mirror of
git://projects.qi-hardware.com/openwrt-packages.git
synced 2025-01-25 02:01:06 +02:00
274 lines
5.9 KiB
Lua
274 lines
5.9 KiB
Lua
|
--[[ $Id: x22.lua 9526 2009-02-13 22:06:13Z smekal $
|
||
|
|
||
|
Simple vector plot example
|
||
|
|
||
|
Copyright (C) 2008 Werner Smekal
|
||
|
|
||
|
This file is part of PLplot.
|
||
|
|
||
|
PLplot is free software you can redistribute it and/or modify
|
||
|
it under the terms of the GNU General Library Public License as published
|
||
|
by the Free Software Foundation either version 2 of the License, or
|
||
|
(at your option) any later version.
|
||
|
|
||
|
PLplot is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
GNU Library General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Library General Public License
|
||
|
along with PLplot if not, write to the Free Software
|
||
|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
--]]
|
||
|
|
||
|
-- initialise Lua bindings for PLplot examples.
|
||
|
dofile("plplot_examples.lua")
|
||
|
|
||
|
-- Pairs of points making the line segments used to plot the user defined arrow
|
||
|
arrow_x = { -0.5, 0.5, 0.3, 0.5, 0.3, 0.5 }
|
||
|
arrow_y = { 0, 0, 0.2, 0, -0.2, 0 }
|
||
|
arrow2_x = { -0.5, 0.3, 0.3, 0.5, 0.3, 0.3 }
|
||
|
arrow2_y = { 0, 0, 0.2, 0, -0.2, 0 }
|
||
|
|
||
|
|
||
|
-- Vector plot of the circulation about the origin
|
||
|
function circulation()
|
||
|
nx = 20
|
||
|
ny = 20
|
||
|
dx = 1
|
||
|
dy = 1
|
||
|
|
||
|
xmin = -nx/2*dx
|
||
|
xmax = nx/2*dx
|
||
|
ymin = -ny/2*dy
|
||
|
ymax = ny/2*dy
|
||
|
|
||
|
cgrid2 = {}
|
||
|
cgrid2["xg"] = {}
|
||
|
cgrid2["yg"] = {}
|
||
|
cgrid2["nx"] = nx
|
||
|
cgrid2["ny"] = ny
|
||
|
u = {}
|
||
|
v = {}
|
||
|
|
||
|
-- Create data - circulation around the origin.
|
||
|
for i = 1, nx do
|
||
|
x = (i-1-nx/2+0.5)*dx
|
||
|
cgrid2["xg"][i] = {}
|
||
|
cgrid2["yg"][i] = {}
|
||
|
u[i] = {}
|
||
|
v[i] = {}
|
||
|
for j=1, ny do
|
||
|
y = (j-1-ny/2+0.5)*dy
|
||
|
cgrid2["xg"][i][j] = x
|
||
|
cgrid2["yg"][i][j] = y
|
||
|
u[i][j] = y
|
||
|
v[i][j] = -x
|
||
|
end
|
||
|
end
|
||
|
|
||
|
-- Plot vectors with default arrows
|
||
|
pl.env(xmin, xmax, ymin, ymax, 0, 0)
|
||
|
pl.lab("(x)", "(y)", "#frPLplot Example 22 - circulation")
|
||
|
pl.col0(2)
|
||
|
pl.vect(u, v, 0, "pltr2", cgrid2 )
|
||
|
pl.col0(1)
|
||
|
end
|
||
|
|
||
|
|
||
|
-- Vector plot of flow through a constricted pipe
|
||
|
function constriction()
|
||
|
nx = 20
|
||
|
ny = 20
|
||
|
dx = 1
|
||
|
dy = 1
|
||
|
|
||
|
xmin = -nx/2*dx
|
||
|
xmax = nx/2*dx
|
||
|
ymin = -ny/2*dy
|
||
|
ymax = ny/2*dy
|
||
|
|
||
|
cgrid2 = {}
|
||
|
cgrid2["xg"] = {}
|
||
|
cgrid2["yg"] = {}
|
||
|
cgrid2["nx"] = nx
|
||
|
cgrid2["ny"] = ny
|
||
|
u = {}
|
||
|
v = {}
|
||
|
|
||
|
Q = 2
|
||
|
for i = 1, nx do
|
||
|
x = (i-1-nx/2+0.5)*dx
|
||
|
cgrid2["xg"][i] = {}
|
||
|
cgrid2["yg"][i] = {}
|
||
|
u[i] = {}
|
||
|
v[i] = {}
|
||
|
for j = 1, ny do
|
||
|
y = (j-1-ny/2+0.5)*dy
|
||
|
cgrid2["xg"][i][j] = x
|
||
|
cgrid2["yg"][i][j] = y
|
||
|
b = ymax/4*(3-math.cos(math.pi*x/xmax))
|
||
|
if math.abs(y)<b then
|
||
|
dbdx = ymax/4*math.sin(math.pi*x/xmax)*y/b
|
||
|
u[i][j] = Q*ymax/b
|
||
|
v[i][j] = dbdx*u[i][j]
|
||
|
else
|
||
|
u[i][j] = 0
|
||
|
v[i][j] = 0
|
||
|
end
|
||
|
end
|
||
|
end
|
||
|
|
||
|
pl.env(xmin, xmax, ymin, ymax, 0, 0)
|
||
|
pl.lab("(x)", "(y)", "#frPLplot Example 22 - constriction")
|
||
|
pl.col0(2)
|
||
|
pl.vect(u, v, -0.5, "pltr2", cgrid2)
|
||
|
pl.col0(1)
|
||
|
end
|
||
|
|
||
|
|
||
|
function f2mnmx(f, nx, ny)
|
||
|
fmax = f[1][1]
|
||
|
fmin = fmax
|
||
|
|
||
|
for i=1, nx do
|
||
|
for j=1, ny do
|
||
|
fmax = math.max(fmax, f[i][j])
|
||
|
fmin = math.min(fmin, f[i][j])
|
||
|
end
|
||
|
end
|
||
|
|
||
|
return fmin, fmax
|
||
|
end
|
||
|
|
||
|
-- Vector plot of the gradient of a shielded potential (see example 9)
|
||
|
function potential()
|
||
|
nper = 100
|
||
|
nlevel = 10
|
||
|
nr = 20
|
||
|
ntheta = 20
|
||
|
|
||
|
u = {}
|
||
|
v = {}
|
||
|
z = {}
|
||
|
clevel = {}
|
||
|
px = {}
|
||
|
py = {}
|
||
|
|
||
|
cgrid2 = {}
|
||
|
cgrid2["xg"] = {}
|
||
|
cgrid2["yg"] = {}
|
||
|
cgrid2["nx"] = nr
|
||
|
cgrid2["ny"] = ntheta
|
||
|
|
||
|
-- Potential inside a conducting cylinder (or sphere) by method of images.
|
||
|
-- Charge 1 is placed at (d1, d1), with image charge at (d2, d2).
|
||
|
-- Charge 2 is placed at (d1, -d1), with image charge at (d2, -d2).
|
||
|
-- Also put in smoothing term at small distances.
|
||
|
rmax = nr
|
||
|
|
||
|
eps = 2
|
||
|
|
||
|
q1 = 1
|
||
|
d1 = rmax/4
|
||
|
|
||
|
q1i = -q1*rmax/d1
|
||
|
d1i = rmax^2/d1
|
||
|
|
||
|
q2 = -1
|
||
|
d2 = rmax/4
|
||
|
|
||
|
q2i = -q2*rmax/d2
|
||
|
d2i = rmax^2/d2
|
||
|
|
||
|
for i = 1, nr do
|
||
|
r = i - 0.5
|
||
|
cgrid2["xg"][i] = {}
|
||
|
cgrid2["yg"][i] = {}
|
||
|
u[i] = {}
|
||
|
v[i] = {}
|
||
|
z[i] = {}
|
||
|
for j = 1, ntheta do
|
||
|
theta = 2*math.pi/(ntheta-1)*(j-0.5)
|
||
|
x = r*math.cos(theta)
|
||
|
y = r*math.sin(theta)
|
||
|
cgrid2["xg"][i][j] = x
|
||
|
cgrid2["yg"][i][j] = y
|
||
|
div1 = math.sqrt((x-d1)^2 + (y-d1)^2 + eps^2)
|
||
|
div1i = math.sqrt((x-d1i)^2 + (y-d1i)^2 + eps^2)
|
||
|
div2 = math.sqrt((x-d2)^2 + (y+d2)^2 + eps^2)
|
||
|
div2i = math.sqrt((x-d2i)^2 + (y+d2i)^2 + eps^2)
|
||
|
z[i][j] = q1/div1 + q1i/div1i + q2/div2 + q2i/div2i
|
||
|
u[i][j] = -q1*(x-d1)/div1^3 - q1i*(x-d1i)/div1i^3
|
||
|
-q2*(x-d2)/div2^3 - q2i*(x-d2i)/div2i^3
|
||
|
v[i][j] = -q1*(y-d1)/div1^3 - q1i*(y-d1i)/div1i^3
|
||
|
-q2*(y+d2)/div2^3 - q2i*(y+d2i)/div2i^3
|
||
|
end
|
||
|
end
|
||
|
|
||
|
xmin, xmax = f2mnmx(cgrid2["xg"], nr, ntheta)
|
||
|
ymin, ymax = f2mnmx(cgrid2["yg"], nr, ntheta)
|
||
|
zmin, zmax = f2mnmx(z, nr, ntheta)
|
||
|
|
||
|
pl.env(xmin, xmax, ymin, ymax, 0, 0)
|
||
|
pl.lab("(x)", "(y)", "#frPLplot Example 22 - potential gradient vector plot")
|
||
|
|
||
|
-- Plot contours of the potential
|
||
|
dz = (zmax-zmin)/nlevel
|
||
|
for i = 1, nlevel do
|
||
|
clevel[i] = zmin + (i-0.5)*dz
|
||
|
end
|
||
|
|
||
|
pl.col0(3)
|
||
|
pl.lsty(2)
|
||
|
pl.cont(z, 1, nr, 1, ntheta, clevel, "pltr2", cgrid2)
|
||
|
pl.lsty(1)
|
||
|
pl.col0(1)
|
||
|
|
||
|
-- Plot the vectors of the gradient of the potential
|
||
|
pl.col0(2)
|
||
|
pl.vect(u, v, 25, "pltr2", cgrid2)
|
||
|
pl.col0(1)
|
||
|
|
||
|
-- Plot the perimeter of the cylinder
|
||
|
for i=1, nper do
|
||
|
theta = 2*math.pi/(nper-1)*(i-1)
|
||
|
px[i] = rmax*math.cos(theta)
|
||
|
py[i] = rmax*math.sin(theta)
|
||
|
end
|
||
|
|
||
|
pl.line(px, py)
|
||
|
end
|
||
|
|
||
|
|
||
|
----------------------------------------------------------------------------
|
||
|
-- main
|
||
|
--
|
||
|
-- Generates several simple vector plots.
|
||
|
----------------------------------------------------------------------------
|
||
|
|
||
|
-- Parse and process command line arguments
|
||
|
pl.parseopts(arg, pl.PL_PARSE_FULL)
|
||
|
|
||
|
-- Initialize plplot
|
||
|
pl.init()
|
||
|
|
||
|
circulation()
|
||
|
|
||
|
fill = 0
|
||
|
|
||
|
-- Set arrow style using arrow_x and arrow_y then
|
||
|
-- plot using these arrows.
|
||
|
pl.svect(arrow_x, arrow_y, fill)
|
||
|
constriction()
|
||
|
|
||
|
-- Set arrow style using arrow2_x and arrow2_y then
|
||
|
-- plot using these filled arrows.
|
||
|
fill = 1
|
||
|
pl.svect(arrow2_x, arrow2_y, fill)
|
||
|
constriction()
|
||
|
|
||
|
potential()
|
||
|
|
||
|
pl.plend()
|