1
0
mirror of git://projects.qi-hardware.com/nn-usb-fpga.git synced 2025-01-24 17:51:06 +02:00
nn-usb-fpga/plasma/logic/plasma.vhd
2010-08-12 19:51:53 -05:00

243 lines
9.3 KiB
VHDL

-- TITLE: Plasma (CPU core with memory)
-- AUTHOR: Steve Rhoads (rhoadss@yahoo.com)
-- DATE CREATED: 6/4/02
-- FILENAME: plasma.vhd
-- PROJECT: Plasma CPU core
-- COPYRIGHT: Software placed into the public domain by the author.
-- Software 'as is' without warranty. Author liable for nothing.
-- DESCRIPTION:
-- This entity combines the CPU core with memory and a UART.
--
-- Memory Map:
-- 0x00000000 - 0x0000ffff Internal RAM (8KB)
-- 0x10000000 - 0x100fffff External RAM (1MB)
-- Access all Misc registers with 32-bit accesses
-- 0x20000000 Uart Write (will pause CPU if busy)
-- 0x20000000 Uart Read
-- 0x20000010 IRQ Mask
-- 0x20000020 IRQ Status
-- 0x20000030 Peripheric 1
-- 0x20000040 Peripheric 2
-- 0x20000050 Peripheric 3
-- 0x20000060 Peripheric 4
-- IRQ bits:
-- 1 ^UartWriteBusy
-- 0 UartDataAvailable
---------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use work.mlite_pack.all;
entity plasma is
generic(memory_type : string := "XILINX_16X"; --"DUAL_PORT_" "ALTERA_LPM";
log_file : string := "UNUSED");
port(clk_in : in std_logic;
rst_in : in std_logic;
uart_write : out std_logic;
uart_read : in std_logic;
addr : in std_logic_vector(12 downto 0);
sram_data : in std_logic_vector(7 downto 0);
nwe : in std_logic;
noe : in std_logic;
ncs : in std_logic;
irq_pin : out std_logic;
led : out std_logic
);
end; --entity plasma
architecture logic of plasma is
signal reset : std_logic;
signal clk : std_logic;
signal address_next : std_logic_vector(31 downto 2);
signal byte_we_next : std_logic_vector(3 downto 0);
signal cpu_address : std_logic_vector(31 downto 0);
signal cpu_byte_we : std_logic_vector(3 downto 0);
signal cpu_data_w : std_logic_vector(31 downto 0);
signal cpu_data_r : std_logic_vector(31 downto 0);
signal cpu_pause : std_logic;
signal bus_dec : std_logic_vector(6 downto 0);
signal data_read_uart : std_logic_vector(7 downto 0);
signal data_read_pic : std_logic_vector(7 downto 0);
signal write_enable : std_logic;
signal mem_busy : std_logic;
signal cs_pher : std_logic;
signal cs_uart : std_logic;
signal cs_pic : std_logic;
signal cs_p1 : std_logic;
signal cs_p2 : std_logic;
signal cs_p3 : std_logic;
signal cs_p4 : std_logic;
signal uart_write_busy : std_logic;
signal uart_data_avail : std_logic;
signal irq_mask_reg : std_logic_vector(7 downto 0);
signal irq_status : std_logic_vector(7 downto 0);
signal irq : std_logic;
signal cs_ram : std_logic;
signal ram_byte_we : std_logic_vector(3 downto 0);
signal ram_address : std_logic_vector(31 downto 2);
signal ram_data_w : std_logic_vector(31 downto 0);
signal ram_data_r : std_logic_vector(31 downto 0);
begin
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-- CLOCK DIVIDER
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
led <= not(rst_in);
reset <= not(rst_in);
irq_pin <= not(rst_in);
clk_div: process(reset, clk, clk_in)
begin
if reset = '1' then
clk <= '0';
elsif rising_edge(clk_in) then
clk <= not clk;
end if;
end process;
write_enable <= '1' when cpu_byte_we /= "0000" else '0';
cpu_pause <= (uart_write_busy and cs_uart and write_enable);
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-- PROCESSOR
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
u1_cpu: mlite_cpu
generic map (memory_type => memory_type)
PORT MAP (
clk => clk,
reset_in => reset,
intr_in => irq,
address_next => address_next, --before rising_edge(clk)
byte_we_next => byte_we_next,
address => cpu_address(31 downto 2), --after rising_edge(clk)
byte_we => cpu_byte_we,
data_w => cpu_data_w,
data_r => cpu_data_r,
mem_pause => cpu_pause);
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-- ADDRESS DECODER
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
cpu_address(1 downto 0) <= "00";
addr_decoder: process (cpu_address)
variable addr_dec : std_logic_vector(6 downto 0);
begin
addr_dec := cpu_address(30 downto 28) & cpu_address(7 downto 4);
case addr_dec is
when "0100000" => cs_uart <= '1'; cs_pic <= '0'; cs_p1 <= '0'; cs_p2 <= '0'; cs_p3 <= '0'; cs_p4 <= '0';
when "0100001" => cs_uart <= '0'; cs_pic <= '1'; cs_p1 <= '0'; cs_p2 <= '0'; cs_p3 <= '0'; cs_p4 <= '0';
when "0100010" => cs_uart <= '0'; cs_pic <= '1'; cs_p1 <= '0'; cs_p2 <= '0'; cs_p3 <= '0'; cs_p4 <= '0';
when "0100011" => cs_uart <= '0'; cs_pic <= '0'; cs_p1 <= '1'; cs_p2 <= '0'; cs_p3 <= '0'; cs_p4 <= '0';
when "0100100" => cs_uart <= '0'; cs_pic <= '0'; cs_p1 <= '0'; cs_p2 <= '1'; cs_p3 <= '0'; cs_p4 <= '0';
when "0100101" => cs_uart <= '0'; cs_pic <= '0'; cs_p1 <= '0'; cs_p2 <= '0'; cs_p3 <= '1'; cs_p4 <= '0';
when "0100110" => cs_uart <= '0'; cs_pic <= '0'; cs_p1 <= '0'; cs_p2 <= '0'; cs_p3 <= '0'; cs_p4 <= '1';
when others => cs_uart <= '0'; cs_pic <= '0'; cs_p1 <= '0'; cs_p2 <= '0'; cs_p3 <= '0'; cs_p4 <= '0';
end case;
end process;
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-- BUS MULTIPLEXOR
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bus_mux: process (cpu_address, ram_data_r, data_read_uart, data_read_pic)
variable bus_dec : std_logic_vector(4 downto 0);
begin
bus_dec := cpu_address(29) & cpu_address(7 downto 4);
case bus_dec is
when "00000" | "00001" | "00010" | "00011" | "00100" | "00101" | "00110" | "00111" |
"01000" | "01001" | "01010" | "01011" | "01100" | "01101" | "01110" | "01111"
=> cpu_data_r <= ram_data_r;
when "10000" => cpu_data_r <= ZERO(31 downto 8) & data_read_uart;
when "10001" => cpu_data_r <= ZERO(31 downto 8) & data_read_pic;
when "10010" => cpu_data_r <= ZERO(31 downto 8) & data_read_pic;
when "10011" => cpu_data_r <= ZERO;
when "10100" => cpu_data_r <= ZERO;
when "10101" => cpu_data_r <= ZERO;
when "10110" => cpu_data_r <= ZERO;
when others => cpu_data_r <= ZERO;
end case;
-- end if;
end process;
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-- PIC
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
pic_proc: process(clk, reset, cpu_address, cs_pic, cpu_pause, cpu_byte_we, irq_mask_reg, irq_status, cpu_data_w,
uart_write_busy, uart_data_avail)
begin
irq_status <= ZERO(5 downto 0) & not uart_write_busy & uart_data_avail;
if cs_pic = '1' and cpu_byte_we = "0000" then
case cpu_address(5 downto 4) is
when "01" => data_read_pic <= irq_mask_reg;
when "10" => data_read_pic <= irq_status;
when others => data_read_pic <= ZERO(7 downto 0);
end case;
end if;
if reset = '1' then
irq_mask_reg <= ZERO(7 downto 0);
elsif rising_edge(clk) then
if cpu_pause = '0' then
if cs_pic = '1' and cpu_byte_we = "1111" then
if cpu_address(6 downto 4) = "001" then
irq_mask_reg <= cpu_data_w(7 downto 0);
end if;
end if;
end if;
end if;
if (irq_status and irq_mask_reg) /= ZERO(7 downto 0) then
irq <= '1';
else
irq <= '0';
end if;
end process;
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-- RAM
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
cs_ram <= '1' when address_next(30 downto 28) = "000" else '0';
ram_address(31 downto 2) <= ZERO(31 downto 13) & address_next(12 downto 2);
u2_ram: ram
generic map (memory_type => memory_type)
port map (
clk => clk,
enable => cs_ram,
write_byte_enable => byte_we_next,
address => ram_address,
data_write => cpu_data_w,
data_read => ram_data_r);
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
-- UART
--%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
u3_uart: uart
generic map (log_file => log_file)
port map(
clk => clk,
reset => reset,
cs => cs_uart,
nRdWr => cpu_byte_we(0),
data_in => cpu_data_w(7 downto 0),
data_out => data_read_uart,
uart_read => uart_read,
uart_write => uart_write,
busy_write => uart_write_busy,
data_avail => uart_data_avail);
end; --architecture logic