1
0
mirror of git://projects.qi-hardware.com/openwrt-packages.git synced 2024-11-30 08:09:42 +02:00
openwrt-packages/nanonote-files/example-files/data/Examples/lua-plplot-examples/x22.lua

274 lines
5.9 KiB
Lua
Raw Normal View History

2011-01-18 10:21:06 +02:00
--[[ $Id: x22.lua 9526 2009-02-13 22:06:13Z smekal $
Simple vector plot example
Copyright (C) 2008 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
-- Pairs of points making the line segments used to plot the user defined arrow
arrow_x = { -0.5, 0.5, 0.3, 0.5, 0.3, 0.5 }
arrow_y = { 0, 0, 0.2, 0, -0.2, 0 }
arrow2_x = { -0.5, 0.3, 0.3, 0.5, 0.3, 0.3 }
arrow2_y = { 0, 0, 0.2, 0, -0.2, 0 }
-- Vector plot of the circulation about the origin
function circulation()
nx = 20
ny = 20
dx = 1
dy = 1
xmin = -nx/2*dx
xmax = nx/2*dx
ymin = -ny/2*dy
ymax = ny/2*dy
cgrid2 = {}
cgrid2["xg"] = {}
cgrid2["yg"] = {}
cgrid2["nx"] = nx
cgrid2["ny"] = ny
u = {}
v = {}
-- Create data - circulation around the origin.
for i = 1, nx do
x = (i-1-nx/2+0.5)*dx
cgrid2["xg"][i] = {}
cgrid2["yg"][i] = {}
u[i] = {}
v[i] = {}
for j=1, ny do
y = (j-1-ny/2+0.5)*dy
cgrid2["xg"][i][j] = x
cgrid2["yg"][i][j] = y
u[i][j] = y
v[i][j] = -x
end
end
-- Plot vectors with default arrows
pl.env(xmin, xmax, ymin, ymax, 0, 0)
pl.lab("(x)", "(y)", "#frPLplot Example 22 - circulation")
pl.col0(2)
pl.vect(u, v, 0, "pltr2", cgrid2 )
pl.col0(1)
end
-- Vector plot of flow through a constricted pipe
function constriction()
nx = 20
ny = 20
dx = 1
dy = 1
xmin = -nx/2*dx
xmax = nx/2*dx
ymin = -ny/2*dy
ymax = ny/2*dy
cgrid2 = {}
cgrid2["xg"] = {}
cgrid2["yg"] = {}
cgrid2["nx"] = nx
cgrid2["ny"] = ny
u = {}
v = {}
Q = 2
for i = 1, nx do
x = (i-1-nx/2+0.5)*dx
cgrid2["xg"][i] = {}
cgrid2["yg"][i] = {}
u[i] = {}
v[i] = {}
for j = 1, ny do
y = (j-1-ny/2+0.5)*dy
cgrid2["xg"][i][j] = x
cgrid2["yg"][i][j] = y
b = ymax/4*(3-math.cos(math.pi*x/xmax))
if math.abs(y)<b then
dbdx = ymax/4*math.sin(math.pi*x/xmax)*y/b
u[i][j] = Q*ymax/b
v[i][j] = dbdx*u[i][j]
else
u[i][j] = 0
v[i][j] = 0
end
end
end
pl.env(xmin, xmax, ymin, ymax, 0, 0)
pl.lab("(x)", "(y)", "#frPLplot Example 22 - constriction")
pl.col0(2)
pl.vect(u, v, -0.5, "pltr2", cgrid2)
pl.col0(1)
end
function f2mnmx(f, nx, ny)
fmax = f[1][1]
fmin = fmax
for i=1, nx do
for j=1, ny do
fmax = math.max(fmax, f[i][j])
fmin = math.min(fmin, f[i][j])
end
end
return fmin, fmax
end
-- Vector plot of the gradient of a shielded potential (see example 9)
function potential()
nper = 100
nlevel = 10
nr = 20
ntheta = 20
u = {}
v = {}
z = {}
clevel = {}
px = {}
py = {}
cgrid2 = {}
cgrid2["xg"] = {}
cgrid2["yg"] = {}
cgrid2["nx"] = nr
cgrid2["ny"] = ntheta
-- Potential inside a conducting cylinder (or sphere) by method of images.
-- Charge 1 is placed at (d1, d1), with image charge at (d2, d2).
-- Charge 2 is placed at (d1, -d1), with image charge at (d2, -d2).
-- Also put in smoothing term at small distances.
rmax = nr
eps = 2
q1 = 1
d1 = rmax/4
q1i = -q1*rmax/d1
d1i = rmax^2/d1
q2 = -1
d2 = rmax/4
q2i = -q2*rmax/d2
d2i = rmax^2/d2
for i = 1, nr do
r = i - 0.5
cgrid2["xg"][i] = {}
cgrid2["yg"][i] = {}
u[i] = {}
v[i] = {}
z[i] = {}
for j = 1, ntheta do
theta = 2*math.pi/(ntheta-1)*(j-0.5)
x = r*math.cos(theta)
y = r*math.sin(theta)
cgrid2["xg"][i][j] = x
cgrid2["yg"][i][j] = y
div1 = math.sqrt((x-d1)^2 + (y-d1)^2 + eps^2)
div1i = math.sqrt((x-d1i)^2 + (y-d1i)^2 + eps^2)
div2 = math.sqrt((x-d2)^2 + (y+d2)^2 + eps^2)
div2i = math.sqrt((x-d2i)^2 + (y+d2i)^2 + eps^2)
z[i][j] = q1/div1 + q1i/div1i + q2/div2 + q2i/div2i
u[i][j] = -q1*(x-d1)/div1^3 - q1i*(x-d1i)/div1i^3
-q2*(x-d2)/div2^3 - q2i*(x-d2i)/div2i^3
v[i][j] = -q1*(y-d1)/div1^3 - q1i*(y-d1i)/div1i^3
-q2*(y+d2)/div2^3 - q2i*(y+d2i)/div2i^3
end
end
xmin, xmax = f2mnmx(cgrid2["xg"], nr, ntheta)
ymin, ymax = f2mnmx(cgrid2["yg"], nr, ntheta)
zmin, zmax = f2mnmx(z, nr, ntheta)
pl.env(xmin, xmax, ymin, ymax, 0, 0)
pl.lab("(x)", "(y)", "#frPLplot Example 22 - potential gradient vector plot")
-- Plot contours of the potential
dz = (zmax-zmin)/nlevel
for i = 1, nlevel do
clevel[i] = zmin + (i-0.5)*dz
end
pl.col0(3)
pl.lsty(2)
pl.cont(z, 1, nr, 1, ntheta, clevel, "pltr2", cgrid2)
pl.lsty(1)
pl.col0(1)
-- Plot the vectors of the gradient of the potential
pl.col0(2)
pl.vect(u, v, 25, "pltr2", cgrid2)
pl.col0(1)
-- Plot the perimeter of the cylinder
for i=1, nper do
theta = 2*math.pi/(nper-1)*(i-1)
px[i] = rmax*math.cos(theta)
py[i] = rmax*math.sin(theta)
end
pl.line(px, py)
end
----------------------------------------------------------------------------
-- main
--
-- Generates several simple vector plots.
----------------------------------------------------------------------------
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL)
-- Initialize plplot
pl.init()
circulation()
fill = 0
-- Set arrow style using arrow_x and arrow_y then
-- plot using these arrows.
pl.svect(arrow_x, arrow_y, fill)
constriction()
-- Set arrow style using arrow2_x and arrow2_y then
-- plot using these filled arrows.
fill = 1
pl.svect(arrow2_x, arrow2_y, fill)
constriction()
potential()
pl.plend()