1
0
mirror of git://projects.qi-hardware.com/openwrt-packages.git synced 2024-12-23 21:14:14 +02:00
openwrt-packages/nanonote-files/example-files/data/Examples/lua-plplot-examples/x16.lua

325 lines
7.4 KiB
Lua
Raw Normal View History

2011-01-18 10:21:06 +02:00
--[[ $Id: x16.lua 10304 2009-08-20 09:05:43Z andrewross $
plshade demo, using color fill.
Copyright (C) 2008 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
-- Fundamental settings. See notes[] for more info.
ns = 20 -- Default number of shade levels
nx = 35 -- Default number of data points in x
ny = 46 -- Default number of data points in y
exclude = 0 -- By default do not plot a page illustrating
-- exclusion. API is probably going to change
-- anyway, and cannot be reproduced by any
-- front end other than the C one.
-- polar plot data
PERIMETERPTS = 100
-- Transformation function
tr = {}
function mypltr(x, y)
tx = tr[1] * x + tr[2] * y + tr[3]
ty = tr[4] * x + tr[5] * y + tr[6]
return tx, ty
end
----------------------------------------------------------------------------
-- f2mnmx
--
-- Returns min & max of input 2d array.
----------------------------------------------------------------------------
function f2mnmx(f, nx, ny)
fmax = f[1][1]
fmin = fmax
for i = 1, nx do
for j = 1, ny do
fmax = math.max(fmax, f[i][j])
fmin = math.min(fmin, f[i][j])
end
end
return fmin, fmax
end
function zdefined(x, y)
z = math.sqrt(x^2 + y^2)
return z<0.4 or z>0.6
end
----------------------------------------------------------------------------
-- main
--
-- Does several shade plots using different coordinate mappings.
----------------------------------------------------------------------------
px = {}
py = {}
fill_width = 2
cont_color = 0
cont_width = 0
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL)
-- Load colour palettes
pl.spal0("cmap0_black_on_white.pal");
pl.spal1("cmap1_gray.pal",1);
-- Reduce colors in cmap 0 so that cmap 1 is useful on a 16-color display
pl.scmap0n(3)
-- Initialize plplot
pl.init()
-- Set up transformation function
tr = { 2/(nx-1), 0, -1, 0, 2/(ny-1), -1 }
-- Allocate data structures
clevel = {}
shedge = {}
z = {}
w = {}
-- Set up data array
for i = 1, nx do
x = (i-1 - math.floor(nx/2))/math.floor(nx/2)
z[i] = {}
w[i] = {}
for j = 1, ny do
y = (j-1 - math.floor(ny/2))/math.floor(ny/2)-1
z[i][j] = -math.sin(7*x) * math.cos(7*y) + x^2 - y^2
w[i][j] = -math.cos(7*x) * math.sin(7*y) + 2*x*y
end
end
zmin, zmax = f2mnmx(z, nx, ny)
for i = 1, ns do
clevel[i] = zmin + (zmax-zmin)*(i-0.5)/ns
end
for i = 1, ns+1 do
shedge[i] = zmin + (zmax-zmin)*(i-1)/ns
end
-- Set up coordinate grids
cgrid1 = {}
cgrid1["xg"] = {}
cgrid1["yg"] = {}
cgrid1["nx"] = nx
cgrid1["ny"] = ny
cgrid2 = {}
cgrid2["xg"] = {}
cgrid2["yg"] = {}
cgrid2["nx"] = nx
cgrid2["ny"] = ny
for i = 1, nx do
cgrid2["xg"][i] = {}
cgrid2["yg"][i] = {}
for j = 1, ny do
x, y = mypltr(i-1, j-1)
argx = x*math.pi/2
argy = y*math.pi/2
distort = 0.4
cgrid1["xg"][i] = x + distort * math.cos(argx)
cgrid1["yg"][j] = y - distort * math.cos(argy)
cgrid2["xg"][i][j] = x + distort * math.cos(argx) * math.cos(argy)
cgrid2["yg"][i][j] = y - distort * math.cos(argx) * math.cos(argy)
end
end
-- Plot using identity transform
pl.adv(0)
pl.vpor(0.1, 0.9, 0.1, 0.9)
pl.wind(-1, 1, -1, 1)
pl.psty(0)
pl.shades(z, -1, 1, -1, 1, shedge, fill_width, cont_color, cont_width, 1)
pl.col0(1)
pl.box("bcnst", 0, 0, "bcnstv", 0, 0)
pl.col0(2)
--pl.cont(w, 1, nx, 1, ny, clevel, mypltr, {})
pl.lab("distance", "altitude", "Bogon density")
-- Plot using 1d coordinate transform
-- Load colour palettes
pl.spal0("cmap0_black_on_white.pal");
pl.spal1("cmap1_blue_yellow.pal",1);
-- Reduce colors in cmap 0 so that cmap 1 is useful on a 16-color display
pl.scmap0n(3);
pl.adv(0)
pl.vpor(0.1, 0.9, 0.1, 0.9)
pl.wind(-1, 1, -1, 1)
pl.psty(0)
pl.shades(z, -1, 1, -1, 1, shedge, fill_width, cont_color, cont_width, 1, "pltr1", cgrid1)
pl.col0(1)
pl.box("bcnst", 0, 0, "bcnstv", 0, 0)
pl.col0(2)
pl.lab("distance", "altitude", "Bogon density")
-- Plot using 2d coordinate transform
-- Load colour palettes
pl.spal0("cmap0_black_on_white.pal");
pl.spal1("cmap1_blue_red.pal",1);
-- Reduce colors in cmap 0 so that cmap 1 is useful on a 16-color display
pl.scmap0n(3);
pl.adv(0)
pl.vpor(0.1, 0.9, 0.1, 0.9)
pl.wind(-1, 1, -1, 1)
pl.psty(0)
pl.shades(z, -1, 1, -1, 1, shedge, fill_width, cont_color, cont_width, 0, "pltr2", cgrid2)
pl.col0(1)
pl.box("bcnst", 0, 0, "bcnstv", 0, 0)
pl.col0(2)
pl.cont(w, 1, nx, 1, ny, clevel, "pltr2", cgrid2)
pl.lab("distance", "altitude", "Bogon density, with streamlines")
-- Plot using 2d coordinate transform
-- Load colour palettes
pl.spal0("");
pl.spal1("",1);
-- Reduce colors in cmap 0 so that cmap 1 is useful on a 16-color display
pl.scmap0n(3);
pl.adv(0)
pl.vpor(0.1, 0.9, 0.1, 0.9)
pl.wind(-1, 1, -1, 1)
pl.psty(0)
pl.shades(z, -1, 1, -1, 1, shedge, fill_width, 2, 3, 0, "pltr2", cgrid2)
pl.col0(1)
pl.box("bcnst", 0, 0, "bcnstv", 0, 0)
pl.col0(2)
pl.lab("distance", "altitude", "Bogon density")
-- Note this exclusion API will probably change.
-- Plot using 2d coordinate transform and exclusion
if exclude~=0 then
-- Load colour palettes
pl.spal0("cmap0_black_on_white.pal");
pl.spal1("cmap1_gray.pal",1);
-- Reduce colors in cmap 0 so that cmap 1 is useful on a 16-color display
pl.scmap0n(3);
pl.adv(0)
pl.vpor(0.1, 0.9, 0.1, 0.9)
pl.wind(-1, 1, -1, 1)
plpsty(0)
pl.shades(z, zdefined, -1, 1, -1, 1, shedge, fill_width, cont_color, cont_width,
0, "pltr2", cgrid2)
pl.col0(1)
pl.box("bcnst", 0, 0, "bcnstv", 0, 0)
pl.lab("distance", "altitude", "Bogon density with exclusion")
end
-- Example with polar coordinates.
-- Load colour palettes
pl.spal0("cmap0_black_on_white.pal");
pl.spal1("cmap1_gray.pal",1);
-- Reduce colors in cmap 0 so that cmap 1 is useful on a 16-color display
pl.scmap0n(3);
pl.adv(0)
pl.vpor(.1, .9, .1, .9)
pl.wind(-1, 1, -1, 1)
pl.psty(0)
-- Build new coordinate matrices.
for i = 1, nx do
r = (i-1)/(nx-1)
for j = 1, ny do
t = 2*math.pi/(ny-1)*(j-1)
cgrid2["xg"][i][j] = r*math.cos(t)
cgrid2["yg"][i][j] = r*math.sin(t)
z[i][j] = math.exp(-r^2)*math.cos(5*math.pi*r)*math.cos(5*t)
end
end
-- Need a new shedge to go along with the new data set.
zmin, zmax = f2mnmx(z, nx, ny)
for i = 1, ns+1 do
shedge[i] = zmin + (zmax-zmin)*(i-1)/ns
end
-- Now we can shade the interior region.
pl.shades(z, -1, 1, -1, 1, shedge, fill_width, cont_color, cont_width, 0, "pltr2", cgrid2)
-- Now we can draw the perimeter. (If do before, shade stuff may overlap.)
for i = 1, PERIMETERPTS do
t = 2*math.pi/(PERIMETERPTS-1)*(i-1)
px[i] = math.cos(t)
py[i] = math.sin(t)
end
pl.col0(1)
pl.line(px, py)
-- And label the plot.
pl.col0(2)
pl.lab( "", "", "Tokamak Bogon Instability" )
pl.plend()