1
0
mirror of git://projects.qi-hardware.com/nn-usb-fpga.git synced 2024-12-13 22:53:09 +02:00
nn-usb-fpga/plasma/logic/plasma_3e.vhd
2010-04-21 20:01:38 -05:00

278 lines
10 KiB
VHDL

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
--use work.mlite_pack.all;
entity plasma_3e is
port(CLK_50MHZ : in std_logic;
RS232_DCE_RXD : in std_logic;
RS232_DCE_TXD : out std_logic;
SD_CK_P : out std_logic; --DDR SDRAM clock_positive
SD_CK_N : out std_logic; --clock_negative
SD_CKE : out std_logic; --clock_enable
SD_BA : out std_logic_vector(1 downto 0); --bank_address
SD_A : out std_logic_vector(12 downto 0); --address(row or col)
SD_CS : out std_logic; --chip_select
SD_RAS : out std_logic; --row_address_strobe
SD_CAS : out std_logic; --column_address_strobe
SD_WE : out std_logic; --write_enable
SD_DQ : inout std_logic_vector(15 downto 0); --data
SD_UDM : out std_logic; --upper_byte_enable
SD_UDQS : inout std_logic; --upper_data_strobe
SD_LDM : out std_logic; --low_byte_enable
SD_LDQS : inout std_logic; --low_data_strobe
E_MDC : out std_logic; --Ethernet PHY
E_MDIO : inout std_logic; --management data in/out
E_RX_CLK : in std_logic; --receive clock
E_RX_DV : in std_logic; --data valid
E_RXD : in std_logic_vector(3 downto 0);
E_TX_CLK : in std_logic; --transmit clock
E_TX_EN : out std_logic; --data valid
E_TXD : out std_logic_vector(3 downto 0);
SF_CE0 : out std_logic; --NOR flash
SF_OE : out std_logic;
SF_WE : out std_logic;
SF_BYTE : out std_logic;
SF_STS : in std_logic; --status
SF_A : out std_logic_vector(24 downto 0);
SF_D : inout std_logic_vector(15 downto 1);
SPI_MISO : inout std_logic;
VGA_VSYNC : out std_logic; --VGA port
VGA_HSYNC : out std_logic;
VGA_RED : out std_logic;
VGA_GREEN : out std_logic;
VGA_BLUE : out std_logic;
PS2_CLK : in std_logic; --Keyboard
PS2_DATA : in std_logic;
LED : out std_logic_vector(7 downto 0);
ROT_CENTER : in std_logic;
ROT_A : in std_logic;
ROT_B : in std_logic;
BTN_EAST : in std_logic;
BTN_NORTH : in std_logic;
BTN_SOUTH : in std_logic;
BTN_WEST : in std_logic;
SW : in std_logic_vector(3 downto 0));
end; --entity plasma_if
architecture logic of plasma_3e is
component plasma
generic(memory_type : string := "XILINX_16X"; --"DUAL_PORT_" "ALTERA_LPM";
log_file : string := "UNUSED";
ethernet : std_logic := '0';
use_cache : std_logic := '0');
port(clk : in std_logic;
reset : in std_logic;
uart_write : out std_logic;
uart_read : in std_logic;
address : out std_logic_vector(31 downto 2);
byte_we : out std_logic_vector(3 downto 0);
data_write : out std_logic_vector(31 downto 0);
data_read : in std_logic_vector(31 downto 0);
mem_pause_in : in std_logic;
no_ddr_start : out std_logic;
no_ddr_stop : out std_logic;
gpio0_out : out std_logic_vector(31 downto 0);
gpioA_in : in std_logic_vector(31 downto 0));
end component; --plasma
component ddr_ctrl
port(clk : in std_logic;
clk_2x : in std_logic;
reset_in : in std_logic;
address : in std_logic_vector(25 downto 2);
byte_we : in std_logic_vector(3 downto 0);
data_w : in std_logic_vector(31 downto 0);
data_r : out std_logic_vector(31 downto 0);
active : in std_logic;
no_start : in std_logic;
no_stop : in std_logic;
pause : out std_logic;
SD_CK_P : out std_logic; --clock_positive
SD_CK_N : out std_logic; --clock_negative
SD_CKE : out std_logic; --clock_enable
SD_BA : out std_logic_vector(1 downto 0); --bank_address
SD_A : out std_logic_vector(12 downto 0); --address(row or col)
SD_CS : out std_logic; --chip_select
SD_RAS : out std_logic; --row_address_strobe
SD_CAS : out std_logic; --column_address_strobe
SD_WE : out std_logic; --write_enable
SD_DQ : inout std_logic_vector(15 downto 0); --data
SD_UDM : out std_logic; --upper_byte_enable
SD_UDQS : inout std_logic; --upper_data_strobe
SD_LDM : out std_logic; --low_byte_enable
SD_LDQS : inout std_logic); --low_data_strobe
end component; --ddr
signal clk_reg : std_logic;
signal address : std_logic_vector(31 downto 2);
signal data_write : std_logic_vector(31 downto 0);
signal data_read : std_logic_vector(31 downto 0);
signal data_r_ddr : std_logic_vector(31 downto 0);
signal byte_we : std_logic_vector(3 downto 0);
signal write_enable : std_logic;
signal pause_ddr : std_logic;
signal pause : std_logic;
signal no_ddr_start : std_logic;
signal no_ddr_stop : std_logic;
signal ddr_active : std_logic;
signal flash_active : std_logic;
signal flash_cnt : std_logic_vector(1 downto 0);
signal flash_we : std_logic;
signal reset : std_logic;
signal gpio0_out : std_logic_vector(31 downto 0);
signal gpio0_in : std_logic_vector(31 downto 0);
begin --architecture
--Divide 50 MHz clock by two
clk_div: process(reset, CLK_50MHZ, clk_reg)
begin
if reset = '1' then
clk_reg <= '0';
elsif rising_edge(CLK_50MHZ) then
clk_reg <= not clk_reg;
end if;
end process; --clk_div
reset <= ROT_CENTER;
E_TX_EN <= gpio0_out(28); --Ethernet
E_TXD <= gpio0_out(27 downto 24);
E_MDC <= gpio0_out(23);
E_MDIO <= gpio0_out(21) when gpio0_out(22) = '1' else 'Z';
VGA_VSYNC <= gpio0_out(20);
VGA_HSYNC <= gpio0_out(19);
VGA_RED <= gpio0_out(18);
VGA_GREEN <= gpio0_out(17);
VGA_BLUE <= gpio0_out(16);
LED <= gpio0_out(7 downto 0);
gpio0_in(31 downto 21) <= (others => '0');
gpio0_in(20 downto 13) <= E_RX_CLK & E_RX_DV & E_RXD & E_TX_CLK & E_MDIO;
gpio0_in(12 downto 10) <= SF_STS & PS2_CLK & PS2_DATA;
gpio0_in(9 downto 0) <= ROT_A & ROT_B & BTN_EAST & BTN_NORTH &
BTN_SOUTH & BTN_WEST & SW;
ddr_active <= '1' when address(31 downto 28) = "0001" else '0';
flash_active <= '1' when address(31 downto 28) = "0011" else '0';
write_enable <= '1' when byte_we /= "0000" else '0';
u1_plama: plasma
generic map (memory_type => "XILINX_16X",
log_file => "UNUSED",
ethernet => '1',
use_cache => '1')
--generic map (memory_type => "DUAL_PORT_",
-- log_file => "output2.txt",
-- ethernet => '1')
PORT MAP (
clk => clk_reg,
reset => reset,
uart_write => RS232_DCE_TXD,
uart_read => RS232_DCE_RXD,
address => address,
byte_we => byte_we,
data_write => data_write,
data_read => data_read,
mem_pause_in => pause,
no_ddr_start => no_ddr_start,
no_ddr_stop => no_ddr_stop,
gpio0_out => gpio0_out,
gpioA_in => gpio0_in);
u2_ddr: ddr_ctrl
port map (
clk => clk_reg,
clk_2x => CLK_50MHZ,
reset_in => reset,
address => address(25 downto 2),
byte_we => byte_we,
data_w => data_write,
data_r => data_r_ddr,
active => ddr_active,
no_start => no_ddr_start,
no_stop => no_ddr_stop,
pause => pause_ddr,
SD_CK_P => SD_CK_P, --clock_positive
SD_CK_N => SD_CK_N, --clock_negative
SD_CKE => SD_CKE, --clock_enable
SD_BA => SD_BA, --bank_address
SD_A => SD_A, --address(row or col)
SD_CS => SD_CS, --chip_select
SD_RAS => SD_RAS, --row_address_strobe
SD_CAS => SD_CAS, --column_address_strobe
SD_WE => SD_WE, --write_enable
SD_DQ => SD_DQ, --data
SD_UDM => SD_UDM, --upper_byte_enable
SD_UDQS => SD_UDQS, --upper_data_strobe
SD_LDM => SD_LDM, --low_byte_enable
SD_LDQS => SD_LDQS); --low_data_strobe
--Flash control (only lower 16-bit data lines connected)
flash_ctrl: process(reset, clk_reg, flash_active, write_enable,
flash_cnt, pause_ddr)
begin
if reset = '1' then
flash_cnt <= "00";
flash_we <= '1';
elsif rising_edge(clk_reg) then
if flash_active = '0' then
flash_cnt <= "00";
flash_we <= '1';
else
if write_enable = '1' and flash_cnt(1) = '0' then
flash_we <= '0';
else
flash_we <= '1';
end if;
if flash_cnt /= "11" then
flash_cnt <= flash_cnt + 1;
end if;
end if;
end if; --rising_edge(clk_reg)
if pause_ddr = '1' or (flash_active = '1' and flash_cnt /= "11") then
pause <= '1';
else
pause <= '0';
end if;
end process; --flash_ctrl
SF_CE0 <= not flash_active;
SF_OE <= write_enable or not flash_active;
SF_WE <= flash_we;
SF_BYTE <= '1'; --16-bit access
SF_A <= address(25 downto 2) & '0' when flash_active = '1' else
"0000000000000000000000000";
SF_D <= data_write(15 downto 1) when
flash_active = '1' and write_enable = '1'
else "ZZZZZZZZZZZZZZZ";
SPI_MISO <= data_write(0) when
flash_active = '1' and write_enable = '1'
else 'Z';
data_read(31 downto 16) <= data_r_ddr(31 downto 16);
data_read(15 downto 0) <= data_r_ddr(15 downto 0) when flash_active = '0'
else SF_D & SPI_MISO;
end; --architecture logic