1
0
mirror of git://projects.qi-hardware.com/openwrt-packages.git synced 2025-01-07 11:30:15 +02:00
openwrt-packages/nanonote-files/example-files/data/Examples/lua-plplot-examples/x21.lua

257 lines
6.2 KiB
Lua
Raw Normal View History

2011-01-18 10:21:06 +02:00
--[[ $Id: x21.lua 9533 2009-02-16 22:18:37Z smekal $
Grid data demo
Copyright (C) 200 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
-- bitwise or operator from http://lua-users.org/wiki/BaseSixtyFour
-- (c) 2006-2008 by Alex Kloss
-- licensed under the terms of the LGPL2
-- return single bit (for OR)
function bit(x,b)
return (math.mod(x, 2^b) - math.mod(x,2^(b-1)) > 0)
end
-- logic OR for number values
function lor(x,y)
result = 0
for p=1,8 do result = result + (((bit(x,p) or bit(y,p)) == true) and 2^(p-1) or 0) end
return result
end
-- Options data structure definition.
pts = 500
xp = 25
yp = 20
nl = 16
knn_order = 20
threshold = 1.001
wmin = -1e3
randn = 0
rosen = 0
function cmap1_init()
i = { 0, 1 } -- left and right boundary
h = { 240, 0 } -- blue -> green -> yellow -> red
l = { 0.6, 0.6 }
s = { 0.8, 0.8 }
pl.scmap1n(256)
pl.scmap1l(0, i, h, l, s)
end
function create_grid(px, py)
local x = {}
local y = {}
for i = 1, px do
x[i] = xm + (xM-xm)*(i-1)/(px-1)
end
for i = 1, py do
y[i] = ym + (yM-ym)*(i-1)/(py-1)
end
return x, y
end
function create_data(pts)
local x = {}
local y = {}
local z = {}
for i = 1, pts do
xt = (xM-xm)*pl.randd()
yt = (yM-ym)*pl.randd()
if randn==0 then
x[i] = xt + xm
y[i] = yt + ym
else -- std=1, meaning that many points are outside the plot range
x[i] = math.sqrt(-2*math.log(xt)) * math.cos(2*math.pi*yt) + xm
y[i] = math.sqrt(-2*math.log(xt)) * math.sin(2*math.pi*yt) + ym
end
if rosen==0 then
r = math.sqrt(x[i]^2 + y[i]^2)
z[i] = math.exp(-r^2) * math.cos(2*math.pi*r)
else
z[i] = math.log((1-x[i])^2 + 100*(y[i] - x[i]^2)^2)
end
end
return x, y, z
end
title = { "Cubic Spline Approximation",
"Delaunay Linear Interpolation",
"Natural Neighbors Interpolation",
"KNN Inv. Distance Weighted",
"3NN Linear Interpolation",
"4NN Around Inv. Dist. Weighted" }
xm = -0.2
ym = -0.2
xM = 0.6
yM = 0.6
pl.parseopts(arg, pl.PL_PARSE_FULL)
opt = { 0, 0, wmin, knn_order, threshold, 0 }
-- Initialize plplot
pl.init()
-- Initialise random number generator
pl.seed(5489)
x, y, z = create_data(pts) -- the sampled data
zmin = z[1]
zmax = z[1]
for i=2, pts do
if z[i]>zmax then zmax = z[i] end
if z[i]<zmin then zmin = z[i] end
end
xg, yg = create_grid(xp, yp) -- grid the data at
clev = {}
pl.col0(1)
pl.env(xm, xM, ym, yM, 2, 0)
pl.col0(15)
pl.lab("X", "Y", "The original data sampling")
pl.col0(2)
pl.poin(x, y, 5)
pl.adv(0)
pl.ssub(3, 2)
for k = 1, 2 do
pl.adv(0)
for alg=1, 6 do
zg = pl.griddata(x, y, z, xg, yg, alg, opt[alg])
--[[
- CSA can generate NaNs (only interpolates?!).
- DTLI and NNI can generate NaNs for points outside the convex hull
of the data points.
- NNLI can generate NaNs if a sufficiently thick triangle is not found
PLplot should be NaN/Inf aware, but changing it now is quite a job...
so, instead of not plotting the NaN regions, a weighted average over
the neighbors is done. --]]
if alg==pl.GRID_CSA or alg==pl.GRID_DTLI or alg==pl.GRID_NNLI or alg==pl.GRID_NNI then
for i = 1, xp do
for j = 1, yp do
if zg[i][j]~=zg[i][j] then -- average (IDW) over the 8 neighbors
zg[i][j] = 0
dist = 0
for ii=i-1, i+1 do
if ii<=xp then
for jj=j-1, j+1 do
if jj<=yp then
if ii>=1 and jj>=1 and zg[ii][jj]==zg[ii][jj] then
if (math.abs(ii-i) + math.abs(jj-j)) == 1 then
d = 1
else
d = 1.4142
end
zg[i][j] = zg[i][j] + zg[ii][jj]/(d^2)
dist = dist + d
end
end
end
end
end
if dist~=0 then
zg[i][j] = zg[i][j]/dist
else
zg[i][j] = zmin
end
end
end
end
end
lzM, lzm = pl.MinMax2dGrid(zg)
if lzm~=lzm then lzm=zmin else lzm = math.min(lzm, zmin) end
if lzM~=lzM then lzM=zmax else lzM = math.max(lzM, zmax) end
-- Increase limits slightly to prevent spurious contours
-- due to rounding errors
lzm = lzm-0.01
lzM = lzM+0.01
pl.col0(1)
pl.adv(alg)
if k==1 then
for i = 1, nl do
clev[i] = lzm + (lzM-lzm)/(nl-1)*(i-1)
end
pl.env0(xm, xM, ym, yM, 2, 0)
pl.col0(15)
pl.lab("X", "Y", title[alg])
pl.shades(zg, xm, xM, ym, yM, clev, 1, 0, 1, 1)
pl.col0(2)
else
for i = 1, nl do
clev[i] = lzm + (lzM-lzm)/(nl-1)*(i-1)
end
cmap1_init()
pl.vpor(0, 1, 0, 0.9)
pl.wind(-1.1, 0.75, -0.65, 1.20)
-- For the comparison to be fair, all plots should have the
-- same z values, but to get the max/min of the data generated
-- by all algorithms would imply two passes. Keep it simple.
--
-- pl.w3d(1, 1, 1, xm, xM, ym, yM, zmin, zmax, 30, -60)
pl.w3d(1, 1, 1, xm, xM, ym, yM, lzm, lzM, 30, -40)
pl.box3("bntu", "X", 0, 0,
"bntu", "Y", 0, 0,
"bcdfntu", "Z", 0.5, 0)
pl.col0(15)
pl.lab("", "", title[alg])
pl.plot3dc(xg, yg, zg, lor(lor(pl.DRAW_LINEXY, pl.MAG_COLOR), pl.BASE_CONT), clev)
end
end
end
pl.plend()