem_source = MEM_READ16 or data_read_var(15) = '0' then
data_read_var(31 downto 16) := ZERO(31 downto 16);
else
data_read_var(31 downto 16) := ONES(31 downto 16);
end if;
when MEM_READ8 | MEM_READ8S =>
bits := address_in(1 downto 0) xor ENDIAN_MODE;
case bits is
when "00" => data_read_var(7 downto 0) := data_r(31 downto 24);
when "01" => data_read_var(7 downto 0) := data_r(23 downto 16);
when "10" => data_read_var(7 downto 0) := data_r(15 downto 8);
when others => data_read_var(7 downto 0) := data_r(7 downto 0);
end case;
if mem_source = MEM_READ8 or data_read_var(7) = '0' then
data_read_var(31 downto 8) := ZERO(31 downto 8);
else
data_read_var(31 downto 8) := ONES(31 downto 8);
end if;
when MEM_WRITE32 =>
data_write_var := data_write;
byte_we_var := "1111";
when MEM_WRITE16 =>
data_write_var := data_write(15 downto 0) & data_write(15 downto 0);
if address_in(1) = ENDIAN_MODE(1) then
byte_we_var := "1100";
else
byte_we_var := "0011";
end if;
when MEM_WRITE8 =>
data_write_var := data_write(7 downto 0) & data_write(7 downto 0) &
data_write(7 downto 0) & data_write(7 downto 0);
bits := address_in(1 downto 0) xor ENDIAN_MODE;
case bits is
when "00" =>
byte_we_var := "1000";
when "01" =>
byte_we_var := "0100";
when "10" =>
byte_we_var := "0010";
when others =>
byte_we_var := "0001";
end case;
when others =>
end case;
if mem_source = MEM_FETCH then --opcode fetch
address_var := address_pc;
opcode_next := data_r;
mem_state_next := STATE_ADDR;
else
if mem_state_reg = STATE_ADDR then
if pause_in = '0' then
address_var := address_in(31 downto 2);
mem_state_next := STATE_ACCESS;
pause_var := '1';
else
address_var := address_pc;
byte_we_var := "0000";
end if;
else --STATE_ACCESS
if pause_in = '0' then
address_var := address_pc;
opcode_next := next_opcode_reg;
mem_state_next := STATE_ADDR;
byte_we_var := "0000";
else
address_var := address_in(31 downto 2);
byte_we_var := "0000";
end if;
end if;
end if;
if nullify_op = '1' and pause_in = '0' then
opcode_next := ZERO; --NOP after beql
end if;
if reset_in = '1' then
mem_state_reg <= STATE_ADDR;
opcode_reg <= ZERO;
next_opcode_reg <= ZERO;
address_reg <= ZERO(31 downto 2);
byte_we_reg <= "0000";
elsif rising_edge(clk) then
if pause_in = '0' then
address_reg <= address_var;
byte_we_reg <= byte_we_var;
mem_state_reg <= mem_state_next;
opcode_reg <= opcode_next;
if mem_state_reg = STATE_ADDR then
next_opcode_reg <= data_r;
end if;
end if;
end if;
opcode_out <= opcode_reg;
data_read <= data_read_var;
pause_out <= pause_var;
address_next <= address_var;
byte_we_next <= byte_we_var;
address <= address_reg;
byte_we <= byte_we_reg;
data_w <= data_write_var;
end process; --data_proc
end; --architecture logic