1
0
mirror of git://projects.qi-hardware.com/nn-usb-fpga.git synced 2025-01-09 23:00:14 +02:00
nn-usb-fpga/plasma/logic/eth_dma.vhd
2010-04-21 20:01:38 -05:00

184 lines
6.8 KiB
VHDL

---------------------------------------------------------------------
-- TITLE: Ethernet DMA
-- AUTHOR: Steve Rhoads (rhoadss@yahoo.com)
-- DATE CREATED: 12/27/07
-- FILENAME: eth_dma.vhd
-- PROJECT: Plasma CPU core
-- COPYRIGHT: Software placed into the public domain by the author.
-- Software 'as is' without warranty. Author liable for nothing.
-- DESCRIPTION:
-- Ethernet DMA (Direct Memory Access) controller.
-- Reads four bits and writes four bits from/to the Ethernet PHY each
-- 2.5 MHz clock cycle. Received data is DMAed starting at 0x13ff0000
-- transmit data is read from 0x13fd0000.
-- To send a packet write bytes/4 to Ethernet send register.
---------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;
use work.mlite_pack.all;
entity eth_dma is port(
clk : in std_logic; --25 MHz
reset : in std_logic;
enable_eth : in std_logic; --enable receive DMA
select_eth : in std_logic;
rec_isr : out std_logic; --data received
send_isr : out std_logic; --transmit done
address : out std_logic_vector(31 downto 2); --to DDR
byte_we : out std_logic_vector(3 downto 0);
data_write : out std_logic_vector(31 downto 0);
data_read : in std_logic_vector(31 downto 0);
pause_in : in std_logic;
mem_address : in std_logic_vector(31 downto 2); --from CPU
mem_byte_we : in std_logic_vector(3 downto 0);
data_w : in std_logic_vector(31 downto 0);
pause_out : out std_logic;
E_RX_CLK : in std_logic; --2.5 MHz receive
E_RX_DV : in std_logic; --data valid
E_RXD : in std_logic_vector(3 downto 0); --receive nibble
E_TX_CLK : in std_logic; --2.5 MHz transmit
E_TX_EN : out std_logic; --transmit enable
E_TXD : out std_logic_vector(3 downto 0)); --transmit nibble
end; --entity eth_dma
architecture logic of eth_dma is
signal rec_clk : std_logic_vector(1 downto 0); --receive
signal rec_store : std_logic_vector(31 downto 0); --to DDR
signal rec_data : std_logic_vector(27 downto 0);
signal rec_cnt : std_logic_vector(2 downto 0); --nibbles
signal rec_words : std_logic_vector(13 downto 0);
signal rec_dma : std_logic_vector(1 downto 0); --active & request
signal rec_done : std_logic;
signal send_clk : std_logic_vector(1 downto 0); --transmit
signal send_read : std_logic_vector(31 downto 0); --from DDR
signal send_data : std_logic_vector(31 downto 0);
signal send_cnt : std_logic_vector(2 downto 0); --nibbles
signal send_words : std_logic_vector(8 downto 0);
signal send_level : std_logic_vector(8 downto 0);
signal send_dma : std_logic_vector(1 downto 0); --active & request
signal send_enable: std_logic;
begin --architecture
dma_proc: process(clk, reset, enable_eth, select_eth,
data_read, pause_in, mem_address, mem_byte_we, data_w,
E_RX_CLK, E_RX_DV, E_RXD, E_TX_CLK,
rec_clk, rec_store, rec_data,
rec_cnt, rec_words, rec_dma, rec_done,
send_clk, send_read, send_data, send_cnt, send_words,
send_level, send_dma, send_enable)
begin
if reset = '1' then
rec_clk <= "00";
rec_cnt <= "000";
rec_words <= ZERO(13 downto 0);
rec_dma <= "00";
rec_done <= '0';
send_clk <= "00";
send_cnt <= "000";
send_words <= ZERO(8 downto 0);
send_level <= ZERO(8 downto 0);
send_dma <= "00";
send_enable <= '0';
elsif rising_edge(clk) then
--Receive nibble on low->high E_RX_CLK. Send to DDR every 32 bits.
rec_clk <= rec_clk(0) & E_RX_CLK;
if rec_clk = "01" and enable_eth = '1' then
if E_RX_DV = '1' or rec_cnt /= "000" then
if rec_cnt = "111" then
rec_store <= rec_data & E_RXD;
rec_dma(0) <= '1'; --request DMA
end if;
rec_data <= rec_data(23 downto 0) & E_RXD;
rec_cnt <= rec_cnt + 1;
end if;
end if;
--Set transmit count or clear receive interrupt
if select_eth = '1' then
if mem_byte_we /= "0000" then
send_cnt <= "000";
send_words <= ZERO(8 downto 0);
send_level <= data_w(8 downto 0);
send_dma(0) <= '1';
else
rec_done <= '0';
end if;
end if;
--Transmit nibble on low->high E_TX_CLK. Get 32 bits from DDR.
send_clk <= send_clk(0) & E_TX_CLK;
if send_clk = "01" then
if send_cnt = "111" then
if send_words /= send_level then
send_data <= send_read;
send_dma(0) <= '1';
send_enable <= '1';
else
send_enable <= '0';
end if;
else
send_data(31 downto 4) <= send_data(27 downto 0);
end if;
send_cnt <= send_cnt + 1;
end if;
--Pick which type of DMA operation: bit0 = request; bit1 = active
if pause_in = '0' then
if rec_dma(1) = '1' then
rec_dma <= "00"; --DMA done
rec_words <= rec_words + 1;
if E_RX_DV = '0' then
rec_done <= '1';
end if;
elsif send_dma(1) = '1' then
send_dma <= "00";
send_words <= send_words + 1;
send_read <= data_read;
elsif rec_dma(0) = '1' then
rec_dma(1) <= '1'; --start DMA
elsif send_dma(0) = '1' then
send_dma(1) <= '1'; --start DMA
end if;
end if;
end if; --rising_edge(clk)
E_TXD <= send_data(31 downto 28);
E_TX_EN <= send_enable;
rec_isr <= rec_done;
if send_words = send_level then
send_isr <= '1';
else
send_isr <= '0';
end if;
if rec_dma(1) = '1' then
address <= "0001001111111111" & rec_words; --0x13ff0000
byte_we <= "1111";
data_write <= rec_store;
pause_out <= '1'; --to CPU
elsif send_dma(1) = '1' then
address <= "000100111111111000000" & send_words; --0x13fe0000
byte_we <= "0000";
data_write <= data_w;
pause_out <= '1';
else
address <= mem_address; --Send request from CPU to DDR
byte_we <= mem_byte_we;
data_write <= data_w;
pause_out <= '0';
end if;
end process;
end; --architecture logic