1
0
mirror of git://projects.qi-hardware.com/nn-usb-fpga.git synced 2025-01-22 17:41:06 +02:00
2010-04-21 20:01:38 -05:00

1468 lines
36 KiB
C

/*--------------------------------------------------------------------
* TITLE: Plasma Real Time Operating System
* AUTHOR: Steve Rhoads (rhoadss@yahoo.com)
* DATE CREATED: 12/17/05
* FILENAME: rtos.c
* PROJECT: Plasma CPU core
* COPYRIGHT: Software placed into the public domain by the author.
* Software 'as is' without warranty. Author liable for nothing.
* DESCRIPTION:
* Plasma Real Time Operating System
* Fully pre-emptive RTOS with support for:
* Heaps, Threads, Semaphores, Mutexes, Message Queues, and Timers.
* This file tries to be hardware independent except for calls to:
* MemoryRead() and MemoryWrite() for interrupts.
* Partial support for multiple CPUs using symmetric multiprocessing.
*--------------------------------------------------------------------*/
#include "plasma.h"
#include "rtos.h"
#define HEAP_MAGIC 0x1234abcd
#define THREAD_MAGIC 0x4321abcd
#define SEM_RESERVED_COUNT 2
#define INFO_COUNT 4
#define HEAP_COUNT 8
/*************** Structures ***************/
#ifdef WIN32
#define setjmp _setjmp
//x86 registers
typedef struct jmp_buf2 {
uint32 Ebp, Ebx, Edi, Esi, sp, pc, extra[10];
} jmp_buf2;
#elif defined(ARM_CPU)
//ARM registers
typedef struct jmp_buf2 {
uint32 r[13], sp, lr, pc, cpsr, extra[5];
} jmp_buf2;
#else
//Plasma registers
typedef struct jmp_buf2 {
uint32 s[9], gp, sp, pc;
} jmp_buf2;
#endif
typedef struct HeapNode_s {
struct HeapNode_s *next;
int size;
} HeapNode_t;
struct OS_Heap_s {
uint32 magic;
const char *name;
OS_Semaphore_t *semaphore;
HeapNode_t *available;
HeapNode_t base;
struct OS_Heap_s *alternate;
};
//typedef struct OS_Heap_s OS_Heap_t;
typedef enum {
THREAD_PEND = 0, //Thread in semaphore's linked list
THREAD_READY = 1, //Thread in ThreadHead linked list
THREAD_RUNNING = 2 //Thread == ThreadCurrent[cpu]
} OS_ThreadState_e;
struct OS_Thread_s {
const char *name; //Name of thread
OS_ThreadState_e state; //Pending, ready, or running
int cpuIndex; //Which CPU is running the thread
int cpuLock; //Lock the thread to a specific CPU
jmp_buf env; //Registers saved during context swap
OS_FuncPtr_t funcPtr; //First function called
void *arg; //Argument to first function called
uint32 priority; //Priority of thread (0=low, 255=high)
uint32 ticksTimeout; //Tick value when semaphore pend times out
void *info[INFO_COUNT]; //User storage
OS_Semaphore_t *semaphorePending; //Semaphore thread is blocked on
int returnCode; //Return value from semaphore pend
uint32 processId; //Process ID if using MMU
OS_Heap_t *heap; //Heap used if no heap specified
struct OS_Thread_s *next; //Linked list of threads by priority
struct OS_Thread_s *prev;
struct OS_Thread_s *nextTimeout; //Linked list of threads by timeout
struct OS_Thread_s *prevTimeout;
uint32 magic[1]; //Bottom of stack to detect stack overflow
};
//typedef struct OS_Thread_s OS_Thread_t;
struct OS_Semaphore_s {
const char *name;
struct OS_Thread_s *threadHead; //threads pending on semaphore
int count;
};
//typedef struct OS_Semaphore_s OS_Semaphore_t;
struct OS_Mutex_s {
OS_Semaphore_t *semaphore;
OS_Thread_t *thread;
int count;
};
//typedef struct OS_Mutex_s OS_Mutex_t;
struct OS_MQueue_s {
const char *name;
OS_Semaphore_t *semaphore;
int count, size, used, read, write;
};
//typedef struct OS_MQueue_s OS_MQueue_t;
struct OS_Timer_s {
const char *name;
struct OS_Timer_s *next, *prev;
uint32 ticksTimeout;
uint32 ticksRestart;
int active;
OS_TimerFuncPtr_t callback;
OS_MQueue_t *mqueue;
uint32 info;
};
//typedef struct OS_Timer_s OS_Timer_t;
/*************** Globals ******************/
static OS_Heap_t *HeapArray[HEAP_COUNT];
static int InterruptInside[OS_CPU_COUNT];
static int ThreadNeedReschedule[OS_CPU_COUNT];
static OS_Thread_t *ThreadCurrent[OS_CPU_COUNT]; //Currently running thread(s)
static OS_Thread_t *ThreadHead; //Linked list of threads sorted by priority
static OS_Thread_t *TimeoutHead; //Linked list of threads sorted by timeout
static int ThreadSwapEnabled;
static uint32 ThreadTime;
static void *NeedToFree;
static OS_Semaphore_t SemaphoreReserved[SEM_RESERVED_COUNT];
static OS_Semaphore_t *SemaphoreSleep;
static OS_Semaphore_t *SemaphoreRelease;
static OS_Semaphore_t *SemaphoreLock;
static OS_Semaphore_t *SemaphoreTimer;
static OS_Timer_t *TimerHead; //Linked list of timers sorted by timeout
static OS_FuncPtr_t Isr[32];
/***************** Heap *******************/
/******************************************/
OS_Heap_t *OS_HeapCreate(const char *name, void *memory, uint32 size)
{
OS_Heap_t *heap;
assert(((uint32)memory & 3) == 0);
heap = (OS_Heap_t*)memory;
heap->magic = HEAP_MAGIC;
heap->name = name;
heap->semaphore = OS_SemaphoreCreate(name, 1);
heap->available = (HeapNode_t*)(heap + 1);
heap->available->next = &heap->base;
heap->available->size = (size - sizeof(OS_Heap_t)) / sizeof(HeapNode_t);
heap->base.next = heap->available;
heap->base.size = 0;
return heap;
}
/******************************************/
void OS_HeapDestroy(OS_Heap_t *heap)
{
OS_SemaphoreDelete(heap->semaphore);
}
/******************************************/
//Modified from K&R
void *OS_HeapMalloc(OS_Heap_t *heap, int bytes)
{
HeapNode_t *node, *prevp;
int nunits;
if(heap == NULL && OS_ThreadSelf())
heap = OS_ThreadSelf()->heap;
if((uint32)heap < HEAP_COUNT)
heap = HeapArray[(int)heap];
nunits = (bytes + sizeof(HeapNode_t) - 1) / sizeof(HeapNode_t) + 1;
OS_SemaphorePend(heap->semaphore, OS_WAIT_FOREVER);
prevp = heap->available;
for(node = prevp->next; ; prevp = node, node = node->next)
{
if(node->size >= nunits) //Big enough?
{
if(node->size == nunits) //Exactly
prevp->next = node->next;
else
{ //Allocate tail end
node->size -= nunits;
node += node->size;
node->size = nunits;
}
heap->available = prevp;
node->next = (HeapNode_t*)heap;
OS_SemaphorePost(heap->semaphore);
return (void*)(node + 1);
}
if(node == heap->available) //Wrapped around free list
{
OS_SemaphorePost(heap->semaphore);
if(heap->alternate)
return OS_HeapMalloc(heap->alternate, bytes);
return NULL;
}
}
}
/******************************************/
//Modified from K&R
void OS_HeapFree(void *block)
{
OS_Heap_t *heap;
HeapNode_t *bp, *node;
assert(block);
bp = (HeapNode_t*)block - 1; //point to block header
heap = (OS_Heap_t*)bp->next;
assert(heap->magic == HEAP_MAGIC);
if(heap->magic != HEAP_MAGIC)
return;
OS_SemaphorePend(heap->semaphore, OS_WAIT_FOREVER);
for(node = heap->available; !(node < bp && bp < node->next); node = node->next)
{
if(node >= node->next && (bp > node || bp < node->next))
break; //freed block at start or end of area
}
if(bp + bp->size == node->next) //join to upper
{
bp->size += node->next->size;
bp->next = node->next->next;
}
else
{
bp->next = node->next;
}
if(node + node->size == bp) //join to lower
{
node->size += bp->size;
node->next = bp->next;
}
else
node->next = bp;
heap->available = node;
OS_SemaphorePost(heap->semaphore);
}
/******************************************/
void OS_HeapAlternate(OS_Heap_t *heap, OS_Heap_t *alternate)
{
heap->alternate = alternate;
}
/******************************************/
void OS_HeapRegister(void *index, OS_Heap_t *heap)
{
if((uint32)index < HEAP_COUNT)
HeapArray[(int)index] = heap;
}
/***************** Thread *****************/
/******************************************/
//Linked list of threads sorted by priority
//The listed list is either ThreadHead (ready to run threads not including
//the currently running thread) or a list of threads waiting on a semaphore.
//Must be called with interrupts disabled
static void OS_ThreadPriorityInsert(OS_Thread_t **head, OS_Thread_t *thread)
{
OS_Thread_t *node, *prev;
prev = NULL;
for(node = *head; node; node = node->next)
{
if(node->priority < thread->priority)
break;
prev = node;
}
if(prev == NULL)
{
thread->next = *head;
thread->prev = NULL;
if(*head)
(*head)->prev = thread;
*head = thread;
}
else
{
if(prev->next)
prev->next->prev = thread;
thread->next = prev->next;
thread->prev = prev;
prev->next = thread;
}
assert(ThreadHead);
thread->state = THREAD_READY;
}
/******************************************/
//Must be called with interrupts disabled
static void OS_ThreadPriorityRemove(OS_Thread_t **head, OS_Thread_t *thread)
{
assert(thread->magic[0] == THREAD_MAGIC); //check stack overflow
if(thread->prev == NULL)
*head = thread->next;
else
thread->prev->next = thread->next;
if(thread->next)
thread->next->prev = thread->prev;
thread->next = NULL;
thread->prev = NULL;
}
/******************************************/
//Linked list of threads sorted by timeout value
//Must be called with interrupts disabled
static void OS_ThreadTimeoutInsert(OS_Thread_t *thread)
{
OS_Thread_t *node, *prev;
int diff;
prev = NULL;
for(node = TimeoutHead; node; node = node->nextTimeout)
{
diff = thread->ticksTimeout - node->ticksTimeout;
if(diff <= 0)
break;
prev = node;
}
if(prev == NULL)
{
thread->nextTimeout = TimeoutHead;
thread->prevTimeout = NULL;
if(TimeoutHead)
TimeoutHead->prevTimeout = thread;
TimeoutHead = thread;
}
else
{
if(prev->nextTimeout)
prev->nextTimeout->prevTimeout = thread;
thread->nextTimeout = prev->nextTimeout;
thread->prevTimeout = prev;
prev->nextTimeout = thread;
}
}
/******************************************/
//Must be called with interrupts disabled
static void OS_ThreadTimeoutRemove(OS_Thread_t *thread)
{
if(thread->prevTimeout == NULL && TimeoutHead != thread)
return; //not in list
if(thread->prevTimeout == NULL)
TimeoutHead = thread->nextTimeout;
else
thread->prevTimeout->nextTimeout = thread->nextTimeout;
if(thread->nextTimeout)
thread->nextTimeout->prevTimeout = thread->prevTimeout;
thread->nextTimeout = NULL;
thread->prevTimeout = NULL;
}
/******************************************/
//Loads highest priority thread from the ThreadHead linked list
//The currently running thread isn't in the ThreadHead list
//Must be called with interrupts disabled
static void OS_ThreadReschedule(int roundRobin)
{
OS_Thread_t *threadNext, *threadCurrent;
int rc, cpuIndex = OS_CpuIndex();
if(ThreadSwapEnabled == 0 || InterruptInside[cpuIndex])
{
ThreadNeedReschedule[cpuIndex] |= 2 + roundRobin; //Reschedule later
return;
}
//Determine which thread should run
threadNext = ThreadHead;
while(threadNext && threadNext->cpuLock != -1 &&
threadNext->cpuLock != cpuIndex)
threadNext = threadNext->next;
if(threadNext == NULL)
return;
threadCurrent = ThreadCurrent[cpuIndex];
if(threadCurrent == NULL ||
threadCurrent->state == THREAD_PEND ||
threadCurrent->priority < threadNext->priority ||
(roundRobin && threadCurrent->priority == threadNext->priority))
{
//Swap threads
ThreadCurrent[cpuIndex] = threadNext;
if(threadCurrent)
{
assert(threadCurrent->magic[0] == THREAD_MAGIC); //check stack overflow
if(threadCurrent->state == THREAD_RUNNING)
OS_ThreadPriorityInsert(&ThreadHead, threadCurrent);
rc = setjmp(threadCurrent->env); //ANSI C call to save registers
if(rc)
return; //Returned from longjmp()
}
//Remove the new running thread from the ThreadHead linked list
threadNext = ThreadCurrent[OS_CpuIndex()]; //removed warning
assert(threadNext->state == THREAD_READY);
OS_ThreadPriorityRemove(&ThreadHead, threadNext);
threadNext->state = THREAD_RUNNING;
threadNext->cpuIndex = OS_CpuIndex();
longjmp(threadNext->env, 1); //ANSI C call to restore registers
}
}
/******************************************/
void OS_ThreadCpuLock(OS_Thread_t *thread, int cpuIndex)
{
thread->cpuLock = cpuIndex;
if(thread == OS_ThreadSelf() && cpuIndex != (int)OS_CpuIndex())
OS_ThreadSleep(1);
}
/******************************************/
static void OS_ThreadInit(void *arg)
{
uint32 cpuIndex = OS_CpuIndex();
(void)arg;
OS_CriticalEnd(1);
ThreadCurrent[cpuIndex]->funcPtr(ThreadCurrent[cpuIndex]->arg);
OS_ThreadExit();
}
/******************************************/
//Stops warning "argument X might be clobbered by `longjmp'"
static void OS_ThreadRegsInit(jmp_buf env)
{
setjmp(env); //ANSI C call to save registers
}
/******************************************/
OS_Thread_t *OS_ThreadCreate(const char *name,
OS_FuncPtr_t funcPtr,
void *arg,
uint32 priority,
uint32 stackSize)
{
OS_Thread_t *thread;
uint8 *stack;
jmp_buf2 *env;
uint32 state;
OS_SemaphorePend(SemaphoreRelease, OS_WAIT_FOREVER);
if(NeedToFree)
OS_HeapFree(NeedToFree);
NeedToFree = NULL;
OS_SemaphorePost(SemaphoreRelease);
if(stackSize == 0)
stackSize = STACK_SIZE_DEFAULT;
if(stackSize < STACK_SIZE_MINIMUM)
stackSize = STACK_SIZE_MINIMUM;
thread = (OS_Thread_t*)OS_HeapMalloc(NULL, sizeof(OS_Thread_t) + stackSize);
assert(thread);
if(thread == NULL)
return NULL;
memset(thread, 0, sizeof(OS_Thread_t));
stack = (uint8*)(thread + 1);
memset(stack, 0xcd, stackSize);
thread->name = name;
thread->state = THREAD_READY;
thread->cpuLock = -1;
thread->funcPtr = funcPtr;
thread->arg = arg;
thread->priority = priority;
thread->semaphorePending = NULL;
thread->returnCode = 0;
if(OS_ThreadSelf())
{
thread->processId = OS_ThreadSelf()->processId;
thread->heap = OS_ThreadSelf()->heap;
}
else
{
thread->processId = 0;
thread->heap = NULL;
}
thread->next = NULL;
thread->prev = NULL;
thread->nextTimeout = NULL;
thread->prevTimeout = NULL;
thread->magic[0] = THREAD_MAGIC;
OS_ThreadRegsInit(thread->env);
env = (jmp_buf2*)thread->env;
env->sp = (uint32)stack + stackSize - 24; //minimum stack frame size
env->pc = (uint32)OS_ThreadInit;
state = OS_CriticalBegin();
OS_ThreadPriorityInsert(&ThreadHead, thread);
OS_ThreadReschedule(0);
OS_CriticalEnd(state);
return thread;
}
/******************************************/
void OS_ThreadExit(void)
{
uint32 state, cpuIndex = OS_CpuIndex();
for(;;)
{
OS_SemaphorePend(SemaphoreRelease, OS_WAIT_FOREVER);
if(NeedToFree)
OS_HeapFree(NeedToFree);
NeedToFree = NULL;
OS_SemaphorePost(SemaphoreRelease);
state = OS_CriticalBegin();
if(NeedToFree)
{
OS_CriticalEnd(state);
continue;
}
ThreadCurrent[cpuIndex]->state = THREAD_PEND;
NeedToFree = ThreadCurrent[cpuIndex];
OS_ThreadReschedule(0);
OS_CriticalEnd(state);
}
}
/******************************************/
OS_Thread_t *OS_ThreadSelf(void)
{
return ThreadCurrent[OS_CpuIndex()];
}
/******************************************/
void OS_ThreadSleep(int ticks)
{
OS_SemaphorePend(SemaphoreSleep, ticks);
}
/******************************************/
uint32 OS_ThreadTime(void)
{
return ThreadTime;
}
/******************************************/
void OS_ThreadInfoSet(OS_Thread_t *thread, uint32 index, void *Info)
{
if(index < INFO_COUNT)
thread->info[index] = Info;
}
/******************************************/
void *OS_ThreadInfoGet(OS_Thread_t *thread, uint32 index)
{
if(index < INFO_COUNT)
return thread->info[index];
return NULL;
}
/******************************************/
uint32 OS_ThreadPriorityGet(OS_Thread_t *thread)
{
return thread->priority;
}
/******************************************/
void OS_ThreadPrioritySet(OS_Thread_t *thread, uint32 priority)
{
uint32 state;
state = OS_CriticalBegin();
thread->priority = priority;
if(thread->state == THREAD_READY)
{
OS_ThreadPriorityRemove(&ThreadHead, thread);
OS_ThreadPriorityInsert(&ThreadHead, thread);
OS_ThreadReschedule(0);
}
OS_CriticalEnd(state);
}
/******************************************/
void OS_ThreadProcessId(OS_Thread_t *thread, uint32 processId, OS_Heap_t *heap)
{
thread->processId = processId;
thread->heap = heap;
}
/******************************************/
//Must be called with interrupts disabled
void OS_ThreadTick(void *Arg)
{
OS_Thread_t *thread;
OS_Semaphore_t *semaphore;
int diff;
(void)Arg;
++ThreadTime;
while(TimeoutHead)
{
thread = TimeoutHead;
diff = ThreadTime - thread->ticksTimeout;
if(diff < 0)
break;
OS_ThreadTimeoutRemove(thread);
semaphore = thread->semaphorePending;
++semaphore->count;
thread->semaphorePending = NULL;
thread->returnCode = -1;
OS_ThreadPriorityRemove(&semaphore->threadHead, thread);
OS_ThreadPriorityInsert(&ThreadHead, thread);
}
OS_ThreadReschedule(1);
}
/***************** Semaphore **************/
/******************************************/
OS_Semaphore_t *OS_SemaphoreCreate(const char *name, uint32 count)
{
OS_Semaphore_t *semaphore;
static int semCount = 0;
if(semCount < SEM_RESERVED_COUNT)
semaphore = &SemaphoreReserved[semCount++]; //Heap not ready yet
else
semaphore = (OS_Semaphore_t*)OS_HeapMalloc(HEAP_SYSTEM, sizeof(OS_Semaphore_t));
assert(semaphore);
if(semaphore == NULL)
return NULL;
semaphore->name = name;
semaphore->threadHead = NULL;
semaphore->count = count;
return semaphore;
}
/******************************************/
void OS_SemaphoreDelete(OS_Semaphore_t *semaphore)
{
while(semaphore->threadHead)
OS_SemaphorePost(semaphore);
OS_HeapFree(semaphore);
}
/******************************************/
int OS_SemaphorePend(OS_Semaphore_t *semaphore, int ticks)
{
uint32 state, cpuIndex;
OS_Thread_t *thread;
int returnCode=0;
assert(semaphore);
assert(InterruptInside[OS_CpuIndex()] == 0);
state = OS_CriticalBegin();
if(--semaphore->count < 0)
{
if(ticks == 0)
{
++semaphore->count;
OS_CriticalEnd(state);
return -1;
}
cpuIndex = OS_CpuIndex();
thread = ThreadCurrent[cpuIndex];
assert(thread);
thread->semaphorePending = semaphore;
thread->ticksTimeout = ticks + OS_ThreadTime();
//FYI: The current thread isn't in the ThreadHead linked list
OS_ThreadPriorityInsert(&semaphore->threadHead, thread);
thread->state = THREAD_PEND;
if(ticks != OS_WAIT_FOREVER)
OS_ThreadTimeoutInsert(thread);
assert(ThreadHead);
OS_ThreadReschedule(0);
returnCode = thread->returnCode;
}
OS_CriticalEnd(state);
return returnCode;
}
/******************************************/
void OS_SemaphorePost(OS_Semaphore_t *semaphore)
{
uint32 state;
OS_Thread_t *thread;
assert(semaphore);
state = OS_CriticalBegin();
if(++semaphore->count <= 0)
{
thread = semaphore->threadHead;
OS_ThreadTimeoutRemove(thread);
OS_ThreadPriorityRemove(&semaphore->threadHead, thread);
OS_ThreadPriorityInsert(&ThreadHead, thread);
thread->semaphorePending = NULL;
thread->returnCode = 0;
OS_ThreadReschedule(0);
}
OS_CriticalEnd(state);
}
/***************** Mutex ******************/
/******************************************/
OS_Mutex_t *OS_MutexCreate(const char *name)
{
OS_Mutex_t *mutex;
mutex = (OS_Mutex_t*)OS_HeapMalloc(HEAP_SYSTEM, sizeof(OS_Mutex_t));
if(mutex == NULL)
return NULL;
mutex->semaphore = OS_SemaphoreCreate(name, 1);
if(mutex->semaphore == NULL)
return NULL;
mutex->thread = NULL;
mutex->count = 0;
return mutex;
}
/******************************************/
void OS_MutexDelete(OS_Mutex_t *mutex)
{
OS_SemaphoreDelete(mutex->semaphore);
OS_HeapFree(mutex);
}
/******************************************/
void OS_MutexPend(OS_Mutex_t *mutex)
{
OS_Thread_t *thread;
assert(mutex);
thread = OS_ThreadSelf();
if(thread == mutex->thread)
{
++mutex->count;
return;
}
OS_SemaphorePend(mutex->semaphore, OS_WAIT_FOREVER);
mutex->thread = thread;
mutex->count = 1;
}
/******************************************/
void OS_MutexPost(OS_Mutex_t *mutex)
{
assert(mutex);
assert(mutex->thread == OS_ThreadSelf());
assert(mutex->count > 0);
if(--mutex->count <= 0)
{
mutex->thread = NULL;
OS_SemaphorePost(mutex->semaphore);
}
}
/***************** MQueue *****************/
/******************************************/
OS_MQueue_t *OS_MQueueCreate(const char *name,
int messageCount,
int messageBytes)
{
OS_MQueue_t *queue;
int size;
size = messageBytes / sizeof(uint32);
queue = (OS_MQueue_t*)OS_HeapMalloc(HEAP_SYSTEM, sizeof(OS_MQueue_t) +
messageCount * size * 4);
if(queue == NULL)
return queue;
queue->name = name;
queue->semaphore = OS_SemaphoreCreate(name, 0);
if(queue->semaphore == NULL)
return NULL;
queue->count = messageCount;
queue->size = size;
queue->used = 0;
queue->read = 0;
queue->write = 0;
return queue;
}
/******************************************/
void OS_MQueueDelete(OS_MQueue_t *mQueue)
{
OS_SemaphoreDelete(mQueue->semaphore);
OS_HeapFree(mQueue);
}
/******************************************/
int OS_MQueueSend(OS_MQueue_t *mQueue, void *message)
{
uint32 state, *dst, *src;
int i;
assert(mQueue);
src = (uint32*)message;
state = OS_CriticalBegin();
if(++mQueue->used > mQueue->count)
{
--mQueue->used;
OS_CriticalEnd(state);
return -1;
}
dst = (uint32*)(mQueue + 1) + mQueue->write * mQueue->size;
for(i = 0; i < mQueue->size; ++i)
dst[i] = src[i];
if(++mQueue->write >= mQueue->count)
mQueue->write = 0;
OS_CriticalEnd(state);
OS_SemaphorePost(mQueue->semaphore);
return 0;
}
/******************************************/
int OS_MQueueGet(OS_MQueue_t *mQueue, void *message, int ticks)
{
uint32 state, *dst, *src;
int i, rc;
assert(mQueue);
dst = (uint32*)message;
rc = OS_SemaphorePend(mQueue->semaphore, ticks);
if(rc)
return rc;
state = OS_CriticalBegin();
--mQueue->used;
src = (uint32*)(mQueue + 1) + mQueue->read * mQueue->size;
for(i = 0; i < mQueue->size; ++i)
dst[i] = src[i];
if(++mQueue->read >= mQueue->count)
mQueue->read = 0;
OS_CriticalEnd(state);
return 0;
}
/***************** Jobs *******************/
/******************************************/
typedef void (*JobFunc_t)();
static OS_MQueue_t *jobQueue;
static OS_Thread_t *jobThread;
static void JobThread(void *arg)
{
uint32 message[4];
JobFunc_t funcPtr;
(void)arg;
for(;;)
{
OS_MQueueGet(jobQueue, message, OS_WAIT_FOREVER);
funcPtr = (JobFunc_t)message[0];
funcPtr(message[1], message[2], message[3]);
}
}
/******************************************/
void OS_Job(void (*funcPtr)(), void *arg0, void *arg1, void *arg2)
{
uint32 message[4];
int rc;
OS_SemaphorePend(SemaphoreLock, OS_WAIT_FOREVER);
if(jobThread == NULL)
{
jobQueue = OS_MQueueCreate("job", 100, 16);
jobThread = OS_ThreadCreate("job", JobThread, NULL, 150, 4000);
}
OS_SemaphorePost(SemaphoreLock);
message[0] = (uint32)funcPtr;
message[1] = (uint32)arg0;
message[2] = (uint32)arg1;
message[3] = (uint32)arg2;
rc = OS_MQueueSend(jobQueue, message);
}
/***************** Timer ******************/
/******************************************/
static void OS_TimerThread(void *arg)
{
uint32 timeNow;
int diff, ticks;
uint32 message[8];
OS_Timer_t *timer;
(void)arg;
timeNow = OS_ThreadTime();
for(;;)
{
//Determine how long to sleep
OS_SemaphorePend(SemaphoreLock, OS_WAIT_FOREVER);
if(TimerHead)
ticks = TimerHead->ticksTimeout - timeNow;
else
ticks = OS_WAIT_FOREVER;
OS_SemaphorePost(SemaphoreLock);
OS_SemaphorePend(SemaphoreTimer, ticks);
//Send messages for all timed out timers
timeNow = OS_ThreadTime();
for(;;)
{
timer = NULL;
OS_SemaphorePend(SemaphoreLock, OS_WAIT_FOREVER);
if(TimerHead)
{
diff = timeNow - TimerHead->ticksTimeout;
if(diff >= 0)
timer = TimerHead;
}
OS_SemaphorePost(SemaphoreLock);
if(timer == NULL)
break;
if(timer->ticksRestart)
OS_TimerStart(timer, timer->ticksRestart, timer->ticksRestart);
else
OS_TimerStop(timer);
if(timer->callback)
timer->callback(timer, timer->info);
else
{
//Send message
message[0] = MESSAGE_TYPE_TIMER;
message[1] = (uint32)timer;
message[2] = timer->info;
OS_MQueueSend(timer->mqueue, message);
}
}
}
}
/******************************************/
OS_Timer_t *OS_TimerCreate(const char *name, OS_MQueue_t *mQueue, uint32 info)
{
OS_Timer_t *timer;
OS_SemaphorePend(SemaphoreLock, OS_WAIT_FOREVER);
if(SemaphoreTimer == NULL)
{
SemaphoreTimer = OS_SemaphoreCreate("Timer", 0);
OS_ThreadCreate("Timer", OS_TimerThread, NULL, 250, 2000);
}
OS_SemaphorePost(SemaphoreLock);
timer = (OS_Timer_t*)OS_HeapMalloc(HEAP_SYSTEM, sizeof(OS_Timer_t));
if(timer == NULL)
return NULL;
timer->name = name;
timer->callback = NULL;
timer->mqueue = mQueue;
timer->next = NULL;
timer->prev = NULL;
timer->info = info;
timer->active = 0;
return timer;
}
/******************************************/
void OS_TimerDelete(OS_Timer_t *timer)
{
OS_TimerStop(timer);
OS_HeapFree(timer);
}
/******************************************/
void OS_TimerCallback(OS_Timer_t *timer, OS_TimerFuncPtr_t callback)
{
timer->callback = callback;
}
/******************************************/
//Must not be called from an ISR
void OS_TimerStart(OS_Timer_t *timer, uint32 ticks, uint32 ticksRestart)
{
OS_Timer_t *node, *prev;
int diff, check=0;
assert(timer);
assert(InterruptInside[OS_CpuIndex()] == 0);
ticks += OS_ThreadTime();
if(timer->active)
OS_TimerStop(timer);
OS_SemaphorePend(SemaphoreLock, OS_WAIT_FOREVER);
if(timer->active)
{
//Prevent race condition
OS_SemaphorePost(SemaphoreLock);
return;
}
timer->ticksTimeout = ticks;
timer->ticksRestart = ticksRestart;
timer->active = 1;
prev = NULL;
for(node = TimerHead; node; node = node->next)
{
diff = ticks - node->ticksTimeout;
if(diff <= 0)
break;
prev = node;
}
timer->next = node;
timer->prev = prev;
if(node)
node->prev = timer;
if(prev == NULL)
{
TimerHead = timer;
check = 1;
}
else
prev->next = timer;
OS_SemaphorePost(SemaphoreLock);
if(check)
OS_SemaphorePost(SemaphoreTimer);
}
/******************************************/
//Must not be called from an ISR
void OS_TimerStop(OS_Timer_t *timer)
{
assert(timer);
assert(InterruptInside[OS_CpuIndex()] == 0);
OS_SemaphorePend(SemaphoreLock, OS_WAIT_FOREVER);
if(timer->active)
{
timer->active = 0;
if(timer->prev == NULL)
TimerHead = timer->next;
else
timer->prev->next = timer->next;
if(timer->next)
timer->next->prev = timer->prev;
}
OS_SemaphorePost(SemaphoreLock);
}
/***************** ISR ********************/
/******************************************/
void OS_InterruptServiceRoutine(uint32 status, uint32 *stack)
{
int i;
uint32 state, cpuIndex = OS_CpuIndex();
if(status == 0 && Isr[31])
Isr[31](stack); //SYSCALL or BREAK
InterruptInside[cpuIndex] = 1;
i = 0;
do
{
if(status & 1)
{
if(Isr[i])
Isr[i](stack);
else
OS_InterruptMaskClear(1 << i);
}
status >>= 1;
++i;
} while(status);
InterruptInside[cpuIndex] = 0;
state = OS_SpinLock();
if(ThreadNeedReschedule[cpuIndex])
OS_ThreadReschedule(ThreadNeedReschedule[cpuIndex] & 1);
OS_SpinUnlock(state);
}
/******************************************/
void OS_InterruptRegister(uint32 mask, OS_FuncPtr_t funcPtr)
{
int i;
for(i = 0; i < 32; ++i)
{
if(mask & (1 << i))
Isr[i] = funcPtr;
}
}
/******************************************/
//Plasma hardware dependent
uint32 OS_InterruptStatus(void)
{
return MemoryRead(IRQ_STATUS);
}
/******************************************/
//Plasma hardware dependent
uint32 OS_InterruptMaskSet(uint32 mask)
{
uint32 state;
state = OS_CriticalBegin();
mask |= MemoryRead(IRQ_MASK);
MemoryWrite(IRQ_MASK, mask);
OS_CriticalEnd(state);
return mask;
}
/******************************************/
//Plasma hardware dependent
uint32 OS_InterruptMaskClear(uint32 mask)
{
uint32 state;
state = OS_CriticalBegin();
mask = MemoryRead(IRQ_MASK) & ~mask;
MemoryWrite(IRQ_MASK, mask);
OS_CriticalEnd(state);
return mask;
}
/**************** Init ********************/
/******************************************/
static volatile uint32 IdleCount;
static void OS_IdleThread(void *arg)
{
(void)arg;
//Don't block in the idle thread!
for(;;)
{
++IdleCount;
}
}
/******************************************/
#ifndef DISABLE_IRQ_SIM
static void OS_IdleSimulateIsr(void *arg)
{
uint32 count=0, value;
(void)arg;
for(;;)
{
MemoryRead(IRQ_MASK + 4); //calls Sleep(10)
#if WIN32
while(OS_InterruptMaskSet(0) & IRQ_UART_WRITE_AVAILABLE)
OS_InterruptServiceRoutine(IRQ_UART_WRITE_AVAILABLE, 0);
#endif
value = OS_InterruptMaskSet(0) & 0xf;
if(value)
OS_InterruptServiceRoutine(value, 0);
++count;
}
}
#endif //DISABLE_IRQ_SIM
/******************************************/
//Plasma hardware dependent
static void OS_ThreadTickToggle(void *arg)
{
uint32 status, mask, state;
//Toggle looking for IRQ_COUNTER18 or IRQ_COUNTER18_NOT
state = OS_SpinLock();
status = MemoryRead(IRQ_STATUS) & (IRQ_COUNTER18 | IRQ_COUNTER18_NOT);
mask = MemoryRead(IRQ_MASK) | IRQ_COUNTER18 | IRQ_COUNTER18_NOT;
mask &= ~status;
MemoryWrite(IRQ_MASK, mask);
OS_ThreadTick(arg);
OS_SpinUnlock(state);
}
/******************************************/
void OS_Init(uint32 *heapStorage, uint32 bytes)
{
int i;
OS_AsmInterruptInit(); //Patch interrupt vector
OS_InterruptMaskClear(0xffffffff); //Disable interrupts
HeapArray[0] = OS_HeapCreate("Default", heapStorage, bytes);
HeapArray[1] = HeapArray[0];
SemaphoreSleep = OS_SemaphoreCreate("Sleep", 0);
SemaphoreRelease = OS_SemaphoreCreate("Release", 1);
SemaphoreLock = OS_SemaphoreCreate("Lock", 1);
for(i = 0; i < OS_CPU_COUNT; ++i)
OS_ThreadCreate("Idle", OS_IdleThread, NULL, 0, 256);
#ifndef DISABLE_IRQ_SIM
if((OS_InterruptStatus() & (IRQ_COUNTER18 | IRQ_COUNTER18_NOT)) == 0)
{
//Detected that running in simulator so create SimIsr thread
UartPrintfCritical("SimIsr\n");
OS_ThreadCreate("SimIsr", OS_IdleSimulateIsr, NULL, 1, 0);
}
#endif //DISABLE_IRQ_SIM
//Plasma hardware dependent
OS_InterruptRegister(IRQ_COUNTER18 | IRQ_COUNTER18_NOT, OS_ThreadTickToggle);
OS_InterruptMaskSet(IRQ_COUNTER18 | IRQ_COUNTER18_NOT);
}
/******************************************/
void OS_Start(void)
{
ThreadSwapEnabled = 1;
(void)OS_SpinLock();
OS_ThreadReschedule(1);
}
/******************************************/
//Place breakpoint here
void OS_Assert(void)
{
}
#if OS_CPU_COUNT > 1
static uint8 SpinLockArray[OS_CPU_COUNT];
/******************************************/
uint32 OS_CpuIndex(void)
{
return 0; //0 to OS_CPU_COUNT-1
}
/******************************************/
//Symmetric Multiprocessing Spin Lock Mutex
uint32 OS_SpinLock(void)
{
uint32 state, cpuIndex, i, j, ok, delay;
cpuIndex = OS_CpuIndex();
delay = cpuIndex + 8;
state = OS_AsmInterruptEnable(0);
do
{
ok = 1;
if(++SpinLockArray[cpuIndex] == 1)
{
for(i = 0; i < OS_CPU_COUNT; ++i)
{
if(i != cpuIndex && SpinLockArray[i])
ok = 0;
}
if(ok == 0)
{
SpinLockArray[cpuIndex] = 0;
for(j = 0; j < delay; ++j) //wait a bit
++i;
if(delay < 128)
delay <<= 1;
}
}
} while(ok == 0);
return state;
}
/******************************************/
void OS_SpinUnlock(uint32 state)
{
uint32 cpuIndex;
cpuIndex = OS_CpuIndex();
if(--SpinLockArray[cpuIndex] == 0)
OS_AsmInterruptEnable(state);
assert(SpinLockArray[cpuIndex] < 10);
}
#endif //OS_CPU_COUNT > 1
/************** WIN32/Linux Support *************/
#ifdef WIN32
#ifdef LINUX
#define putch putchar
#undef _LIBC
#undef kbhit
#undef getch
#define UartPrintf UartPrintf2
#define UartScanf UartScanf2
#include <stdio.h>
#include <stdlib.h>
#include <termios.h>
#include <unistd.h>
void Sleep(unsigned int value)
{
usleep(value * 1000);
}
int kbhit(void)
{
struct termios oldt, newt;
struct timeval tv;
fd_set read_fd;
tcgetattr(STDIN_FILENO, &oldt);
newt = oldt;
newt.c_lflag &= ~(ICANON | ECHO);
tcsetattr(STDIN_FILENO, TCSANOW, &newt);
tv.tv_sec=0;
tv.tv_usec=0;
FD_ZERO(&read_fd);
FD_SET(0,&read_fd);
if(select(1, &read_fd, NULL, NULL, &tv) == -1)
return 0;
if(FD_ISSET(0,&read_fd))
return 1;
return 0;
}
int getch(void)
{
struct termios oldt, newt;
int ch;
tcgetattr(STDIN_FILENO, &oldt);
newt = oldt;
newt.c_lflag &= ~(ICANON | ECHO);
tcsetattr(STDIN_FILENO, TCSANOW, &newt);
ch = getchar();
return ch;
}
#else
//Support RTOS inside Windows
#undef kbhit
#undef getch
#undef putch
extern int kbhit();
extern int getch(void);
extern int putch(int);
extern void __stdcall Sleep(unsigned long value);
#endif
static uint32 Memory[8];
uint32 MemoryRead(uint32 address)
{
Memory[2] |= IRQ_UART_WRITE_AVAILABLE; //IRQ_STATUS
switch(address)
{
case UART_READ:
if(kbhit())
Memory[0] = getch(); //UART_READ
Memory[2] &= ~IRQ_UART_READ_AVAILABLE; //clear bit
return Memory[0];
case IRQ_MASK:
return Memory[1]; //IRQ_MASK
case IRQ_MASK + 4:
Sleep(10);
return 0;
case IRQ_STATUS:
if(kbhit())
Memory[2] |= IRQ_UART_READ_AVAILABLE;
return Memory[2];
}
return 0;
}
void MemoryWrite(uint32 address, uint32 value)
{
switch(address)
{
case UART_WRITE:
putch(value);
break;
case IRQ_MASK:
Memory[1] = value;
break;
case IRQ_STATUS:
Memory[2] = value;
break;
}
}
uint32 OS_AsmInterruptEnable(uint32 enableInterrupt)
{
return enableInterrupt;
}
void OS_AsmInterruptInit(void)
{
}
#endif //WIN32
/**************** Example *****************/
#ifndef NO_MAIN
#ifdef WIN32
static uint8 HeapSpace[1024*512];
#endif
int main(int programEnd, char *argv[])
{
(void)programEnd; //Pointer to end of used memory
(void)argv;
UartPrintfCritical("Starting RTOS\n");
#ifdef WIN32
OS_Init((uint32*)HeapSpace, sizeof(HeapSpace));
#else
//Remaining space after program in 1MB external RAM
OS_Init((uint32*)programEnd,
RAM_EXTERNAL_BASE + RAM_EXTERNAL_SIZE - programEnd);
#endif
UartInit();
OS_ThreadCreate("Main", MainThread, NULL, 100, 4000);
OS_Start();
return 0;
}
#endif //NO_MAIN