1
0
mirror of git://projects.qi-hardware.com/nn-usb-fpga.git synced 2025-01-25 09:41:05 +02:00
nn-usb-fpga/Examples/ADC/logic/ADC_peripheral.v
2010-04-05 14:06:50 -05:00

278 lines
8.6 KiB
Verilog

`timescale 1ns / 1ps
module ADC_peripheral( clk, reset, cs, ADC_EOC, ADC_CS, ADC_CSTART,
ADC_SCLK, ADC_SDIN, ADC_SDOUT,
addr, rdBus, wrBus, we);
input clk, reset, ADC_EOC, cs, we;
input [10:0] addr;
input [7:0] wrBus;
output ADC_CS, ADC_CSTART, ADC_SCLK;
output [7:0] rdBus;
inout ADC_SDIN, ADC_SDOUT;
//RAMB registers
reg [7:0] rdBus;
wire [7:0] rdBus1;
reg [7:0] wrBus2;
reg [10:0] addr2;
reg we1=0;
reg we2=0;
wire we;
//Control registers
reg nSample=0;
reg [10:0] auto_count=0;
reg [4:0] w_st2=0;
//SPI registers
reg [3:0] SPI_in_data=0;
reg [9:0] SPI_out_data;
reg SPI_rd = 0;
reg SPI_wr = 0;
// Confiuration registers
reg CMD_DONE;
reg CMD_TYP;
reg [3:0] CMD_ADC;
reg [7:0] CLKDIV = 0;
reg [9:0] SIZEB; //[10:8] -> size_hi | [7:0] -> size_low
//TEMPS
reg [9:0] SIZEB2;
assign ADC_CSTART = 1'b1;
// Dual-port RAM instatiation
RAMB16_S9_S9 ba0(
.DOA(rdBus1), // Port A 8-bit Data Output
.DOB(), // Port B 8-bit Data Output
.DOPA(), // Port A 1-bit Parity Output
.DOPB(), // Port B 1-bit Parity Output
.ADDRA(addr), // Port A 11-bit Address Input
.ADDRB(addr2), // Port B 11-bit Address Input
.CLKA(~clk), // Port A Clock
.CLKB(~clk), // Port B Clock
.DIA(wrBus), // Port A 8-bit Data Input
.DIB(wrBus2), // Port B 8-bit Data Input
.DIPA(1'b0), // Port A 1-bit parity Input
.DIPB(1'b0), // Port-B 1-bit parity Input
.ENA(1'b1), // Port A RAM Enable Input
.ENB(1'b1), // Port B RAM Enable Input
.SSRA(1'b0), // Port A Synchronous Set/Reset Input
.SSRB(1'b0), // Port B Synchronous Set/Reset Input
.WEA(we1), // Port A Write Enable Input
.WEB(we2) ); // Port B Write Enable Input
// SPI comunication module instantiation
reg ADC_SCLK_buffer = 0;
reg ADC_SDIN_buffer = 0;
reg busy = 0, load_in = 0;
reg pulse = 0, clkdiv_en = 0;
reg [3:0] in_buffer=0;
reg [9:0] out_buffer;
reg [7:0] clkcount = 0;
reg [4:0] count = 0;
reg [4:0] w_st1=0;
assign ADC_CS = ~busy;
// Clock Generator
always@(posedge clk)
if (clkdiv_en) begin
if(clkcount < CLKDIV) begin
clkcount <= clkcount + 1; pulse <=0;
end else begin
clkcount <= 0; pulse <=1;
if((count>0) && (count < 21))
ADC_SCLK_buffer <= ~ADC_SCLK_buffer;
end
end else begin
ADC_SCLK_buffer <= 0; pulse <=0;
end
// Control
always @(posedge clk)
if(reset) begin
{w_st1, count, clkdiv_en, busy} <= 0;
end else begin
case (w_st1)
0: begin
if(SPI_wr) begin
clkdiv_en <= 1;
load_in <= 1;
w_st1 <= 1; busy <= 1;
end
end
1: begin
load_in <= 0;
if(pulse)
count <= count + 1;
else if (count > 30) begin
clkdiv_en <= 0; busy <= 0; w_st1 <= 0; count <= 0; end
end
endcase
end
// Receptor
always@(posedge clk)
begin
if((count[0] & pulse) && (count < 21)) begin
out_buffer <= out_buffer << 1;
out_buffer[0] <= ADC_SDOUT;
end
end
always@(SPI_rd or out_buffer or busy or CLKDIV)
begin
SPI_out_data <= 10'bx;
if(SPI_rd)
begin SPI_out_data <= out_buffer; end
end
// Transmitter
always@(posedge clk)
begin
if(load_in) in_buffer <= SPI_in_data;
if(!count[0] & pulse) begin
ADC_SDIN_buffer <= in_buffer[3];
in_buffer <= in_buffer << 1;
end
end
assign ADC_SCLK = ADC_SCLK_buffer;
assign ADC_SDIN = ADC_SDIN_buffer;
/*
assign ADC_CS = ~busy;
always@(SPI_rd or out_buffer or busy or CLKDIV)
begin
SPI_out_data = 10'bx;
if(SPI_rd)
begin SPI_out_data = out_buffer; end
end
always@(negedge clk)
begin
if(!busy)
begin
if(SPI_wr)
begin in_buffer = SPI_in_data; busy = 1; end
end
else
begin
clkcount = clkcount + 1;
if(clkcount >= CLKDIV)
begin
clkcount = 0;
// Send the ADC CMD on first 4 rising edge of SCLK
if((count % 2) == 0)
begin
ADC_SDIN_buffer = in_buffer[3];
in_buffer = in_buffer << 1;
end
// We generate 10 cicles of SCLK
if(count > 0 && count < 21)
begin
ADC_SCLK_buffer = ~ADC_SCLK_buffer;
end
count = count + 1;
if(count > 21)
begin
count = 0;
busy = 0;
end
end
end
end
always@(posedge ADC_SCLK_buffer)
begin
out_buffer = out_buffer << 1;
out_buffer[0] = ADC_SDOUT;
end
assign ADC_SCLK = ADC_SCLK_buffer;
assign ADC_SDIN = ADC_SDIN_buffer;*/
// Write control
always @(posedge clk)
if(reset)
{CMD_TYP,CMD_ADC,SIZEB,we1} <= 0;
else if(we & cs) begin
case (addr)
0: begin CMD_TYP <= wrBus[4];
CMD_ADC[3:0] <= wrBus[3:0]; end
1: begin CLKDIV <= wrBus; end
2: begin SIZEB[7:0] <= wrBus; end
3: begin SIZEB[9:8] <= wrBus[2:0]; end
default: begin we1 <= 1; end
endcase
end
else if(nSample)
begin SIZEB <= SIZEB - 1; end
else
begin we1 <= 0; end
// Read control
always @(posedge clk)
if(reset)
{rdBus} <= 0;
else begin
case (addr)
0: begin rdBus <= {CMD_DONE,CMD_TYP,CMD_ADC};end
1: begin rdBus <= CLKDIV; end
2: begin rdBus <= SIZEB[7:0]; end
3: begin rdBus <= SIZEB[9:8]; end
default: begin rdBus <= rdBus1; end
endcase
end
// Comunication control
always @(posedge clk)
if(reset)
{we2, SPI_wr, SPI_rd, w_st2, auto_count, SPI_in_data, nSample} <= 0;
else begin
case (w_st2)
0: begin w_st2 <= 2; SIZEB2<=SIZEB; end
2: begin
if (SIZEB == 0)
begin w_st2 <= 0; CMD_DONE<= 1; auto_count <= 0; end
else begin
CMD_DONE<= 0;
//Send data to ADC
auto_count <= auto_count+1;
SPI_in_data <= CMD_ADC[3:0];
SPI_wr <= 1; w_st2 <= 3;
end
end
3: begin
SPI_wr <= 0;
//Wait for complete convertion
if(ADC_CS && ADC_EOC) begin
SPI_rd <=1;
if(CMD_TYP)
w_st2<= 2;
else
w_st2<= 4;
end
end
4: begin
//Write data on BRAM (LOW)
wrBus2 <= SPI_out_data[7:0];
addr2 <= 4+2*(SIZEB-SIZEB2);
we2 <= 1; w_st2 <= 5;
end
5: begin we2 <= 0; w_st2 <= 6; end
6: begin
//Write data on BRAM (HI)
wrBus2 <= SPI_out_data[9:8];
addr2 <= 5+2*(SIZEB-SIZEB2);
we2 <= 1; w_st2 <= 7; nSample <= 1;
end
7: begin nSample <= 0; we2 <= 0; SPI_rd <=0; w_st2 <= 2; end
endcase
end
endmodule