1
0
mirror of git://projects.qi-hardware.com/openwrt-packages.git synced 2024-11-22 12:54:04 +02:00

add some lua-plplot-examples

This commit is contained in:
Xiangfu Liu 2011-01-18 16:21:06 +08:00
parent 0308bbce47
commit d3bb3a95be
32 changed files with 5813 additions and 0 deletions

View File

@ -0,0 +1,12 @@
-- initialise Lua bindings for PLplot examples.
if string.sub(_VERSION,1,7)=='Lua 5.0' then
lib=loadlib('/home/pub/spock/src/qi/openwrt-xburst/build_dir/target-mipsel_uClibc-0.9.30.1/plplot-5.9.7/bindings/lua/plplotluac.so','luaopen_plplotluac') or
loadlib('/home/pub/spock/src/qi/openwrt-xburst/build_dir/target-mipsel_uClibc-0.9.30.1/plplot-5.9.7/bindings/lua/plplotluac.dll','luaopen_plplotluac') or
loadlib('/home/pub/spock/src/qi/openwrt-xburst/build_dir/target-mipsel_uClibc-0.9.30.1/plplot-5.9.7/bindings/lua/plplotluac.dylib','luaopen_plplotluac')
assert(lib)()
else
package.cpath = '/home/pub/spock/src/qi/openwrt-xburst/build_dir/target-mipsel_uClibc-0.9.30.1/plplot-5.9.7/bindings/lua/?.so;' ..
'/home/pub/spock/src/qi/openwrt-xburst/build_dir/target-mipsel_uClibc-0.9.30.1/plplot-5.9.7/bindings/lua/?.dll;' ..
'/home/pub/spock/src/qi/openwrt-xburst/build_dir/target-mipsel_uClibc-0.9.30.1/plplot-5.9.7/bindings/lua/?.dylib;' ..package.cpath
require('plplotluac')
end

View File

@ -0,0 +1,210 @@
--[[ $Id: x01.lua 9414 2009-01-29 22:48:54Z airwin $
Simple line plot and multiple windows demo.
Copyright (C) 2008 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
-- Variables and data arrays used by plot generators
x = {}
y = {}
xs = {}
ys = {}
fontset = 1
f_name = ""
function plot1(do_test)
for i = 1, 60 do
x[i] = xoff + xscale * (i) / 60
y[i] = yoff + yscale * x[i]^2
end
xmin = x[1]
xmax = x[60]
ymin = y[1]
ymax = y[60]
for i = 1, 6 do
xs[i] = x[(i-1) * 10 + 4]
ys[i] = y[(i-1) * 10 + 4]
end
-- Set up the viewport and window using PLENV. The range in X is
-- 0.0 to 6.0, and the range in Y is 0.0 to 30.0. The axes are
-- scaled separately (just = 0), and we just draw a labelled
-- box (axis = 0).
pl.col0(1)
pl.env(xmin, xmax, ymin, ymax, 0, 0)
pl.col0(2)
pl.lab("(x)", "(y)", "#frPLplot Example 1 - y=x#u2")
-- Plot the data points
pl.col0(4)
pl.poin(xs, ys, 9)
-- Draw the line through the data
pl.col0(3)
pl.line(x, y)
end
function plot2()
-- Set up the viewport and window using PLENV. The range in X is -2.0 to
-- 10.0, and the range in Y is -0.4 to 2.0. The axes are scaled separately
--(just = 0), and we draw a box with axes (axis = 1).
pl.col0(1)
pl.env(-2, 10, -0.4, 1.2, 0, 1)
pl.col0(2)
pl.lab("(x)", "sin(x)/x", "#frPLplot Example 1 - Sinc Function")
-- Fill up the arrays
for i=1, 100 do
x[i] = (i - 20) / 6
y[i] = 1
if x[i] ~= 0 then y[i] = math.sin(x[i])/x[i] end
end
-- Draw the line
pl.col0(3)
pl.wid(2)
pl.line(x, y)
pl.wid(1)
end
function plot3()
space0 = { }
mark0 = { }
space1 = { 1500 }
mark1 = { 1500 }
-- For the final graph we wish to override the default tick intervals, and
--so do not use plenv().
pl.adv(0)
-- Use standard viewport, and define X range from 0 to 360 degrees, Y range
--from -1.2 to 1.2.
pl.vsta()
pl.wind(0, 360, -1.2, 1.2)
-- Draw a box with ticks spaced 60 degrees apart in X, and 0.2 in Y.
pl.col0(1)
pl.box("bcnst", 60, 2, "bcnstv", 0.2, 2)
-- Superimpose a dashed line grid, with 1.5 mm marks and spaces.
-- plstyl expects a pointer!
pl.styl(mark1, space1)
pl.col0(2)
pl.box("g", 30, 0, "g", 0.2, 0)
pl.styl(mark0, space0)
pl.col0(3)
pl.lab("Angle (degrees)", "sine", "#frPLplot Example 1 - Sine function")
for i=1, 101 do
x[i] = 3.6*(i-1)
y[i] = math.sin(x[i]*math.pi/180)
end
pl.col0(4)
pl.line(x, y)
end
----------------------------------------------------------------------------
-- main
--
-- Generates several simple line plots. Demonstrates:
-- - subwindow capability
-- - setting up the window, drawing plot, and labelling
-- - changing the color
-- - automatic axis rescaling to exponential notation
-- - placing the axes in the middle of the box
-- - gridded coordinate axes
----------------------------------------------------------------------------
-- plplot initialization
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL)
-- Get version number, just for kicks
ver=pl.gver()
print("PLplot library version: " .. ver)
-- Initialize plplot
-- Divide page into 2x2 plots
-- Note: calling plstar replaces separate calls to plssub and plinit
pl.star(2,2)
-- Select font set as per input flag
if fontset ~= 0 then
pl.fontld(1)
else
pl.fontld(0)
end
-- Set up the data
-- Original case
xscale = 6
yscale = 1
xoff = 0
yoff = 0
-- Do a plot
plot1(0)
-- Set up the data
xscale = 1
yscale = 0.0014
yoff = 0.0185
-- Do a plot
digmax = 5
pl.syax(digmax, 0)
plot1(1)
plot2()
plot3()
-- Show how to save a plot:
-- Open a new device, make it current, copy parameters,
-- and replay the plot buffer
if f_name~="" then -- command line option '-save filename'
print("The current plot was saved in color Postscript under the name " .. f_name .. ".\n")
cur_strm = pl.gstrm() -- get current stream
new_strm = pl.mkstrm() -- create a new one
pl.sfnam(f_name) -- file name
pl.sdev("psc") -- device type
pl.cpstrm(cur_strm, 0) -- copy old stream parameters to new stream
pl.replot() -- do the save by replaying the plot buffer
pl.plend1() -- finish the device
pl.sstrm(cur_strm) -- return to previous stream
end
-- Don't forget to call plend() to finish off!
pl.plend()

View File

@ -0,0 +1,152 @@
--[[ $Id: x02.lua 9414 2009-01-29 22:48:54Z airwin $
Multiple window and color map 0 demo.
Copyright (C) 2008 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
----------------------------------------------------------------------------
-- draw_windows
--
-- Draws a set of numbered boxes with colors according to cmap0 entry.
----------------------------------------------------------------------------
function draw_windows(nw, cmap0_offset)
pl.schr(0, 3.5)
pl.font(4)
for i = 0, nw-1 do
pl.col0(i+cmap0_offset)
pl.adv(0)
vmin = 0.1
vmax = 0.9
for j = 0, 2 do
pl.wid(j + 1)
pl.vpor(vmin, vmax, vmin, vmax)
pl.wind(0, 1, 0, 1)
pl.box("bc", 0, 0, "bc", 0, 0)
vmin = vmin + 0.1
vmax = vmax - 0.1
end
pl.wid(1)
pl.ptex(0.5, 0.5, 1, 0, 0.5, tostring(i))
end
end
----------------------------------------------------------------------------
-- demo1
--
-- Demonstrates multipl.e windows and default color map 0 palette.
----------------------------------------------------------------------------
function demo1()
pl.bop()
-- Divide screen into 16 regions
pl.ssub(4, 4)
draw_windows(16, 0)
pl.eop()
end
----------------------------------------------------------------------------
-- demo2
--
-- Demonstrates multipl.e windows, user-modified color map 0 palette, and
-- HLS -> RGB translation.
----------------------------------------------------------------------------
function demo2()
-- Set up cmap0
-- Use 100 custom colors in addition to base 16
r = {}
g = {}
b = {}
-- Min & max lightness values
lmin = 0.15
lmax = 0.85
pl.bop()
-- Divide screen into 100 regions
pl.ssub(10, 10)
for i = 0, 99 do
-- Bounds on HLS, from pl.hlsrgb() commentary --
-- hue [0., 360.] degrees
-- lightness [0., 1.] magnitude
-- saturation [0., 1.] magnitude
-- Vary hue uniformly from left to right
h = (360/10) * math.mod(i, 10)
-- Vary lightness uniformly from top to bottom, between min & max
l = lmin + (lmax - lmin) * math.floor(i/10)/9
-- Use max saturation
s = 1
r1, g1, b1 = pl.hlsrgb(h, l, s)
-- Use 255.001 to avoid close truncation decisions in this example.
r[i+1+16] = r1 * 255.001
g[i+1+16] = g1 * 255.001
b[i+1+16] = b1 * 255.001
end
-- Load default cmap0 colors into our custom set
for i = 0, 15 do
r[i+1], g[i+1], b[i+1] = pl.gcol0(i)
end
-- Now set cmap0 all at once (faster, since fewer driver calls)
pl.scmap0(r, g, b)
draw_windows(100, 16)
pl.eop()
end
----------------------------------------------------------------------------
-- main
--
-- Demonstrates multipl.e windows and color map 0 palette, both default and
-- user-modified.
----------------------------------------------------------------------------
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL)
-- Initialize pl.pl.ot
pl.init()
-- Run demos
demo1()
demo2()
pl.plend()

View File

@ -0,0 +1,105 @@
--[[ $Id: x03.lua 10613 2009-11-19 12:05:09Z andrewross $
Polar plot demo.
Copyright (C) 2008 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
----------------------------------------------------------------------------
-- main
--
-- Generates polar plot, with 1-1 scaling.
----------------------------------------------------------------------------
x0 = {}
y0 = {}
x = {}
y = {}
dtr = math.pi/180
for i = 1, 361 do
x0[i] = math.cos(dtr * (i-1))
y0[i] = math.sin(dtr * (i-1))
end
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL)
-- Set orientation to portrait - note not all device drivers
-- support this, in particular most interactive drivers do not
pl.sori(1)
-- Initialize plplot
pl.init()
-- Set up viewport and window, but do not draw box
pl.env(-1.3, 1.3, -1.3, 1.3, 1, -2)
-- Draw circles for polar grid
for i = 1, 10 do
pl.arc(0, 0, 0.1*i, 0.1*i, 0, 360, 0);
end
pl.col0(2)
for i=1, 12 do
theta = 30 * (i-1)
dx = math.cos(dtr * theta)
dy = math.sin(dtr * theta)
-- Draw radial spokes for polar grid
pl.join(0, 0, dx, dy)
-- Write labels for angle
if theta < 9.99 then
offset = 0.45
else
if theta < 99.9 then
offset = 0.30
else
offset = 0.15
end
end
-- Slightly off zero to avoid floating point logic flips at 90 and 270 deg.
if dx >= -0.00001 then
pl.ptex(dx, dy, dx, dy, -offset, tostring(math.floor(theta)))
else
pl.ptex(dx, dy, -dx, -dy, 1.+offset, tostring(math.floor(theta)))
end
end
-- Draw the graph
for i=1, 361 do
r = math.sin(dtr * (5*(i-1)))
x[i] = x0[i] * r
y[i] = y0[i] * r
end
pl.col0(3)
pl.line(x, y)
pl.col0(4)
pl.mtex("t", 2, 0.5, 0.5, "#frPLplot Example 3 - r(#gh)=sin 5#gh")
-- Close the plot at end
pl.plend()

View File

@ -0,0 +1,106 @@
--[[ $Id: x04.lua 9414 2009-01-29 22:48:54Z airwin $
Log plot demo.
Simple line plot and multiple windows demo.
Copyright (C) 2008 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
----------------------------------------------------------------------------
-- plot1
--
-- Log-linear plot.
----------------------------------------------------------------------------
function plot1(type)
freql = {}
ampl = {}
phase = {}
pl.adv(0)
-- Set up data for log plot
f0 = 1
for i=1, 101 do
freql[i] = -2 + (i-1) / 20
freq = 10^freql[i]
ampl[i] = 20 * math.log10(1 / math.sqrt(1 + (freq / f0)^2))
phase[i] = -(180 / math.pi) * math.atan(freq / f0)
end
pl.vpor(0.15, 0.85, 0.1, 0.9)
pl.wind(-2, 3, -80, 0)
-- Try different axis and labelling styles.
pl.col0(1)
if type == 0 then
pl.box("bclnst", 0, 0, "bnstv", 0, 0)
end
if type == 1 then
pl.box("bcfghlnst", 0, 0, "bcghnstv", 0, 0)
end
-- Plot ampl vs freq
pl.col0(2)
pl.line(freql, ampl)
pl.col0(1)
pl.ptex(1.6, -30, 1, -20, 0.5, "-20 dB/decade")
-- Put labels on
pl.col0(1)
pl.mtex("b", 3.2, 0.5, 0.5, "Frequency")
pl.mtex("t", 2, 0.5, 0.5, "Single Pole Low-Pass Filter")
pl.col0(2)
pl.mtex("l", 5, 0.5, 0.5, "Amplitude (dB)")
-- For the gridless case, put phase vs freq on same plot
if type == 0 then
pl.col0(1)
pl.wind(-2, 3, -100, 0)
pl.box("", 0, 0, "cmstv", 30, 3)
pl.col0(3)
pl.line(freql, phase)
pl.col0(3)
pl.mtex("r", 5, 0.5, 0.5, "Phase shift (degrees)")
end
end
----------------------------------------------------------------------------
-- main
--
-- Illustration of logarithmic axes, and redefinition of window.
----------------------------------------------------------------------------
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL)
-- Initialize plplot
pl.init()
pl.font(2)
-- Make log plots using two different styles.
plot1(0)
plot1(1)
pl.plend()

View File

@ -0,0 +1,54 @@
--[[ $Id: x05.lua 9414 2009-01-29 22:48:54Z airwin $
Histogram demo.
Copyright (C) 2008 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
--------------------------------------------------------------------------
-- main
--
-- Draws a histogram from sample data.
--------------------------------------------------------------------------
NPTS=2047
data = {}
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL);
-- Initialize plplot
pl.init()
-- Fill up data points
delta = 2.0*math.pi/NPTS
for i=1, NPTS do
data[i] = math.sin((i-1)*delta)
end
pl.col0(1)
pl.hist(data, -1.1, 1.1, 44, 0)
pl.col0(2)
pl.lab("#frValue", "#frFrequency",
"#frPLplot Example 5 - Probability function of Oscillator")
pl.plend()

View File

@ -0,0 +1,90 @@
--[[ $Id: x06.lua 11032 2010-05-27 22:34:40Z andrewross $
Font demo.
Copyright (C) 2008 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
----------------------------------------------------------------------------
-- main
--
-- Displays the entire "plpoin" symbol (font) set.
----------------------------------------------------------------------------
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL)
-- Initialize plplot
pl.init()
for kind_font = 0,1 do
pl.fontld( kind_font )
if kind_font == 0 then
maxfont = 1
else
maxfont = 4
end
for font = 1,maxfont do
pl.font( font )
pl.adv(0)
-- Set up viewport and window
pl.col0(2)
pl.vpor(0.1, 1, 0.1, 0.9)
pl.wind(0, 1, 0, 1.3)
-- Draw the grid using plbox
pl.box("bcg", 0.1, 0, "bcg", 0.1, 0)
-- Write the digits below the frame
pl.col0(15)
for i=0, 9 do
pl.mtex("b", 1.5, (0.1 * i + 0.05), 0.5, tostring(i))
end
k = 0
x = {}
y ={}
for i = 0, 12 do
-- Write the digits to the left of the frame
pl.mtex("lv", 1, (1 - (2 * i + 1) / 26), 1, tostring(10*i))
for j = 0, 9 do
x[1] = 0.1 * j + 0.05
y[1] = 1.25 - 0.1 * i
-- Display the symbols
if k < 128 then
pl.poin(x, y, k)
end
k = k + 1
end
end
if kind_font == 0 then
pl.mtex("t", 1.5, 0.5, 0.5, "PLplot Example 6 - plpoin symbols (compact)")
else
pl.mtex("t", 1.5, 0.5, 0.5, "PLplot Example 6 - plpoin symbols (extended)")
end
end
end
pl.plend()

View File

@ -0,0 +1,90 @@
--[[ $Id: x07.lua 11032 2010-05-27 22:34:40Z andrewross $
Font demo.
Copyright (C) 2008 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
base = { 0, 100, 0, 100, 200, 500, 600, 700, 800, 900,
2000, 2100, 2200, 2300, 2400, 2500,
2600, 2700, 2800, 2900 }
----------------------------------------------------------------------------
-- main
--
-- Displays the entire "plsym" symbol (font) set.
----------------------------------------------------------------------------
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL)
-- Initialize plplot
pl.init()
pl.fontld(0)
for l = 1, 20 do
if l == 3 then
pl.fontld(1)
end
pl.adv(0)
-- Set up viewport and window
pl.col0(2)
pl.vpor(0.15, 0.95, 0.1, 0.9)
pl.wind(0, 1, 0, 1)
-- Draw the grid using plbox
pl.box("bcg", 0.1, 0, "bcg", 0.1, 0)
-- Write the digits below the frame
pl.col0(15)
for i = 0, 9 do
pl.mtex("b", 1.5, (0.1 * i + 0.05), 0.5, tostring(i))
end
k = 0
x = {}
y = {}
for i = 0, 9 do
-- Write the digits to the left of the frame
pl.mtex("lv", 1.0, (0.95 - 0.1 * i), 1.0, tostring(base[l] + 10 * i))
for j=0, 9 do
x[1] = 0.1 * j + 0.05
y[1] = 0.95 - 0.1 * i
-- Display the symbols
pl.sym(x, y, base[l] + k)
k = k + 1
end
end
if l <= 2 then
pl.mtex("t", 1.5, 0.5, 0.5, "PLplot Example 7 - PLSYM symbols (compact)")
else
pl.mtex("t", 1.5, 0.5, 0.5, "PLplot Example 7 - PLSYM symbols (extended)")
end
end
pl.plend()

View File

@ -0,0 +1,189 @@
--[[ $Id: x08.lua 9533 2009-02-16 22:18:37Z smekal $
3-d plot demo.
Copyright (C) 2008 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
-- bitwise or operator from http://lua-users.org/wiki/BaseSixtyFour
-- (c) 2006-2008 by Alex Kloss
-- licensed under the terms of the LGPL2
-- return single bit (for OR)
function bit(x,b)
return (math.mod(x, 2^b) - math.mod(x,2^(b-1)) > 0)
end
-- logic OR for number values
function lor(x,y)
result = 0
for p=1,8 do result = result + (((bit(x,p) or bit(y,p)) == true) and 2^(p-1) or 0) end
return result
end
----------------------------------------------------------------------------
-- cmap1_init1
--
-- Initializes color map 1 in HLS space.
-- Basic grayscale variation from half-dark (which makes more interesting
-- looking plot compared to dark) to light.
-- An interesting variation on this:
-- s[1] = 1.0
----------------------------------------------------------------------------
function cmap1_init(gray)
i = { 0, 1 } -- left and right boundary
if gray ~= 0 then
h = { 0, 0 } -- hue -- low: red (arbitrary if s=0), high: red (arbitrary if s=0)
l = { 0.5, 1 } -- lightness -- low: half-dark, high: light
s = { 0, 0 } -- minimum saturation
else
h = { 240, 0 } -- blue -> green -> yellow -> red
l = { 0.6, 0.6 }
s = { 0.8, 0.8 }
end
pl.scmap1n(256)
pl.scmap1l(0, i, h, l, s)
end
----------------------------------------------------------------------------
-- main
--
-- Does a series of 3-d plots for a given data set, with different
-- viewing options in each plot.
----------------------------------------------------------------------------
XPTS = 35 -- Data points in x
YPTS = 46 -- Data points in y
LEVELS = 10
alt = { 60, 20 }
az = { 30, 60 }
title = {
"#frPLplot Example 8 - Alt=60, Az=30",
"#frPLplot Example 8 - Alt=20, Az=60"
}
clevel = {}
nlevel = LEVELS
rosen = 1
sombrero = 0
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL)
if sombrero ~= 0 then rosen=0 end
-- Initialize plplot
pl.init()
-- Allocate data structures
x = {}
y = {}
z = {}
for i=1, XPTS do
x[i] = (i-1-math.floor(XPTS/2)) / math.floor(XPTS/2)
if rosen~=0 then x[i]=x[i]*1.5 end
end
for i=1, YPTS do
y[i] = (i-1-math.floor(YPTS/2)) / math.floor(YPTS/2)
if rosen~=0 then y[i]=y[i]+0.5 end
end
for i=1, XPTS do
xx = x[i]
z[i]= {}
for j=1, YPTS do
yy = y[j]
if rosen~=0 then
z[i][j] = (1-xx)^2 + 100*(yy-xx^2)^2
-- The log argument may be zero for just the right grid.
if z[i][j] > 0 then
z[i][j] = math.log(z[i][j])
else
z[i][j] = -5 -- MAXFLOAT would mess-up up the scale
end
else
r = math.sqrt(xx^2 + yy^2)
z[i][j] = math.exp(-r^2) * math.cos(2*math.pi*r)
end
end
end
zmax, zmin = pl.MinMax2dGrid(z)
step = (zmax-zmin)/(nlevel+1)
for i=1, nlevel do
clevel[i] = zmin + step + step*(i-1)
end
pl.lightsource(1, 1, 1)
for k=1, 2 do
for ifshade = 1, 4 do
pl.adv(0)
pl.vpor(0, 1, 0, 0.9)
pl.wind(-1, 1, -0.9, 1.1)
pl.col0(3)
pl.mtex("t", 1, 0.5, 0.5, title[k])
pl.col0(1)
if rosen~=0 then
pl.w3d(1, 1, 1, -1.5, 1.5, -0.5, 1.5, zmin, zmax, alt[k], az[k])
else
pl.w3d(1, 1, 1, -1, 1, -1, 1, zmin, zmax, alt[k], az[k])
end
pl.box3("bnstu", "x axis", 0, 0,
"bnstu", "y axis", 0, 0,
"bcdmnstuv", "z axis", 0, 0)
pl.col0(2)
if ifshade==1 then -- diffuse light surface plot
cmap1_init(1)
pl.surf3d(x, y, z, 0, clevel)
end
if ifshade==2 then -- magnitude colored plot
cmap1_init(0)
pl.surf3d(x, y, z, pl.MAG_COLOR, {})
end
if ifshade==3 then -- magnitude colored plot with faceted squares
cmap1_init(0)
pl.surf3d(x, y, z, lor(pl.MAG_COLOR, pl.FACETED), {})
end
if ifshade==4 then -- magnitude colored plot with contours
cmap1_init(0)
pl.surf3d(x, y, z, lor(lor(pl.MAG_COLOR, pl.SURF_CONT), pl.BASE_CONT), clevel)
end
end
end
-- Clean up
pl.plend()

View File

@ -0,0 +1,350 @@
--[[ $Id: x09.lua 9533 2009-02-16 22:18:37Z smekal $
Contour plot demo.
Copyright (C) 2008 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
XPTS = 35 -- Data points in x
YPTS = 46 -- Data points in y
XSPA = 2/(XPTS-1)
YSPA = 2/(YPTS-1)
-- polar plot data
PERIMETERPTS = 100
RPTS = 40
THETAPTS = 40
-- potential plot data
PPERIMETERPTS = 100
PRPTS = 40
PTHETAPTS = 64
PNLEVEL = 20
clevel = { -1, -0.8, -0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6, 0.8, 1}
-- Transformation function
tr = { XSPA, 0, -1, 0, YSPA, -1 }
function mypltr(x, y)
tx = tr[1] * x + tr[2] * y + tr[3]
ty = tr[4] * x + tr[5] * y + tr[6]
return tx, ty
end
--polar contour plot example.
function polar()
px = {}
py = {}
lev = {}
pl.env(-1, 1, -1, 1, 0, -2)
pl.col0(1)
--Perimeter
for i=1, PERIMETERPTS do
t = (2*math.pi/(PERIMETERPTS-1))*(i-1)
px[i] = math.cos(t)
py[i] = math.sin(t)
end
pl.line(px, py)
--create data to be contoured.
cgrid2["xg"] = {}
cgrid2["yg"] = {}
cgrid2["nx"] = RPTS
cgrid2["ny"] = THETAPTS
z = {}
for i = 1, RPTS do
r = (i-1)/(RPTS-1)
cgrid2["xg"][i] = {}
cgrid2["yg"][i] = {}
z[i] = {}
for j = 1, THETAPTS do
theta = (2*math.pi/(THETAPTS-1))*(j-1)
cgrid2["xg"][i][j] = r*math.cos(theta)
cgrid2["yg"][i][j] = r*math.sin(theta)
z[i][j] = r
end
end
for i = 1, 10 do
lev[i] = 0.05 + 0.10*(i-1)
end
pl.col0(2)
pl.cont(z, 1, RPTS, 1, THETAPTS, lev, "pltr2", cgrid2)
pl.col0(1)
pl.lab("", "", "Polar Contour Plot")
end
----------------------------------------------------------------------------
-- f2mnmx
--
-- Returns min & max of input 2d array.
----------------------------------------------------------------------------
function f2mnmx(f, nx, ny)
fmax = f[1][1]
fmin = fmax
for i=1, nx do
for j=1, ny do
fmax = math.max(fmax, f[i][j])
fmin = math.min(fmin, f[i][j])
end
end
return fmin, fmax
end
--shielded potential contour plot example.
function potential()
clevelneg = {}
clevelpos = {}
px = {}
py = {}
--create data to be contoured.
cgrid2["xg"] = {}
cgrid2["yg"] = {}
cgrid2["nx"] = PRPTS
cgrid2["ny"] = PTHETAPTS
z = {}
for i = 1, PRPTS do
r = 0.5 + (i-1)
cgrid2["xg"][i] = {}
cgrid2["yg"][i] = {}
for j = 1, PTHETAPTS do
theta = 2*math.pi/(PTHETAPTS-1)*(j-0.5)
cgrid2["xg"][i][j] = r*math.cos(theta)
cgrid2["yg"][i][j] = r*math.sin(theta)
end
end
rmax = PRPTS-0.5
xmin, xmax = f2mnmx(cgrid2["xg"], PRPTS, PTHETAPTS)
ymin, ymax = f2mnmx(cgrid2["yg"], PRPTS, PTHETAPTS)
x0 = (xmin + xmax)/2
y0 = (ymin + ymax)/2
-- Expanded limits
peps = 0.05
xpmin = xmin - math.abs(xmin)*peps
xpmax = xmax + math.abs(xmax)*peps
ypmin = ymin - math.abs(ymin)*peps
ypmax = ymax + math.abs(ymax)*peps
-- Potential inside a conducting cylinder (or sphere) by method of images.
-- Charge 1 is placed at (d1, d1), with image charge at (d2, d2).
-- Charge 2 is placed at (d1, -d1), with image charge at (d2, -d2).
-- Also put in smoothing term at small distances.
eps = 2
q1 = 1
d1 = rmax/4
q1i = - q1*rmax/d1
d1i = rmax^2/d1
q2 = -1
d2 = rmax/4
q2i = - q2*rmax/d2
d2i = rmax^2/d2
for i = 1, PRPTS do
z[i] = {}
for j = 1, PTHETAPTS do
div1 = math.sqrt((cgrid2.xg[i][j]-d1)^2 + (cgrid2.yg[i][j]-d1)^2 + eps^2)
div1i = math.sqrt((cgrid2.xg[i][j]-d1i)^2 + (cgrid2.yg[i][j]-d1i)^2 + eps^2)
div2 = math.sqrt((cgrid2.xg[i][j]-d2)^2 + (cgrid2.yg[i][j]+d2)^2 + eps^2)
div2i = math.sqrt((cgrid2.xg[i][j]-d2i)^2 + (cgrid2.yg[i][j]+d2i)^2 + eps^2)
z[i][j] = q1/div1 + q1i/div1i + q2/div2 + q2i/div2i
end
end
zmin, zmax = f2mnmx(z, PRPTS, PTHETAPTS)
-- Positive and negative contour levels.
dz = (zmax-zmin)/PNLEVEL
nlevelneg = 1
nlevelpos = 1
for i = 1, PNLEVEL do
clevel = zmin + (i-0.5)*dz
if clevel <= 0 then
clevelneg[nlevelneg] = clevel
nlevelneg = nlevelneg + 1
else
clevelpos[nlevelpos] = clevel
nlevelpos = nlevelpos + 1
end
end
-- Colours!
ncollin = 11
ncolbox = 1
ncollab = 2
-- Finally start plotting this page!
pl.adv(0)
pl.col0(ncolbox)
pl.vpas(0.1, 0.9, 0.1, 0.9, 1)
pl.wind(xpmin, xpmax, ypmin, ypmax)
pl.box("", 0, 0, "", 0, 0)
pl.col0(ncollin)
if nlevelneg>1 then
-- Negative contours
pl.lsty(2)
pl.cont(z, 1, PRPTS, 1, PTHETAPTS, clevelneg, "pltr2", cgrid2)
end
if nlevelpos>1 then
-- Positive contours
pl.lsty(1)
pl.cont(z, 1, PRPTS, 1, PTHETAPTS, clevelpos, "pltr2", cgrid2)
end
-- Draw outer boundary
for i = 1, PPERIMETERPTS do
t = (2*math.pi/(PPERIMETERPTS-1))*(i-1)
px[i] = x0 + rmax*math.cos(t)
py[i] = y0 + rmax*math.sin(t)
end
pl.col0(ncolbox)
pl.line(px, py)
pl.col0(ncollab)
pl.lab("", "", "Shielded potential of charges in a conducting sphere")
end
----------------------------------------------------------------------------
-- main
--
-- Does several contour plots using different coordinate mappings.
----------------------------------------------------------------------------
mark = { 1500 }
space = { 1500 }
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL)
-- Initialize plplot
pl.init()
-- Set up function arrays
z = {}
w = {}
for i = 1, XPTS do
xx = (i-1 - math.floor(XPTS/2)) / math.floor(XPTS/2)
z[i] = {}
w[i] = {}
for j = 1, YPTS do
yy = (j-1 - math.floor(YPTS/2)) / math.floor(YPTS/2) - 1
z[i][j] = xx^2 - yy^2
w[i][j] = 2 * xx * yy
end
end
-- Set up grids
cgrid1 = {}
cgrid1["xg"] = {}
cgrid1["yg"] = {}
cgrid1["nx"] = XPTS
cgrid1["ny"] = YPTS
cgrid2 = {}
cgrid2["xg"] = {}
cgrid2["yg"] = {}
cgrid2["nx"] = XPTS
cgrid2["ny"] = YPTS
for i = 1, XPTS do
cgrid2["xg"][i] = {}
cgrid2["yg"][i] = {}
for j = 1, YPTS do
xx, yy = mypltr(i-1, j-1)
argx = xx * math.pi/2
argy = yy * math.pi/2
distort = 0.4
cgrid1["xg"][i] = xx + distort * math.cos(argx)
cgrid1["yg"][j] = yy - distort * math.cos(argy)
cgrid2["xg"][i][j] = xx + distort * math.cos(argx) * math.cos(argy)
cgrid2["yg"][i][j] = yy - distort * math.cos(argx) * math.cos(argy)
end
end
-- Plot using identity transform
pl.setcontlabelformat(4, 3)
pl.setcontlabelparam(0.006, 0.3, 0.1, 1)
pl.env(-1, 1, -1, 1, 0, 0)
pl.col0(2)
pl.cont(z, 1, XPTS, 1, YPTS, clevel, "mypltr")
pl.styl(mark, space)
pl.col0(3)
pl.cont(w, 1, XPTS, 1, YPTS, clevel, "mypltr")
pl.styl({}, {})
pl.col0(1)
pl.lab("X Coordinate", "Y Coordinate", "Streamlines of flow")
pl.setcontlabelparam(0.006, 0.3, 0.1, 0)
-- Plot using 1d coordinate transform
pl.env(-1, 1, -1, 1, 0, 0)
pl.col0(2)
pl.cont(z, 1, XPTS, 1, YPTS, clevel, "pltr1", cgrid1)
pl.styl(mark, space)
pl.col0(3)
pl.cont(w, 1, XPTS, 1, YPTS, clevel, "pltr1", cgrid1)
pl.styl({}, {})
pl.col0(1)
pl.lab("X Coordinate", "Y Coordinate", "Streamlines of flow")
-- Plot using 2d coordinate transform
pl.env(-1, 1, -1, 1, 0, 0)
pl.col0(2)
pl.cont(z, 1, XPTS, 1, YPTS, clevel, "pltr2", cgrid2)
pl.styl(mark, space)
pl.col0(3)
pl.cont(w, 1, XPTS, 1, YPTS, clevel, "pltr2", cgrid2)
pl.styl({}, {})
pl.col0(1)
pl.lab("X Coordinate", "Y Coordinate", "Streamlines of flow")
pl.setcontlabelparam(0.006, 0.3, 0.1, 0)
polar()
pl.setcontlabelparam(0.006, 0.3, 0.1, 0)
potential()
-- Clean up
pl.plend()

View File

@ -0,0 +1,49 @@
--[[ $Id: x10.lua 9414 2009-01-29 22:48:54Z airwin $
Window positioning demo.
Copyright (C) 2008 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
----------------------------------------------------------------------------
-- main
--
-- Demonstrates absolute positioning of graphs on a page.
----------------------------------------------------------------------------
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL);
-- Initialize plplot
pl.init()
pl.adv(0)
pl.vpor(0.0, 1.0, 0.0, 1.0)
pl.wind(0.0, 1.0, 0.0, 1.0)
pl.box("bc", 0.0, 0, "bc", 0.0, 0)
pl.svpa(50.0, 150.0, 50.0, 100.0)
pl.wind(0.0, 1.0, 0.0, 1.0)
pl.box("bc", 0.0, 0, "bc", 0.0, 0)
pl.ptex(0.5, 0.5, 1.0, 0.0, 0.5, "BOX at (50,150,50,100)")
pl.plend()

View File

@ -0,0 +1,160 @@
--[[ $Id: x11.lua 9533 2009-02-16 22:18:37Z smekal $
Mesh plot demo.
Copyright (C) 2008 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
XPTS = 35 -- Data points in x
YPTS = 46 -- Data points in y
LEVELS = 10
opt = { pl.DRAW_LINEXY, pl.DRAW_LINEXY }
alt = { 33, 17 }
az = { 24, 115 }
title = {
"#frPLplot Example 11 - Alt=33, Az=24, Opt=3",
"#frPLplot Example 11 - Alt=17, Az=115, Opt=3" }
-- bitwise or operator from http://lua-users.org/wiki/BaseSixtyFour
-- (c) 2006-2008 by Alex Kloss
-- licensed under the terms of the LGPL2
-- return single bit (for OR)
function bit(x,b)
return (math.mod(x, 2^b) - math.mod(x,2^(b-1)) > 0)
end
-- logic OR for number values
function lor(x,y)
result = 0
for p=1,8 do result = result + (((bit(x,p) or bit(y,p)) == true) and 2^(p-1) or 0) end
return result
end
function cmap1_init()
i = { 0, 1 } -- left boundary , right boundary
h = { 240, 0 } -- blue -> green -> yellow -> red
l = { 0.6, 0.6 }
s = { 0.8, 0.8 }
pl.scmap1n(256)
pl.scmap1l(0, i, h, l, s)
end
----------------------------------------------------------------------------
-- main
--
-- Does a series of mesh plots for a given data set, with different
-- viewing options in each plot.
----------------------------------------------------------------------------
nlevel = LEVELS
clevel = {}
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL)
-- Initialize plplot
pl.init()
x = {}
y = {}
z = {}
for i=1, XPTS do
x[i] = 3 * (i-1-math.floor(XPTS/2)) / math.floor(XPTS/2)
end
for i=1, YPTS do
y[i] = 3 * (i-1-math.floor(YPTS/2)) / math.floor(YPTS/2)
end
for i=1, XPTS do
xx = x[i]
z[i] = {}
for j=1, YPTS do
yy = y[j]
z[i][j] = 3 * (1-xx)^2 * math.exp(-xx^2 - (yy+1.)^2) -
10 * (xx/5 - xx^3 - yy^5) * math.exp(-xx^2-yy^2) -
1/3 * math.exp(-(xx+1)^2 - yy^2)
-- Jungfraujoch/Interlaken
if false then
if z[i][j] < -1 then z[i][j] = -1 end
end
end
end
zmax, zmin = pl.MinMax2dGrid(z)
step = (zmax - zmin)/(nlevel+1)
for i=1, nlevel do
clevel[i] = zmin + step + step*(i-1)
end
cmap1_init()
for k=1, 2 do
for i=1, 4 do
pl.adv(0)
pl.col0(1)
pl.vpor(0, 1, 0, 0.9)
pl.wind(-1, 1, -1, 1.5)
pl.w3d(1, 1, 1.2, -3, 3, -3, 3, zmin, zmax, alt[k], az[k])
pl.box3("bnstu", "x axis", 0, 0,
"bnstu", "y axis", 0, 0,
"bcdmnstuv", "z axis", 0, 4)
pl.col0(2)
-- wireframe plot
if i==1 then
pl.mesh(x, y, z, opt[k])
end
-- magnitude colored wireframe plot
if i==2 then
pl.mesh(x, y, z, lor(opt[k], pl.MAG_COLOR))
end
-- magnitude colored wireframe plot with sides
if i==3 then
pl.plot3d(x, y, z, lor(opt[k], pl.MAG_COLOR), 1)
end
-- magnitude colored wireframe plot with base contour
if i==4 then
pl.meshc(x, y, z, lor(lor(opt[k], pl.MAG_COLOR), pl.BASE_CONT), clevel)
end
pl.col0(3)
pl.mtex("t", 1, 0.5, 0.5, title[k])
end
end
-- Clean up
pl.plend()

View File

@ -0,0 +1,78 @@
--[[ $Id: x12.lua 9533 2009-02-16 22:18:37Z smekal $
Bar chart demo.
Copyright (C) 2008 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
function pl.fbox(x0, y0)
x = { x0, x0, x0+1,x0+1 }
y = { 0, y0, y0, 0 }
pl.fill(x, y);
pl.col0(1);
pl.lsty(1);
pl.line(x, y);
end
--------------------------------------------------------------------------
-- main
--
-- Does a simple bar chart, using color fill. If color fill is
-- unavailable, pattern fill is used instead (automatic).
--------------------------------------------------------------------------
y0 = {}
pos = { 0, 0.25, 0.5, 0.75, 1 }
red = { 0, 0.25, 0.5, 1, 1 }
green = { 1, 0.5, 0.5, 0.5, 1 }
blue = { 1, 1, 0.5, 0.25, 0 }
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL);
-- Initialize plplot
pl.init()
pl.adv(0)
pl.vsta()
pl.wind(1980, 1990, 0, 35)
pl.box("bc", 1, 0, "bcnv", 10, 0)
pl.col0(2)
pl.lab("Year", "Widget Sales (millions)", "#frPLplot Example 12")
y0 = { 5, 15, 12, 24, 28, 30, 20, 8, 12, 3}
pl.scmap1l(1, pos, red, green, blue);
for i=1, 10 do
pl.col1((i-1)/9.0);
pl.psty(0);
pl.fbox((1980+i-1), y0[i]);
pl.ptex((1980+i-0.5), (y0[i]+1), 1, 0, 0.5, tostring(y0[i]));
pl.mtex("b", 1, (i*0.1-0.05), 0.5, tostring(1980+i-1));
end
pl.plend();

View File

@ -0,0 +1,96 @@
--[[ $Id: x13.lua 9526 2009-02-13 22:06:13Z smekal $
Pie chart demo.
Copyright (C) 2008 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
text = { "Maurice", "Geoffrey", "Alan",
"Rafael", "Vince" }
--------------------------------------------------------------------------
-- main
--
-- Does a simple pie chart.
--------------------------------------------------------------------------
per = { 10, 32, 12, 30, 16 }
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL);
-- Initialize plplot
pl.init()
pl.adv(0)
-- Ensure window has aspect ratio of one so circle is
-- plotted as a circle.
pl.vasp(1)
pl.wind(0, 10, 0, 10)
pl.col0(2)
-- n.b. all theta quantities scaled by 2*M_PI/500 to be integers to avoid
--floating point logic problems.
theta0 = 0
dthet = 1
for i = 1, 5 do
x = { 5 }
y = { 5 }
j = 2
-- n.b. the theta quantities multiplied by 2*math.pi/500 afterward so
-- in fact per is interpreted as a percentage.
theta1 = theta0 + 5 * per[i]
if i == 5 then theta1 = 500 end
for theta = theta0, theta1, dthet do
x[j] = 5 + 3 * math.cos(2*math.pi/500*theta)
y[j] = 5 + 3 * math.sin(2*math.pi/500*theta)
j = j + 1
thetasave=theta
end
pl.col0(i)
pl.psty(math.mod((i + 2), 8) + 1)
pl.fill(x, y)
pl.col0(1)
pl.line(x, y)
just = 2*math.pi/500*(theta0 + theta1)/2
dx = 0.25 * math.cos(just)
dy = 0.25 * math.sin(just)
if (theta0 + theta1)<250 or (theta0 + theta1)>750 then
just = 0
else
just = 1
end
pl.ptex((x[(j-1)/2+1] + dx), (y[(j-1)/2+1] + dy), 1, 0, just, text[i]);
theta0 = thetasave
end
pl.font(2)
pl.schr(0, 1.3)
pl.ptex(5, 9, 1, 0, 0.5, "Percentage of Sales")
pl.plend()

View File

@ -0,0 +1,361 @@
--[[ $Id: x14.lua 10793 2010-02-06 01:48:39Z hbabcock $
Demo of multiple stream/window capability (requires Tk or Tcl-DP).
Maurice LeBrun
IFS, University of Texas at Austin
Copyright (C) 2009 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
xs = {}
ys = {}
space0 = {}
mark0 = {}
space1 = { 1500 }
mark1 = { 1500 }
function plot1()
x = {}
y = {}
for i = 1, 60 do
x[i] = xoff + xscale*i/60
y[i] = yoff + yscale*x[i]^2
end
xmin = x[1]
xmax = x[60]
ymin = y[1]
ymax = y[60]
for i = 1, 6 do
xs[i] = x[(i-1)*10 + 4]
ys[i] = y[(i-1)*10 + 4]
end
-- Set up the viewport and window using PLENV. The range in X is
-- 0.0 to 6.0, and the range in Y is 0.0 to 30.0. The axes are
-- scaled separately (just = 0), and we just draw a labelled
-- box (axis = 0).
pl.col0(1)
pl.env(xmin, xmax, ymin, ymax, 0, 0)
pl.col0(6)
pl.lab("(x)", "(y)", "#frPLplot Example 1 - y=x#u2")
-- Plot the data points
pl.col0(9)
pl.poin(xs, ys, 9)
-- Draw the line through the data
pl.col0(4)
pl.line(x, y)
pl.flush()
end
function plot2()
x = {}
y = {}
-- Set up the viewport and window using PLENV. The range in X is -2.0 to
-- 10.0, and the range in Y is -0.4 to 2.0. The axes are scaled separately
-- (just = 0), and we draw a box with axes (axis = 1).
pl.col0(1)
pl.env(-2, 10, -0.4, 1.2, 0, 1)
pl.col0(2)
pl.lab("(x)", "sin(x)/x", "#frPLplot Example 1 - Sinc Function")
-- Fill up the arrays
for i = 1, 100 do
x[i] = (i-20)/6
y[i] = 1
if x[i]~=0 then
y[i] = math.sin(x[i])/x[i]
end
end
-- Draw the line
pl.col0(3)
pl.line(x, y)
pl.flush()
end
function plot3()
x = {}
y = {}
-- For the final graph we wish to override the default tick intervals, and
-- so do not use PLENV
pl.adv(0)
-- Use standard viewport, and define X range from 0 to 360 degrees, Y range
-- from -1.2 to 1.2.
pl.vsta()
pl.wind(0, 360, -1.2, 1.2)
-- Draw a box with ticks spaced 60 degrees apart in X, and 0.2 in Y.
pl.col0(1)
pl.box("bcnst", 60, 2, "bcnstv", 0.2, 2)
-- Superimpose a dashed line grid, with 1.5 mm marks and spaces. plstyl
-- expects a pointer!!
pl.styl(mark1, space1)
pl.col0(2)
pl.box("g", 30, 0, "g", 0.2, 0)
pl.styl(mark0, space0)
pl.col0(3)
pl.lab("Angle (degrees)", "sine", "#frPLplot Example 1 - Sine function")
for i = 1, 101 do
x[i] = 3.6 * (i-1)
y[i] = math.sin(x[i]*math.pi/180)
end
pl.col0(4)
pl.line(x, y)
pl.flush()
end
function plot4()
x0 = {}
y0 = {}
x = {}
y = {}
dtr = math.pi/180
for i = 1, 361 do
x0[i] = math.cos(dtr*(i-1))
y0[i] = math.sin(dtr*(i-1))
end
-- Set up viewport and window, but do not draw box
pl.env(-1.3, 1.3, -1.3, 1.3, 1, -2)
for i = 1, 10 do
for j = 1, 361 do
x[j] = 0.1*i*x0[j]
y[j] = 0.1*i*y0[j]
end
-- Draw circles for polar grid
pl.line(x, y)
end
pl.col0(2)
for i = 1, 12 do
theta = 30.0 * (i-1)
dx = math.cos(dtr * theta)
dy = math.sin(dtr * theta)
-- Draw radial spokes for polar grid
pl.join(0, 0, dx, dy)
-- Write labels for angle
-- Slightly off zero to avoid floating point logic flips at 90 and 270 deg.
if dx>=-0.00001 then
pl.ptex(dx, dy, dx, dy, -0.15, tostring(theta))
else
pl.ptex(dx, dy, -dx, -dy, 1.15, tostring(theta))
end
end
x = {}
y = {}
-- Draw the graph
for i = 1, 361 do
r = math.sin(dtr * (5*(i-1)))
x[i] = x0[i] * r
y[i] = y0[i] * r
end
pl.col0(3)
pl.line(x, y)
pl.col0(4)
pl.mtex("t", 2, 0.5, 0.5, "#frPLplot Example 3 - r(#gh)=sin 5#gh")
pl.flush()
end
-- Demonstration of contour plotting
XPTS = 35
YPTS = 46
XSPA = 2/(XPTS-1)
YSPA = 2/(YPTS-1)
tr = { XSPA, 0, -1, 0, YSPA, -1 }
function mypltr(x, y)
tx = tr[1]*x + tr[2]*y + tr[3]
ty = tr[4]*x + tr[5]*y + tr[6]
return tx, ty
end
clevel = { -1, -.8, -.6, -.4, -.2, 0, .2, .4, .6, .8, 1 }
function plot5()
mark = { 1500 }
space = { 1500 }
-- Set up function arrays
z = {}
w = {}
for i = 1, XPTS do
xx = (i-1-math.floor(XPTS/2))/math.floor(XPTS/2)
z[i] = {}
w[i] = {}
for j = 1, YPTS do
yy = (j-1-math.floor(YPTS/2))/math.floor(YPTS/2)-1
z[i][j] = xx * xx - yy * yy
w[i][j] = 2 * xx * yy
end
end
pl.env(-1, 1, -1, 1, 0, 0)
pl.col0(2)
pl.cont(z, 1, XPTS, 1, YPTS, clevel, "mypltr")
pl.styl(mark, space)
pl.col0(3)
pl.cont(w, 1, XPTS, 1, YPTS, clevel, "mypltr")
pl.col0(1)
pl.lab("X Coordinate", "Y Coordinate", "Streamlines of flow")
pl.flush()
end
----------------------------------------------------------------------------
-- main
--
-- Plots several simple functions from other example programs.
--
-- This version sends the output of the first 4 plots (one page) to two
-- independent streams.
----------------------------------------------------------------------------
-- Select either TK or DP driver and use a small window
-- Using DP results in a crash at the end due to some odd cleanup problems
-- The geometry strings MUST be in writable memory
geometry_master = "500x410+100+200"
geometry_slave = "500x410+650+200"
-- plplot initialization
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL)
-- If valid geometry specified on command line, use it for both streams.
xp0, yp0, xleng0, yleng0, xoff0, yoff0 = pl.gpage()
valid_geometry = xleng0>0 and yleng0>0
-- Set up first stream
if valid_geometry==true then
pl.spage(xp0, yp0, xleng0, yleng0, xoff0, yoff0)
else
pl.setopt("geometry", geometry_master)
end
pl.ssub(2, 2)
pl.init()
driver = pl.gdev()
fam, num, bmax = pl.gfam()
print("Demo of multiple output streams via the " .. driver .." driver.")
print("Running with the second stream as slave to the first.\n")
-- Start next stream
pl.sstrm(1)
if valid_geometry==true then
pl.spage(xp0, yp0, xleng0, yleng0, xoff0, yoff0)
else
pl.setopt("geometry", geometry_slave)
end
-- Turn off pause to make this a slave (must follow master)
pl.spause(0)
pl.sdev(driver)
pl.sfam(fam,num,bmax)
-- Currently number of digits in format number can only be
--set via the command line option
pl.setopt("fflen", "2")
pl.init()
-- Set up the data & plot
-- Original case
pl.sstrm(0)
xscale = 6
yscale = 1
xoff = 0
yoff = 0
plot1()
-- Set up the data & plot
xscale = 1
yscale = 1e6
plot1()
-- Set up the data & plot
xscale = 1.
yscale = 1.e-6
digmax = 2
pl.syax(digmax, 0)
plot1()
-- Set up the data & plot
xscale = 1
yscale = 0.0014
yoff = 0.0185
digmax = 5
pl.syax(digmax, 0)
plot1()
-- To slave
-- The pleop() ensures the eop indicator gets lit.
pl.sstrm(1)
plot4()
pl.eop()
-- Back to master
pl.sstrm(0)
plot2()
plot3()
-- To slave
pl.sstrm(1)
plot5()
pl.eop()
-- Back to master to wait for user to advance
pl.sstrm(0)
pl.eop()
-- Call plend to finish off.
pl.plend()

View File

@ -0,0 +1,234 @@
--[[ $Id: x15.lua 9533 2009-02-16 22:18:37Z smekal $
Shade plot demo.
Copyright (C) 2008 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
XPTS = 35 -- Data points in x
YPTS = 46 -- Data points in y
z = {}
-- Function prototypes
----------------------------------------------------------------------------
-- cmap1_init1
--
-- Initializes color map 1 in HLS space.
----------------------------------------------------------------------------
function cmap1_init1()
i = { 0, 0,45, 0.55, 1 } -- left boundary, just before center,
-- just after center, right boundary
h = { 260, 260, 20, 20 } -- hue -- low: blue-violet, only change as we go over vertex
-- hue -- high: red, keep fixed
l = { 0.5, 0, 0, 0.5 } -- lightness -- low, lightness -- center
-- lightness -- center, lightness -- high
s = { 1, 1, 1, 1 } -- maximum saturation
pl.scmap1l(0, i, h, l, s)
end
----------------------------------------------------------------------------
-- cmap1_init2
--
-- Initializes color map 1 in HLS space.
----------------------------------------------------------------------------
function cmap1_init2()
i = { 0, 0.45, 0.55, 1 } -- left boundary, just before center,
-- just after center, right boundary
h = { 260, 260, 20, 20 } -- hue -- low: blue-violet, only change as we go over vertex
-- hue -- high: red, keep fixed
l = { 0.6, 0, 0, 0.6 } -- lightness -- low, lightness -- center
-- lightness -- center, lightness -- high
s = { 1, 0.5, 0.5, 1 } -- saturation -- low, saturation -- center
-- saturation -- center, saturation -- high
pl.scmap1l(0, i, h, l, s)
end
----------------------------------------------------------------------------
-- plot1
--
-- Illustrates a single shaded region.
----------------------------------------------------------------------------
function plot1()
sh_cmap = 0
pl.adv(0)
pl.vpor(0.1, 0.9, 0.1, 0.9)
pl.wind(-1, 1, -1, 1)
-- Plot using identity transform
shade_min = zmin + (zmax-zmin)*0.4
shade_max = zmin + (zmax-zmin)*0.6
sh_color = 7
sh_width = 2
min_color = 9
max_color = 2
min_width = 2
max_width = 2
pl.psty(8)
pl.shade(z, -1, 1, -1, 1, shade_min, shade_max, sh_cmap, sh_color, sh_width,
min_color, min_width, max_color, max_width, 1)
pl.col0(1)
pl.box("bcnst", 0, 0, "bcnstv", 0, 0)
pl.col0(2)
pl.lab("distance", "altitude", "Bogon flux")
end
----------------------------------------------------------------------------
-- plot2
--
-- Illustrates multiple adjacent shaded regions, using different fill
-- patterns for each region.
----------------------------------------------------------------------------
function plot2()
sh_cmap = 0
min_color = 0
min_width = 0
max_color = 0
max_width = 0
inc = { {450}, {-450}, {0}, {900}, {300},
{450,-450}, {0, 900}, {0, 450}, {450, -450}, {0, 900} }
del = { {2000}, {2000}, {2000}, {2000}, {2000},
{2000, 2000}, {2000, 2000}, {2000, 2000}, {4000, 4000}, {4000, 2000} }
sh_width = 2
pl.adv(0)
pl.vpor(0.1, 0.9, 0.1, 0.9)
pl.wind(-1, 1, -1, 1)
-- Plot using identity transform
for i = 1, 10 do
shade_min = zmin + (zmax - zmin) * (i-1)/10
shade_max = zmin + (zmax - zmin) * i/10
sh_color = i+5
pl.pat(inc[i], del[i])
pl.shade(z, -1, 1, -1, 1, shade_min, shade_max, sh_cmap, sh_color, sh_width,
min_color, min_width, max_color, max_width, 1)
end
pl.col0(1)
pl.box("bcnst", 0, 0, "bcnstv", 0, 0)
pl.col0(2)
pl.lab("distance", "altitude", "Bogon flux")
end
----------------------------------------------------------------------------
-- plot3
--
-- Illustrates shaded regions in 3d, using a different fill pattern for
-- each region.
----------------------------------------------------------------------------
function plot3()
xx = { {-1, 1, 1, -1, -1}, {-1, 1, 1, -1, -1} }
yy = { {1, 1, 0, 0, 1}, {-1, -1, 0, 0, -1} }
zz = { {0, 0, 1, 1, 0}, {0, 0, 1, 1, 0} }
pl.adv(0)
pl.vpor(0.1, 0.9, 0.1, 0.9)
pl.wind(-1, 1, -1, 1.)
pl.w3d(1, 1, 1, -1, 1, -1, 1, 0, 1.5, 30, -40)
-- Plot using identity transform
pl.col0(1)
pl.box3("bntu", "X", 0, 0, "bntu", "Y", 0, 0, "bcdfntu", "Z", 0.5, 0)
pl.col0(2)
pl.lab("","","3-d polygon filling")
pl.col0(3)
pl.psty(1)
pl.line3(xx[1], yy[1], zz[1])
pl.fill3(xx[1], yy[1], zz[1])
pl.psty(2)
pl.line3(xx[2], yy[2], zz[2])
pl.fill3(xx[2], yy[2], zz[2])
end
----------------------------------------------------------------------------
-- f2mnmx
--
-- Returns min & max of input 2d array.
----------------------------------------------------------------------------
function f2mnmx(f, nx, ny)
fmax = f[1][1]
fmin = fmax
for i=1, nx do
for j=1, ny do
fmax = math.max(fmax, f[i][j])
fmin = math.min(fmin, f[i][j])
end
end
return fmin, fmax
end
----------------------------------------------------------------------------
-- main
--
-- Does a variety of shade plots.
----------------------------------------------------------------------------
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL)
-- Set up color map 1
cmap1_init2()
-- Initialize plplot
pl.init()
-- Set up data array
for i=1, XPTS do
xx = ((i-1) - math.floor(XPTS/2))/math.floor(XPTS/2)
z[i] = {}
for j = 1, YPTS do
yy = ((j-1) - math.floor(YPTS/2))/math.floor(YPTS/2) - 1
z[i][j] = xx^2 - yy^2 + (xx - yy)/(xx^2+yy^2 + 0.1)
end
end
zmin, zmax = f2mnmx(z, XPTS, YPTS)
plot1()
plot2()
plot3()
pl.plend()

View File

@ -0,0 +1,324 @@
--[[ $Id: x16.lua 10304 2009-08-20 09:05:43Z andrewross $
plshade demo, using color fill.
Copyright (C) 2008 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
-- Fundamental settings. See notes[] for more info.
ns = 20 -- Default number of shade levels
nx = 35 -- Default number of data points in x
ny = 46 -- Default number of data points in y
exclude = 0 -- By default do not plot a page illustrating
-- exclusion. API is probably going to change
-- anyway, and cannot be reproduced by any
-- front end other than the C one.
-- polar plot data
PERIMETERPTS = 100
-- Transformation function
tr = {}
function mypltr(x, y)
tx = tr[1] * x + tr[2] * y + tr[3]
ty = tr[4] * x + tr[5] * y + tr[6]
return tx, ty
end
----------------------------------------------------------------------------
-- f2mnmx
--
-- Returns min & max of input 2d array.
----------------------------------------------------------------------------
function f2mnmx(f, nx, ny)
fmax = f[1][1]
fmin = fmax
for i = 1, nx do
for j = 1, ny do
fmax = math.max(fmax, f[i][j])
fmin = math.min(fmin, f[i][j])
end
end
return fmin, fmax
end
function zdefined(x, y)
z = math.sqrt(x^2 + y^2)
return z<0.4 or z>0.6
end
----------------------------------------------------------------------------
-- main
--
-- Does several shade plots using different coordinate mappings.
----------------------------------------------------------------------------
px = {}
py = {}
fill_width = 2
cont_color = 0
cont_width = 0
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL)
-- Load colour palettes
pl.spal0("cmap0_black_on_white.pal");
pl.spal1("cmap1_gray.pal",1);
-- Reduce colors in cmap 0 so that cmap 1 is useful on a 16-color display
pl.scmap0n(3)
-- Initialize plplot
pl.init()
-- Set up transformation function
tr = { 2/(nx-1), 0, -1, 0, 2/(ny-1), -1 }
-- Allocate data structures
clevel = {}
shedge = {}
z = {}
w = {}
-- Set up data array
for i = 1, nx do
x = (i-1 - math.floor(nx/2))/math.floor(nx/2)
z[i] = {}
w[i] = {}
for j = 1, ny do
y = (j-1 - math.floor(ny/2))/math.floor(ny/2)-1
z[i][j] = -math.sin(7*x) * math.cos(7*y) + x^2 - y^2
w[i][j] = -math.cos(7*x) * math.sin(7*y) + 2*x*y
end
end
zmin, zmax = f2mnmx(z, nx, ny)
for i = 1, ns do
clevel[i] = zmin + (zmax-zmin)*(i-0.5)/ns
end
for i = 1, ns+1 do
shedge[i] = zmin + (zmax-zmin)*(i-1)/ns
end
-- Set up coordinate grids
cgrid1 = {}
cgrid1["xg"] = {}
cgrid1["yg"] = {}
cgrid1["nx"] = nx
cgrid1["ny"] = ny
cgrid2 = {}
cgrid2["xg"] = {}
cgrid2["yg"] = {}
cgrid2["nx"] = nx
cgrid2["ny"] = ny
for i = 1, nx do
cgrid2["xg"][i] = {}
cgrid2["yg"][i] = {}
for j = 1, ny do
x, y = mypltr(i-1, j-1)
argx = x*math.pi/2
argy = y*math.pi/2
distort = 0.4
cgrid1["xg"][i] = x + distort * math.cos(argx)
cgrid1["yg"][j] = y - distort * math.cos(argy)
cgrid2["xg"][i][j] = x + distort * math.cos(argx) * math.cos(argy)
cgrid2["yg"][i][j] = y - distort * math.cos(argx) * math.cos(argy)
end
end
-- Plot using identity transform
pl.adv(0)
pl.vpor(0.1, 0.9, 0.1, 0.9)
pl.wind(-1, 1, -1, 1)
pl.psty(0)
pl.shades(z, -1, 1, -1, 1, shedge, fill_width, cont_color, cont_width, 1)
pl.col0(1)
pl.box("bcnst", 0, 0, "bcnstv", 0, 0)
pl.col0(2)
--pl.cont(w, 1, nx, 1, ny, clevel, mypltr, {})
pl.lab("distance", "altitude", "Bogon density")
-- Plot using 1d coordinate transform
-- Load colour palettes
pl.spal0("cmap0_black_on_white.pal");
pl.spal1("cmap1_blue_yellow.pal",1);
-- Reduce colors in cmap 0 so that cmap 1 is useful on a 16-color display
pl.scmap0n(3);
pl.adv(0)
pl.vpor(0.1, 0.9, 0.1, 0.9)
pl.wind(-1, 1, -1, 1)
pl.psty(0)
pl.shades(z, -1, 1, -1, 1, shedge, fill_width, cont_color, cont_width, 1, "pltr1", cgrid1)
pl.col0(1)
pl.box("bcnst", 0, 0, "bcnstv", 0, 0)
pl.col0(2)
pl.lab("distance", "altitude", "Bogon density")
-- Plot using 2d coordinate transform
-- Load colour palettes
pl.spal0("cmap0_black_on_white.pal");
pl.spal1("cmap1_blue_red.pal",1);
-- Reduce colors in cmap 0 so that cmap 1 is useful on a 16-color display
pl.scmap0n(3);
pl.adv(0)
pl.vpor(0.1, 0.9, 0.1, 0.9)
pl.wind(-1, 1, -1, 1)
pl.psty(0)
pl.shades(z, -1, 1, -1, 1, shedge, fill_width, cont_color, cont_width, 0, "pltr2", cgrid2)
pl.col0(1)
pl.box("bcnst", 0, 0, "bcnstv", 0, 0)
pl.col0(2)
pl.cont(w, 1, nx, 1, ny, clevel, "pltr2", cgrid2)
pl.lab("distance", "altitude", "Bogon density, with streamlines")
-- Plot using 2d coordinate transform
-- Load colour palettes
pl.spal0("");
pl.spal1("",1);
-- Reduce colors in cmap 0 so that cmap 1 is useful on a 16-color display
pl.scmap0n(3);
pl.adv(0)
pl.vpor(0.1, 0.9, 0.1, 0.9)
pl.wind(-1, 1, -1, 1)
pl.psty(0)
pl.shades(z, -1, 1, -1, 1, shedge, fill_width, 2, 3, 0, "pltr2", cgrid2)
pl.col0(1)
pl.box("bcnst", 0, 0, "bcnstv", 0, 0)
pl.col0(2)
pl.lab("distance", "altitude", "Bogon density")
-- Note this exclusion API will probably change.
-- Plot using 2d coordinate transform and exclusion
if exclude~=0 then
-- Load colour palettes
pl.spal0("cmap0_black_on_white.pal");
pl.spal1("cmap1_gray.pal",1);
-- Reduce colors in cmap 0 so that cmap 1 is useful on a 16-color display
pl.scmap0n(3);
pl.adv(0)
pl.vpor(0.1, 0.9, 0.1, 0.9)
pl.wind(-1, 1, -1, 1)
plpsty(0)
pl.shades(z, zdefined, -1, 1, -1, 1, shedge, fill_width, cont_color, cont_width,
0, "pltr2", cgrid2)
pl.col0(1)
pl.box("bcnst", 0, 0, "bcnstv", 0, 0)
pl.lab("distance", "altitude", "Bogon density with exclusion")
end
-- Example with polar coordinates.
-- Load colour palettes
pl.spal0("cmap0_black_on_white.pal");
pl.spal1("cmap1_gray.pal",1);
-- Reduce colors in cmap 0 so that cmap 1 is useful on a 16-color display
pl.scmap0n(3);
pl.adv(0)
pl.vpor(.1, .9, .1, .9)
pl.wind(-1, 1, -1, 1)
pl.psty(0)
-- Build new coordinate matrices.
for i = 1, nx do
r = (i-1)/(nx-1)
for j = 1, ny do
t = 2*math.pi/(ny-1)*(j-1)
cgrid2["xg"][i][j] = r*math.cos(t)
cgrid2["yg"][i][j] = r*math.sin(t)
z[i][j] = math.exp(-r^2)*math.cos(5*math.pi*r)*math.cos(5*t)
end
end
-- Need a new shedge to go along with the new data set.
zmin, zmax = f2mnmx(z, nx, ny)
for i = 1, ns+1 do
shedge[i] = zmin + (zmax-zmin)*(i-1)/ns
end
-- Now we can shade the interior region.
pl.shades(z, -1, 1, -1, 1, shedge, fill_width, cont_color, cont_width, 0, "pltr2", cgrid2)
-- Now we can draw the perimeter. (If do before, shade stuff may overlap.)
for i = 1, PERIMETERPTS do
t = 2*math.pi/(PERIMETERPTS-1)*(i-1)
px[i] = math.cos(t)
py[i] = math.sin(t)
end
pl.col0(1)
pl.line(px, py)
-- And label the plot.
pl.col0(2)
pl.lab( "", "", "Tokamak Bogon Instability" )
pl.plend()

View File

@ -0,0 +1,118 @@
--[[ $Id: x17.lua 9526 2009-02-13 22:06:13Z smekal $
Plots a simple stripchart with four pens.
Copyright (C) 2008 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
--------------------------------------------------------------------------
-- main
--------------------------------------------------------------------------
nsteps = 1000
colline = {}
legline = {}
-- plplot initialization
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL)
-- User sets up plot completely except for window and data
-- Eventually settings in place when strip chart is created will be
-- remembered so that multiple strip charts can be used simultaneously.
-- Specify some reasonable defaults for ymin and ymax
-- The plot will grow automatically if needed (but not shrink)
ymin = -0.1
ymax = 0.1
-- Specify initial tmin and tmax -- this determines length of window.
-- Also specify maximum jump in t
-- This can accomodate adaptive timesteps
tmin = 0
tmax = 10
tjump = 0.3 -- percentage of plot to jump
-- Axes options same as plbox.
-- Only automatic tick generation and label placement allowed
-- Eventually I'll make this fancier
colbox = 1
collab = 3
styline = { 2, 3, 4, 5 } -- line style
colline = { 2, 3, 4, 5 } -- pens color
legline= { "sum", "sin", "sin*noi", "sin+noi" } -- pens legend
xlab = 0 -- legend position
ylab = 0.25
autoy = 1 -- autoscale y
acc = 1 -- don't scrip, accumulate
-- Initialize plplot
pl.init()
pl.adv(0)
pl.vsta()
id1 = pl.stripc("bcnst", "bcnstv",
tmin, tmax, tjump, ymin, ymax,
xlab, ylab,
autoy, acc,
colbox, collab,
colline, styline, legline,
"t", "", "Strip chart demo")
autoy = 0 -- autoscale y
acc = 1 -- accumulate
-- This is to represent a loop over time
-- Let's try a random walk process
y1 = 0
y2 = 0
y3 = 0
y4 = 0
dt = 0.1
for n = 0, nsteps-1 do
for i = 0, 200000 do end
t = n * dt
noise = pl.randd() - 0.5
y1 = y1 + noise
y2 = math.sin(t*math.pi/18)
y3 = y2 * noise
y4 = y2 + noise/3
-- There is no need for all pens to have the same number of
-- points or beeing equally time spaced.
if math.mod(n, 2)~=0 then pl.stripa(id1, 0, t, y1) end
if math.mod(n, 3)~=0 then pl.stripa(id1, 1, t, y2) end
if math.mod(n, 4)~=0 then pl.stripa(id1, 2, t, y3) end
if math.mod(n, 5)~=0 then pl.stripa(id1, 3, t, y4) end
end
-- Destroy strip chart and it's memory
pl.stripd(id1)
pl.plend()

View File

@ -0,0 +1,145 @@
--[[ $Id: x18.lua 9526 2009-02-13 22:06:13Z smekal $
3-d line and point plot demo. Adapted from x08c.c.
Copyright (C) 2008 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
function test_poly(k)
draw= { { 1, 1, 1, 1 },
{ 1, 0, 1, 0 },
{ 0, 1, 0, 1 },
{ 1, 1, 0, 0 } }
x = {}
y = {}
z = {}
pl.adv(0)
pl.vpor(0, 1, 0, 0.9)
pl.wind(-1, 1, -0.9, 1.1)
pl.col0(1)
pl.w3d(1, 1, 1, -1, 1, -1, 1, -1, 1, alt[k], az[k])
pl.box3("bnstu", "x axis", 0, 0,
"bnstu", "y axis", 0, 0,
"bcdmnstuv", "z axis", 0, 0)
pl.col0(2)
-- x = r sin(phi) cos(theta)
-- y = r sin(phi) sin(theta)
-- z = r cos(phi)
-- r = 1 :=)
for i=0, 19 do
for j=0, 19 do
x[1] = math.sin( math.pi*j/20.1 ) * math.cos( 2*math.pi*i/20 )
y[1] = math.sin( math.pi*j/20.1 ) * math.sin( 2*math.pi*i/20 )
z[1] = math.cos( math.pi*j/20.1 )
x[2] = math.sin( math.pi*(j+1)/20.1 ) * math.cos( 2*math.pi*i/20 )
y[2] = math.sin( math.pi*(j+1)/20.1 ) * math.sin( 2*math.pi*i/20 )
z[2] = math.cos( math.pi*(j+1)/20.1 )
x[3] = math.sin( math.pi*(j+1)/20.1 ) * math.cos( 2*math.pi*(i+1)/20 )
y[3] = math.sin( math.pi*(j+1)/20.1 ) * math.sin( 2*math.pi*(i+1)/20 )
z[3] = math.cos( math.pi*(j+1)/20.1 )
x[4] = math.sin( math.pi*j/20.1 ) * math.cos( 2*math.pi*(i+1)/20 )
y[4] = math.sin( math.pi*j/20.1 ) * math.sin( 2*math.pi*(i+1)/20 )
z[4] = math.cos( math.pi*j/20.1 )
x[5] = math.sin( math.pi*j/20.1 ) * math.cos( 2*math.pi*i/20 )
y[5] = math.sin( math.pi*j/20.1 ) * math.sin( 2*math.pi*i/20 )
z[5] = math.cos( math.pi*j/20.1 )
pl.poly3( x, y, z, draw[k], 1 )
end
end
pl.col0(3)
pl.mtex("t", 1, 0.5, 0.5, "unit radius sphere" )
end
----------------------------------------------------------------------------
-- main
--
-- Does a series of 3-d plots for a given data set, with different
-- viewing options in each plot.
----------------------------------------------------------------------------
NPTS = 1000
opt = { 1, 0, 1, 0 }
alt = { 20, 35, 50, 65 }
az = { 30, 40, 50, 60 }
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL)
-- Initialize plplot
pl.init()
for k=1, 4 do
test_poly(k)
end
x = {}
y = {}
z = {}
-- From the mind of a sick and twisted physicist...
for i=1, NPTS do
z[i] = -1 + 2*(i-1)/NPTS
-- Pick one ...
-- r = 1 - (i-1) / NPTS
r = z[i]
x[i] = r * math.cos( 12*math.pi*(i-1)/NPTS )
y[i] = r * math.sin( 12*math.pi*(i-1)/NPTS )
end
for k=1, 4 do
pl.adv(0)
pl.vpor(0, 1, 0, 0.9)
pl.wind(-1, 1, -0.9, 1.1)
pl.col0(1)
pl.w3d(1, 1, 1, -1, 1, -1, 1, -1, 1, alt[k], az[k])
pl.box3("bnstu", "x axis", 0, 0,
"bnstu", "y axis", 0, 0,
"bcdmnstuv", "z axis", 0, 0)
pl.col0(2)
if opt[k]~=0 then
pl.line3( x, y, z )
else
pl.poin3( x, y, z, 1 )
end
pl.col0(3)
pl.mtex("t", 1.0, 0.5, 0.5, "#frPLplot Example 18 - Alt=" .. alt[k] .. ", Az=" .. az[k])
end
pl.plend()

View File

@ -0,0 +1,153 @@
--[[ $Id: x19.lua 10293 2009-08-19 07:57:43Z smekal $
Illustrates backdrop plotting of world, US maps.
Contributed by Wesley Ebisuzaki.
Copyright (C) 2008 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
--------------------------------------------------------------------------
-- mapform19
--
-- Defines specific coordinate transformation for example 19.
-- Not to be confused with mapform in src/plmap.c.
-- x[], y[] are the coordinates to be plotted.
--------------------------------------------------------------------------
function mapform19(n, x, y)
for i = 1, n do
radius = 90 - y[i]
xp = radius * math.cos(x[i] * math.pi / 180)
yp = radius * math.sin(x[i] * math.pi / 180)
x[i] = xp
y[i] = yp
end
return x, y
end
-- "Normalize" longitude values so that they always fall between
-- -180.0 and 180.0
function normalize_longitude(lon)
if lon>=-180 and lon<=180 then
return lon;
else
times = math.floor((math.abs(lon)+180)/360)
if lon<0 then
return lon+360*times
else
return lon-360*times
end
end
end
-- A custom axis labeling function for longitudes and latitudes.
function geolocation_labeler(axis, value)
if axis==pl.PL_Y_AXIS then
label_val = value
if label_val>0 then
direction_label = " N"
else
if label_val<0 then
direction_label = " S"
else
direction_label = "Eq"
end
end
else
if axis==pl.PL_X_AXIS then
label_val = normalize_longitude(value);
if label_val>0 then
direction_label = " E"
else
if label_val<0 then
direction_label = " W"
else
direction_label = ""
end
end
end
end
if axis==pl.PL_Y_AXIS and value==0 then
-- A special case for the equator
label = direction_label
else
label = math.abs(label_val) .. direction_label
end
return label
end
--------------------------------------------------------------------------
-- main
--
-- Shows two views of the world map.
--------------------------------------------------------------------------
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL)
-- Longitude (x) and latitude (y)
miny = -70
maxy = 80
pl.init()
-- Cartesian plots
-- Most of world
minx = 190
maxx = 190+360
-- Setup a custom latitude and longitude-based scaling function.
pl.slabelfunc("geolocation_labeler");
pl.col0(1)
pl.env(minx, maxx, miny, maxy, 1, 70)
pl.map(nil, "usaglobe", minx, maxx, miny, maxy)
-- The Americas
minx = 190
maxx = 340
pl.col0(1)
pl.env(minx, maxx, miny, maxy, 1, 70)
pl.map(nil, "usaglobe", minx, maxx, miny, maxy)
-- Clear the labeling function
pl.slabelfunc(nil);
-- Polar, Northern hemisphere
minx = 0
maxx = 360
pl.env(-75., 75., -75., 75., 1, -1)
pl.map("mapform19", "globe", minx, maxx, miny, maxy)
pl.lsty(2)
pl.meridians("mapform19", 10, 10, 0, 360, -10, 80)
pl.plend()

View File

@ -0,0 +1,294 @@
--[[ $Id: x20.lua 9535 2009-02-17 10:14:04Z smekal $
plimage demo
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
XDIM = 260
YDIM = 220
dbg = 0
nosombrero = 0
nointeractive = 0
f_name=""
-- Transformation function
function mypltr(x, y)
local x0 = (stretch["xmin"] + stretch["xmax"])*0.5
local y0 = (stretch["ymin"] + stretch["ymax"])*0.5
local dy = (stretch["ymax"]-stretch["ymin"])*0.5
local tx = x0 + (x0-x)*(1 - stretch["stretch"]*math.cos((y-y0)/dy*math.pi*0.5))
local ty = y
return tx, ty
end
-- read image from file in binary ppm format
function read_img(fname)
-- naive grayscale binary ppm reading. If you know how to, improve it
local fp = io.open(fname, "rb")
if fp==nil then
return 1
end
-- version
local ver = fp:read("*line")
if ver~="P5" then -- I only understand this!
fp:close()
return 1
end
while fp:read(1)=="#" do
local com = fp:read("*line")
if com==nil then
fp:close()
return 1
end
end
fp:seek("cur", -1)
local w, h, num_col = fp:read("*number", "*number", "*number")
if w==nil or h==nil or num_col==nil then -- width, height, num colors
fp:close()
return 1
end
-- read the rest of the line (only EOL)
fp:read("*line")
local img = fp:read(w*h)
fp:close()
if string.len(img)~=(w*h) then
return 1
end
local imf = {}
for i = 1, w do
imf[i] = {}
for j = 1, h do
imf[i][j] = string.byte(img, (h-j)*w+i) -- flip image up-down
end
end
return 0, imf, w, h, num_col
end
-- save plot
function save_plot(fname)
local cur_strm = pl.gstrm() -- get current stream
local new_strm = pl.mkstrm() -- create a new one
pl.sdev("psc") -- new device type. Use a known existing driver
pl.sfnam(fname) -- file name
pl.cpstrm(cur_strm, 0) -- copy old stream parameters to new stream
pl.replot() -- do the save
pl.end1() -- close new device
pl.sstrm(cur_strm) -- and return to previous one
end
-- get selection square interactively
function get_clip(xi, xe, yi, ye)
return 0, xi, xe, yi, ye
end
-- set gray colormap
function gray_cmap(num_col)
local r = { 0, 1 }
local g = { 0, 1 }
local b = { 0, 1 }
local pos = { 0, 1 }
pl.scmap1n(num_col)
pl.scmap1l(1, pos, r, g, b)
end
x = {}
y = {}
z = {}
r = {}
img_f = {}
cgrid2 = {}
-- Bugs in plimage():
-- + at high magnifications, the left and right edge are ragged, try
-- ./x20c -dev xwin -wplt 0.3,0.3,0.6,0.6 -ori 0.5
-- Bugs in x20c.c:
-- + if the window is resized after a selection is made on "lena", when
--making a new selection the old one will re-appear.
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL)
-- Initialize plplot
pl.init()
z={}
-- view image border pixels
if dbg~=0 then
pl.env(1, XDIM, 1, YDIM, 1, 1) -- no plot box
-- build a one pixel square border, for diagnostics
for i = 1, XDIM do
z[i] = {}
z[i][1] = 1 -- left
z[i][YDIM] = 1 -- right
end
for i = 1, YDIM do
z[1][i] = 1 -- top
z[XDIM][i] = 1 -- botton
end
pl.lab("...around a blue square."," ","A red border should appear...")
pl.image(z, 1, XDIM, 1, YDIM, 0, 0, 1, XDIM, 1, YDIM)
end
-- sombrero-like demo
if nosombrero==0 then
r = {}
pl.col0(2) -- draw a yellow plot box, useful for diagnostics! :(
pl.env(0, 2*math.pi, 0, 3*math.pi, 1, -1)
for i = 1, XDIM do
x[i] = (i-1)*2*math.pi/(XDIM-1)
end
for i = 1, YDIM do
y[i] = (i-1)*3*math.pi/(YDIM-1)
end
for i = 1, XDIM do
r[i] = {}
z[i] = {}
for j=1, YDIM do
r[i][j] = math.sqrt(x[i]^2+y[j]^2)+1e-3
z[i][j] = math.sin(r[i][j])/r[i][j]
end
end
pl.lab("No, an amplitude clipped \"sombrero\"", "", "Saturn?")
pl.ptex(2, 2, 3, 4, 0, "Transparent image")
pl.image(z, 0, 2*math.pi, 0, 3*math.pi, 0.05, 1, 0, 2*math.pi, 0, 3*math.pi)
-- save the plot
if f_name~="" then
save_plot(f_name)
end
end
-- read Lena image
-- Note we try two different locations to cover the case where this
-- examples is being run from the test_c.sh script
status, img_f, width, height, num_col = read_img("lena.pgm")
if status~=0 then
status, img_f, width, height, num_col = read_img("../lena.pgm")
if status~=0 then
pl.abort("No such file")
pl.plend()
os.exit()
end
end
-- set gray colormap
gray_cmap(num_col)
-- display Lena
pl.env(1, width, 1, height, 1, -1)
if nointeractive==0 then
pl.lab("Set and drag Button 1 to (re)set selection, Button 2 to finish."," ","Lena...")
else
pl.lab(""," ","Lena...")
end
pl.image(img_f, 1, width, 1, height, 0, 0, 1, width, 1, height)
-- selection/expansion demo
if nointeractive==0 then
xi = 200
xe = 330
yi = 280
ye = 220
status, xi, xe, yi, ye = get_clip(xi, xe, yi, ye)
if status~=0 then -- get selection rectangle
pl.plend()
os.exit()
end
pl.spause(0)
pl.adv(0)
-- display selection only
pl.image(img_f, 1, width, 1, height, 0, 0, xi, xe, ye, yi)
pl.spause(1)
-- zoom in selection
pl.env(xi, xe, ye, yi, 1, -1)
pl.image(img_f, 1, width, 1, height, 0, 0, xi, xe, ye, yi)
end
-- Base the dynamic range on the image contents.
img_max, img_min = pl.MinMax2dGrid(img_f)
-- Draw a saturated version of the original image. Only use the middle 50%
-- of the image's full dynamic range.
pl.col0(2)
pl.env(0, width, 0, height, 1, -1)
pl.lab("", "", "Reduced dynamic range image example")
pl.imagefr(img_f, 0, width, 0, height, 0, 0, img_min + img_max*0.25, img_max - img_max*0.25)
-- Draw a distorted version of the original image, showing its full dynamic range.
pl.env(0, width, 0, height, 1, -1)
pl.lab("", "", "Distorted image example")
stretch = {}
stretch["xmin"] = 0
stretch["xmax"] = width
stretch["ymin"] = 0
stretch["ymax"] = height
stretch["stretch"] = 0.5
-- In C / C++ the following would work, with plimagefr directly calling
-- mypltr. For compatibilty with other language bindings the same effect
-- can be achieved by generating the transformed grid first and then
-- using pltr2.
-- pl.imagefr(img_f, width, height, 0., width, 0., height, 0., 0., img_min, img_max, mypltr, (PLPointer) &stretch)
cgrid2 = {}
cgrid2["xg"] = {}
cgrid2["yg"] = {}
cgrid2["nx"] = width+1
cgrid2["ny"] = height+1
for i = 1, width+1 do
cgrid2["xg"][i] = {}
cgrid2["yg"][i] = {}
for j = 1, height+1 do
xx, yy = mypltr(i, j)
cgrid2["xg"][i][j] = xx
cgrid2["yg"][i][j] = yy
end
end
--pl.imagefr(img_f, 0, width, 0, height, 0, 0, img_min, img_max, "pltr2", cgrid2)
pl.imagefr(img_f, 0, width, 0, height, 0, 0, img_min, img_max, "mypltr")
pl.plend()

View File

@ -0,0 +1,256 @@
--[[ $Id: x21.lua 9533 2009-02-16 22:18:37Z smekal $
Grid data demo
Copyright (C) 200 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
-- bitwise or operator from http://lua-users.org/wiki/BaseSixtyFour
-- (c) 2006-2008 by Alex Kloss
-- licensed under the terms of the LGPL2
-- return single bit (for OR)
function bit(x,b)
return (math.mod(x, 2^b) - math.mod(x,2^(b-1)) > 0)
end
-- logic OR for number values
function lor(x,y)
result = 0
for p=1,8 do result = result + (((bit(x,p) or bit(y,p)) == true) and 2^(p-1) or 0) end
return result
end
-- Options data structure definition.
pts = 500
xp = 25
yp = 20
nl = 16
knn_order = 20
threshold = 1.001
wmin = -1e3
randn = 0
rosen = 0
function cmap1_init()
i = { 0, 1 } -- left and right boundary
h = { 240, 0 } -- blue -> green -> yellow -> red
l = { 0.6, 0.6 }
s = { 0.8, 0.8 }
pl.scmap1n(256)
pl.scmap1l(0, i, h, l, s)
end
function create_grid(px, py)
local x = {}
local y = {}
for i = 1, px do
x[i] = xm + (xM-xm)*(i-1)/(px-1)
end
for i = 1, py do
y[i] = ym + (yM-ym)*(i-1)/(py-1)
end
return x, y
end
function create_data(pts)
local x = {}
local y = {}
local z = {}
for i = 1, pts do
xt = (xM-xm)*pl.randd()
yt = (yM-ym)*pl.randd()
if randn==0 then
x[i] = xt + xm
y[i] = yt + ym
else -- std=1, meaning that many points are outside the plot range
x[i] = math.sqrt(-2*math.log(xt)) * math.cos(2*math.pi*yt) + xm
y[i] = math.sqrt(-2*math.log(xt)) * math.sin(2*math.pi*yt) + ym
end
if rosen==0 then
r = math.sqrt(x[i]^2 + y[i]^2)
z[i] = math.exp(-r^2) * math.cos(2*math.pi*r)
else
z[i] = math.log((1-x[i])^2 + 100*(y[i] - x[i]^2)^2)
end
end
return x, y, z
end
title = { "Cubic Spline Approximation",
"Delaunay Linear Interpolation",
"Natural Neighbors Interpolation",
"KNN Inv. Distance Weighted",
"3NN Linear Interpolation",
"4NN Around Inv. Dist. Weighted" }
xm = -0.2
ym = -0.2
xM = 0.6
yM = 0.6
pl.parseopts(arg, pl.PL_PARSE_FULL)
opt = { 0, 0, wmin, knn_order, threshold, 0 }
-- Initialize plplot
pl.init()
-- Initialise random number generator
pl.seed(5489)
x, y, z = create_data(pts) -- the sampled data
zmin = z[1]
zmax = z[1]
for i=2, pts do
if z[i]>zmax then zmax = z[i] end
if z[i]<zmin then zmin = z[i] end
end
xg, yg = create_grid(xp, yp) -- grid the data at
clev = {}
pl.col0(1)
pl.env(xm, xM, ym, yM, 2, 0)
pl.col0(15)
pl.lab("X", "Y", "The original data sampling")
pl.col0(2)
pl.poin(x, y, 5)
pl.adv(0)
pl.ssub(3, 2)
for k = 1, 2 do
pl.adv(0)
for alg=1, 6 do
zg = pl.griddata(x, y, z, xg, yg, alg, opt[alg])
--[[
- CSA can generate NaNs (only interpolates?!).
- DTLI and NNI can generate NaNs for points outside the convex hull
of the data points.
- NNLI can generate NaNs if a sufficiently thick triangle is not found
PLplot should be NaN/Inf aware, but changing it now is quite a job...
so, instead of not plotting the NaN regions, a weighted average over
the neighbors is done. --]]
if alg==pl.GRID_CSA or alg==pl.GRID_DTLI or alg==pl.GRID_NNLI or alg==pl.GRID_NNI then
for i = 1, xp do
for j = 1, yp do
if zg[i][j]~=zg[i][j] then -- average (IDW) over the 8 neighbors
zg[i][j] = 0
dist = 0
for ii=i-1, i+1 do
if ii<=xp then
for jj=j-1, j+1 do
if jj<=yp then
if ii>=1 and jj>=1 and zg[ii][jj]==zg[ii][jj] then
if (math.abs(ii-i) + math.abs(jj-j)) == 1 then
d = 1
else
d = 1.4142
end
zg[i][j] = zg[i][j] + zg[ii][jj]/(d^2)
dist = dist + d
end
end
end
end
end
if dist~=0 then
zg[i][j] = zg[i][j]/dist
else
zg[i][j] = zmin
end
end
end
end
end
lzM, lzm = pl.MinMax2dGrid(zg)
if lzm~=lzm then lzm=zmin else lzm = math.min(lzm, zmin) end
if lzM~=lzM then lzM=zmax else lzM = math.max(lzM, zmax) end
-- Increase limits slightly to prevent spurious contours
-- due to rounding errors
lzm = lzm-0.01
lzM = lzM+0.01
pl.col0(1)
pl.adv(alg)
if k==1 then
for i = 1, nl do
clev[i] = lzm + (lzM-lzm)/(nl-1)*(i-1)
end
pl.env0(xm, xM, ym, yM, 2, 0)
pl.col0(15)
pl.lab("X", "Y", title[alg])
pl.shades(zg, xm, xM, ym, yM, clev, 1, 0, 1, 1)
pl.col0(2)
else
for i = 1, nl do
clev[i] = lzm + (lzM-lzm)/(nl-1)*(i-1)
end
cmap1_init()
pl.vpor(0, 1, 0, 0.9)
pl.wind(-1.1, 0.75, -0.65, 1.20)
-- For the comparison to be fair, all plots should have the
-- same z values, but to get the max/min of the data generated
-- by all algorithms would imply two passes. Keep it simple.
--
-- pl.w3d(1, 1, 1, xm, xM, ym, yM, zmin, zmax, 30, -60)
pl.w3d(1, 1, 1, xm, xM, ym, yM, lzm, lzM, 30, -40)
pl.box3("bntu", "X", 0, 0,
"bntu", "Y", 0, 0,
"bcdfntu", "Z", 0.5, 0)
pl.col0(15)
pl.lab("", "", title[alg])
pl.plot3dc(xg, yg, zg, lor(lor(pl.DRAW_LINEXY, pl.MAG_COLOR), pl.BASE_CONT), clev)
end
end
end
pl.plend()

View File

@ -0,0 +1,273 @@
--[[ $Id: x22.lua 9526 2009-02-13 22:06:13Z smekal $
Simple vector plot example
Copyright (C) 2008 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
-- Pairs of points making the line segments used to plot the user defined arrow
arrow_x = { -0.5, 0.5, 0.3, 0.5, 0.3, 0.5 }
arrow_y = { 0, 0, 0.2, 0, -0.2, 0 }
arrow2_x = { -0.5, 0.3, 0.3, 0.5, 0.3, 0.3 }
arrow2_y = { 0, 0, 0.2, 0, -0.2, 0 }
-- Vector plot of the circulation about the origin
function circulation()
nx = 20
ny = 20
dx = 1
dy = 1
xmin = -nx/2*dx
xmax = nx/2*dx
ymin = -ny/2*dy
ymax = ny/2*dy
cgrid2 = {}
cgrid2["xg"] = {}
cgrid2["yg"] = {}
cgrid2["nx"] = nx
cgrid2["ny"] = ny
u = {}
v = {}
-- Create data - circulation around the origin.
for i = 1, nx do
x = (i-1-nx/2+0.5)*dx
cgrid2["xg"][i] = {}
cgrid2["yg"][i] = {}
u[i] = {}
v[i] = {}
for j=1, ny do
y = (j-1-ny/2+0.5)*dy
cgrid2["xg"][i][j] = x
cgrid2["yg"][i][j] = y
u[i][j] = y
v[i][j] = -x
end
end
-- Plot vectors with default arrows
pl.env(xmin, xmax, ymin, ymax, 0, 0)
pl.lab("(x)", "(y)", "#frPLplot Example 22 - circulation")
pl.col0(2)
pl.vect(u, v, 0, "pltr2", cgrid2 )
pl.col0(1)
end
-- Vector plot of flow through a constricted pipe
function constriction()
nx = 20
ny = 20
dx = 1
dy = 1
xmin = -nx/2*dx
xmax = nx/2*dx
ymin = -ny/2*dy
ymax = ny/2*dy
cgrid2 = {}
cgrid2["xg"] = {}
cgrid2["yg"] = {}
cgrid2["nx"] = nx
cgrid2["ny"] = ny
u = {}
v = {}
Q = 2
for i = 1, nx do
x = (i-1-nx/2+0.5)*dx
cgrid2["xg"][i] = {}
cgrid2["yg"][i] = {}
u[i] = {}
v[i] = {}
for j = 1, ny do
y = (j-1-ny/2+0.5)*dy
cgrid2["xg"][i][j] = x
cgrid2["yg"][i][j] = y
b = ymax/4*(3-math.cos(math.pi*x/xmax))
if math.abs(y)<b then
dbdx = ymax/4*math.sin(math.pi*x/xmax)*y/b
u[i][j] = Q*ymax/b
v[i][j] = dbdx*u[i][j]
else
u[i][j] = 0
v[i][j] = 0
end
end
end
pl.env(xmin, xmax, ymin, ymax, 0, 0)
pl.lab("(x)", "(y)", "#frPLplot Example 22 - constriction")
pl.col0(2)
pl.vect(u, v, -0.5, "pltr2", cgrid2)
pl.col0(1)
end
function f2mnmx(f, nx, ny)
fmax = f[1][1]
fmin = fmax
for i=1, nx do
for j=1, ny do
fmax = math.max(fmax, f[i][j])
fmin = math.min(fmin, f[i][j])
end
end
return fmin, fmax
end
-- Vector plot of the gradient of a shielded potential (see example 9)
function potential()
nper = 100
nlevel = 10
nr = 20
ntheta = 20
u = {}
v = {}
z = {}
clevel = {}
px = {}
py = {}
cgrid2 = {}
cgrid2["xg"] = {}
cgrid2["yg"] = {}
cgrid2["nx"] = nr
cgrid2["ny"] = ntheta
-- Potential inside a conducting cylinder (or sphere) by method of images.
-- Charge 1 is placed at (d1, d1), with image charge at (d2, d2).
-- Charge 2 is placed at (d1, -d1), with image charge at (d2, -d2).
-- Also put in smoothing term at small distances.
rmax = nr
eps = 2
q1 = 1
d1 = rmax/4
q1i = -q1*rmax/d1
d1i = rmax^2/d1
q2 = -1
d2 = rmax/4
q2i = -q2*rmax/d2
d2i = rmax^2/d2
for i = 1, nr do
r = i - 0.5
cgrid2["xg"][i] = {}
cgrid2["yg"][i] = {}
u[i] = {}
v[i] = {}
z[i] = {}
for j = 1, ntheta do
theta = 2*math.pi/(ntheta-1)*(j-0.5)
x = r*math.cos(theta)
y = r*math.sin(theta)
cgrid2["xg"][i][j] = x
cgrid2["yg"][i][j] = y
div1 = math.sqrt((x-d1)^2 + (y-d1)^2 + eps^2)
div1i = math.sqrt((x-d1i)^2 + (y-d1i)^2 + eps^2)
div2 = math.sqrt((x-d2)^2 + (y+d2)^2 + eps^2)
div2i = math.sqrt((x-d2i)^2 + (y+d2i)^2 + eps^2)
z[i][j] = q1/div1 + q1i/div1i + q2/div2 + q2i/div2i
u[i][j] = -q1*(x-d1)/div1^3 - q1i*(x-d1i)/div1i^3
-q2*(x-d2)/div2^3 - q2i*(x-d2i)/div2i^3
v[i][j] = -q1*(y-d1)/div1^3 - q1i*(y-d1i)/div1i^3
-q2*(y+d2)/div2^3 - q2i*(y+d2i)/div2i^3
end
end
xmin, xmax = f2mnmx(cgrid2["xg"], nr, ntheta)
ymin, ymax = f2mnmx(cgrid2["yg"], nr, ntheta)
zmin, zmax = f2mnmx(z, nr, ntheta)
pl.env(xmin, xmax, ymin, ymax, 0, 0)
pl.lab("(x)", "(y)", "#frPLplot Example 22 - potential gradient vector plot")
-- Plot contours of the potential
dz = (zmax-zmin)/nlevel
for i = 1, nlevel do
clevel[i] = zmin + (i-0.5)*dz
end
pl.col0(3)
pl.lsty(2)
pl.cont(z, 1, nr, 1, ntheta, clevel, "pltr2", cgrid2)
pl.lsty(1)
pl.col0(1)
-- Plot the vectors of the gradient of the potential
pl.col0(2)
pl.vect(u, v, 25, "pltr2", cgrid2)
pl.col0(1)
-- Plot the perimeter of the cylinder
for i=1, nper do
theta = 2*math.pi/(nper-1)*(i-1)
px[i] = rmax*math.cos(theta)
py[i] = rmax*math.sin(theta)
end
pl.line(px, py)
end
----------------------------------------------------------------------------
-- main
--
-- Generates several simple vector plots.
----------------------------------------------------------------------------
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL)
-- Initialize plplot
pl.init()
circulation()
fill = 0
-- Set arrow style using arrow_x and arrow_y then
-- plot using these arrows.
pl.svect(arrow_x, arrow_y, fill)
constriction()
-- Set arrow style using arrow2_x and arrow2_y then
-- plot using these filled arrows.
fill = 1
pl.svect(arrow2_x, arrow2_y, fill)
constriction()
potential()
pl.plend()

View File

@ -0,0 +1,331 @@
--[[ $Id: x23.lua 9533 2009-02-16 22:18:37Z smekal $
Displays Greek letters and mathematically interesting Unicode ranges
Copyright (C) 2009 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
----------------------------------------------------------------------------
-- main
--
-- Displays Greek letters and mathematically interesting Unicode ranges
----------------------------------------------------------------------------
Greek = {
"#gA","#gB","#gG","#gD","#gE","#gZ","#gY","#gH","#gI","#gK","#gL","#gM",
"#gN","#gC","#gO","#gP","#gR","#gS","#gT","#gU","#gF","#gX","#gQ","#gW",
"#ga","#gb","#gg","#gd","#ge","#gz","#gy","#gh","#gi","#gk","#gl","#gm",
"#gn","#gc","#go","#gp","#gr","#gs","#gt","#gu","#gf","#gx","#gq","#gw"
}
Type1 = {
32, 33, 35, 37, 38,
40, 41, 43, 44, 46,
47, 48, 49, 50, 51,
52, 53, 54, 55, 56,
57, 58, 59, 60, 61,
62, 63, 91, 93, 95,
123, 124, 125, 169, 172,
174, 176, 177, 215, 247,
402, 913, 914, 915, 916,
917, 918, 919, 920, 921,
922, 923, 924, 925, 926,
927, 928, 929, 931, 932,
933, 934, 935, 936, 937,
945, 946, 947, 948, 949,
950, 951, 952, 953, 954,
955, 956, 957, 958, 959,
960, 961, 962, 963, 964,
965, 966, 967, 968, 969,
977, 978, 981, 982, 8226,
8230, 8242, 8243, 8254, 8260,
8465, 8472, 8476, 8482, 8486,
8501, 8592, 8593, 8594, 8595,
8596, 8629, 8656, 8657, 8658,
8659, 8660, 8704, 8706, 8707,
8709, 8710, 8711, 8712, 8713,
8715, 8719, 8721, 8722, 8725,
8727, 8730, 8733, 8734, 8736,
8743, 8744, 8745, 8746, 8747,
8756, 8764, 8773, 8776, 8800,
8801, 8804, 8805, 8834, 8835,
8836, 8838, 8839, 8853, 8855,
8869, 8901, 8992, 8993, 9001,
9002, 9674, 9824, 9827, 9829,
9830
}
title = {
"#<0x10>PLplot Example 23 - Greek Letters",
"#<0x10>PLplot Example 23 - Type 1 Symbol Font Glyphs by Unicode (a)",
"#<0x10>PLplot Example 23 - Type 1 Symbol Font Glyphs by Unicode (b)",
"#<0x10>PLplot Example 23 - Type 1 Symbol Font Glyphs by Unicode (c)",
"#<0x10>PLplot Example 23 - Number Forms Unicode Block",
"#<0x10>PLplot Example 23 - Arrows Unicode Block (a)",
"#<0x10>PLplot Example 23 - Arrows Unicode Block (b)",
"#<0x10>PLplot Example 23 - Mathematical Operators Unicode Block (a)",
"#<0x10>PLplot Example 23 - Mathematical Operators Unicode Block (b)",
"#<0x10>PLplot Example 23 - Mathematical Operators Unicode Block (c)",
"#<0x10>PLplot Example 23 - Mathematical Operators Unicode Block (d)"
}
lo = {
0,
0,
64,
128,
8531,
8592,
8656,
8704,
8768,
8832,
8896
}
hi = {
48,
64,
128,
166,
8580,
8656,
8704,
8768,
8832,
8896,
8960
}
nxcells = {
12,
8,
8,
8,
8,
8,
8,
8,
8,
8,
8
}
nycells = {
8,
8,
8,
8,
8,
8,
8,
8,
8,
8,
8
}
-- non-zero values Must be consistent with nxcells and nycells.
offset = {
0,
0,
64,
128,
0,
0,
0,
0,
0,
0,
0
}
-- 30 possible FCI values.
FCI_COMBINATIONS = 30
fci = {
2147483648,
2147483649,
2147483650,
2147483651,
2147483652,
2147483664,
2147483665,
2147483666,
2147483667,
2147483668,
2147483680,
2147483681,
2147483682,
2147483683,
2147483684,
2147483904,
2147483905,
2147483906,
2147483907,
2147483908,
2147483920,
2147483921,
2147483922,
2147483923,
2147483924,
2147483936,
2147483937,
2147483938,
2147483939,
2147483940
}
family = {
"sans-serif",
"serif",
"monospace",
"script",
"symbol"
}
style = {
"upright",
"italic",
"oblique"
}
weight = {
"medium",
"bold"
}
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL)
-- Initialize plplot
pl.init()
for page=1, 11 do
pl.adv(0)
-- Set up viewport and window
pl.vpor(0.02, 0.98, 0.02, 0.90)
pl.wind(0, 1, 0, 1)
xmin, xmax, ymin, ymax = pl.gspa()
pl.schr(0, 0.8)
ycharacter_scale = (1-0)/(ymax-ymin)
-- Factor should be 0.5, but heuristically it turns out to be larger.
chardef, charht = pl.gchr()
yoffset = charht*ycharacter_scale
-- Draw the grid using plbox
pl.col0(2)
deltax = 1.0/nxcells[page]
deltay = 1.0/nycells[page]
pl.box("bcg", deltax, 0, "bcg", deltay, 0)
pl.col0(15)
length=hi[page]-lo[page]
slice = 1
for j=nycells[page]-1, -1, -1 do
y = (0.5+j)*deltay
for i=1, nxcells[page] do
x = (i-0.5)*deltax
if slice<=length then
if page==1 then
cmdString = "#" .. Greek[slice]
elseif (page>=2) and (page<=4) then
cmdString = string.format("##[0x%.4x]", Type1[offset[page]+slice])
elseif page>4 then
cmdString = string.format("##[0x%.4x]", lo[page]+slice-1)
end
pl.ptex(x, y+yoffset, 1, 0, 0.5, string.sub(cmdString,2))
pl.ptex(x, y-yoffset, 1, 0, 0.5, cmdString)
end
slice = slice + 1
end
end
pl.schr(0, 1)
-- Page title
pl.mtex("t", 1.5, 0.5, 0.5, title[page])
end
-- Demonstrate methods of getting the current fonts
fci_old = pl.gfci()
ifamily, istyle, iweight = pl.gfont()
print(string.format("For example 23 prior to page 12 the FCI is 0x%x", fci_old))
print(string.format("For example 23 prior to page 12 the font family, style and weight are %s %s %s",
family[ifamily+1], style[istyle+1], weight[iweight+1]))
for page=12, 16 do
dy = 0.030
pl.adv(0)
pl.vpor(0.02, 0.98, 0.02, 0.90)
pl.wind(0, 1, 0, 1)
pl.sfci(0)
if page==12 then
pl.mtex("t", 1.5, 0.5, 0.5, "#<0x10>PLplot Example 23 - Set Font with plsfci")
elseif page==13 then
pl.mtex("t", 1.5, 0.5, 0.5, "#<0x10>PLplot Example 23 - Set Font with plsfont")
elseif page==14 then
pl.mtex("t", 1.5, 0.5, 0.5, "#<0x10>PLplot Example 23 - Set Font with ##<0x8nnnnnnn> construct")
elseif page==15 then
pl.mtex("t", 1.5, 0.5, 0.5, "#<0x10>PLplot Example 23 - Set Font with ##<0xmn> constructs")
elseif page==16 then
pl.mtex("t", 1.5, 0.5, 0.5, "#<0x10>PLplot Example 23 - Set Font with ##<FCI COMMAND STRING/> constructs")
end
pl.schr(0, 0.75)
for i=1, FCI_COMBINATIONS do
family_index = math.mod(i-1, 5)+1
style_index = math.mod(math.floor((i-1)/5), 3)+1
weight_index = math.mod(math.floor((i-1)/5/3), 2)+1
if page==12 then
pl.sfci(fci[i])
str = string.format("Page 12, %s, %s, %s: The quick brown fox jumps over the lazy dog",
family[family_index], style[style_index], weight[weight_index])
elseif page==13 then
pl.sfont(family_index-1, style_index-1, weight_index-1)
str = string.format("Page 13, %s, %s, %s: The quick brown fox jumps over the lazy dog",
family[family_index], style[style_index], weight[weight_index])
elseif page==14 then
str = string.format("Page 14, %s, %s, %s: #<0x%x>The quick brown fox jumps over the lazy dog",
family[family_index], style[style_index], weight[weight_index], fci[i])
elseif page==15 then
str = string.format("Page 15, %s, %s, %s: #<0x%1x0>#<0x%1x1>#<0x%1x2>The quick brown fox jumps over the lazy dog",
family[family_index], style[style_index], weight[weight_index],
family_index-1, style_index-1, weight_index-1)
elseif page==16 then
str = string.format("Page 16, %s, %s, %s: #<%s/>#<%s/>#<%s/>The quick brown fox jumps over the lazy dog",
family[family_index], style[style_index], weight[weight_index],
family[family_index], style[style_index], weight[weight_index])
end
pl.ptex(0, 1-(i-0.5)*dy, 1, 0, 0, str)
end
pl.schr(0, 1)
end
-- Restore defaults
pl.col0(1)
pl.plend()

View File

@ -0,0 +1,142 @@
--[[ $Id: x24.lua 9414 2009-01-29 22:48:54Z airwin $
Unicode Pace Flag
Copyright (C) 2008 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
In Debian, run like this:
( TTFDIR=/usr/share/fonts/truetype \
PLPLOT_FREETYPE_SANS_FONT=$TTFDIR/arphic/bkai00mp.ttf \
PLPLOT_FREETYPE_SERIF_FONT=$TTFDIR/freefont/FreeSerif.ttf \
PLPLOT_FREETYPE_MONO_FONT=$TTFDIR/ttf-devanagari-fonts/lohit_hi.ttf \
PLPLOT_FREETYPE_SCRIPT_FONT=$TTFDIR/unfonts/UnBatang.ttf \
PLPLOT_FREETYPE_SYMBOL_FONT=$TTFDIR/ttf-bengali-fonts/JamrulNormal.ttf \
./x24c -dev png -drvopt smooth=0 -o x24c.png )
Packages needed:
ttf-arphic-bkai00mp
ttf-freefont
ttf-devanagari-fonts
ttf-unfonts
ttf-bengali-fonts
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
red = { 240, 204, 204, 204, 0, 39, 125 }
green = { 240, 0, 125, 204, 204, 80, 0 }
blue = { 240, 0, 0, 0, 0, 204, 125 }
px = { 0, 0, 1, 1 }
py = { 0, 0.25, 0.25, 0 }
sx = {
0.16374,
0.15844,
0.15255,
0.17332,
0.50436,
0.51721,
0.49520,
0.48713,
0.83976,
0.81688,
0.82231,
0.82647
}
sy = {
0.125,
0.375,
0.625,
0.875,
0.125,
0.375,
0.625,
0.875,
0.125,
0.375,
0.625,
0.875
}
-- Taken from http://www.columbia.edu/~fdc/pace/
peace = {
-- Mandarin
"#<0x00>和平",
-- Hindi
"#<0x20>शांति",
-- English
"#<0x10>Peace",
-- Hebrew
"#<0x10>שלום",
-- Russian
"#<0x10>Мир",
-- German
"#<0x10>Friede",
-- Korean
"#<0x30>평화",
-- French
"#<0x10>Paix",
-- Spanish
"#<0x10>Paz",
-- Arabic
"#<0x10>ﺳﻼم",
-- Turkish
"#<0x10>Barış",
-- Kurdish
"#<0x10>Hasîtî",
}
pl.parseopts(arg, pl.PL_PARSE_FULL)
pl.init()
pl.adv(0)
pl.vpor(0, 1, 0, 1)
pl.wind(0, 1, 0, 1)
pl.col0(0)
pl.box("", 1, 0, "", 1, 0)
pl.scmap0n(7)
pl.scmap0(red, green, blue)
pl.schr(0, 4)
pl.font(1)
for i = 1, 4 do
pl.col0(i)
pl.fill(px, py)
for j = 1, 4 do
py[j] = py[j] + 1/4
end
end
pl.col0(0)
for i = 1, 12 do
pl.ptex(sx[i], sy[i], 1, 0, 0.5, peace[i])
end
pl.plend()

View File

@ -0,0 +1,96 @@
--[[ $Id: x25.lua 10668 2009-12-02 08:38:49Z airwin $
Filling and clipping polygons.
Copyright (C) 2008 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
--------------------------------------------------------------------------
-- main
--
-- Test program for filling polygons and proper clipping
--------------------------------------------------------------------------
xextreme = {}
yextreme ={}
x0 = {}
y0 = {}
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL)
-- Initialize plplot
pl.ssub(3, 3)
pl.init()
xextreme = { { -120, 120 }, { -120, 120 }, { -120, 120 }, { -80, 80 }, { -220, -120 },
{ -20, 20 }, { -20, 20 }, { -80, 80 }, { 20, 120 } }
yextreme = { { -120, 120 }, { 20, 120 }, { -20, 120 }, { -20, 120 }, { -120, 120 },
{ -120, 120 }, { -20, 20 }, { -80, 80 }, { -120, 120 } }
for k = 1, 2 do
for j = 1, 4 do
if j==1 then
-- Polygon 1: a diamond
x0 = { 0, -100, 0, 100 }
y0 = { -100, 0, 100, 0}
end
if j==2 then
-- Polygon 1: a diamond - reverse direction
x0 = { 100, 0, -100, 0 }
y0 = { 0, 100, 0, -100}
end
if j==3 then
-- Polygon 2: a square with punctures
x0 = { -100, -100, 80, -100, -100, -80, 0, 80, 100, 100 }
y0 = { -100, -80, 0, 80, 100, 100, 80, 100, 100, -100}
end
if j==4 then
-- Polygon 2: a square with punctures - reversed direction
x0 = { 100, 100, 80, 0, -80, -100, -100, 80, -100, -100 }
y0 = { -100, 100, 100, 80, 100, 100, 80, 0, -80, -100}
end
for i = 1, 9 do
pl.adv(0)
pl.vsta()
pl.wind(xextreme[i][1], xextreme[i][2], yextreme[i][1], yextreme[i][2])
pl.col0(2)
pl.box("bc", 1, 0, "bcnv", 10, 0)
pl.col0(1)
pl.psty(0)
if k==1 then
pl.fill(x0, y0)
else
pl.gradient(x0, y0, 45.)
end
pl.col0(2)
pl.lsty(1)
pl.line(x0, y0)
end
end
end
-- Don't forget to call plend() to finish off!
pl.plend()

View File

@ -0,0 +1,151 @@
--[[ -*- coding: utf-8 -*-
$Id: x26.lua 9506 2009-02-11 08:23:29Z smekal $
Multi-lingual version of the first page of example 4.
Copyright (C) 2009 Werner Smekal
Thanks to the following for providing translated strings for this example:
Valery Pipin (Russian)
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
--[[
This example designed just for devices (e.g., psttfc and the
cairo-related devices) that use the pango and fontconfig libraries. The
best choice of glyph is selected by fontconfig and automatically rendered
by pango in way that is sensitive to complex text layout (CTL) language
issues for each unicode character in this example. Of course, you must
have the appropriate TrueType fonts installed to have access to all the
required glyphs.
Translation instructions: The strings to be translated are given by
x_label, y_label, alty_label, title_label, and line_label below. The
encoding used must be UTF-8.
The following strings to be translated involve some scientific/mathematical
jargon which is now discussed further to help translators.
(1) dB is a decibel unit, see http://en.wikipedia.org/wiki/Decibel .
(2) degrees is an angular measure, see
http://en.wikipedia.org/wiki/Degree_(angle) .
(3) low-pass filter is one that transmits (passes) low frequencies.
(4) pole is in the mathematical sense, see
http://en.wikipedia.org/wiki/Pole_(complex_analysis) . "Single Pole"
means a particular mathematical transformation of the filter function has
a single pole, see
http://ccrma.stanford.edu/~jos/filters/Pole_Zero_Analysis_I.html .
Furthermore, a single-pole filter must have an inverse square decline
(or -20 db/decade). Since the filter plotted here does have that
characteristic, it must by definition be a single-pole filter, see also
http://www-k.ext.ti.com/SRVS/Data/ti/KnowledgeBases/analog/document/faqs/1p.htm
(5) decade represents a factor of 10, see
http://en.wikipedia.org/wiki/Decade_(log_scale) .
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
x_label = { "Frequency", "Частота" }
y_label = { "Amplitude (dB)", "Амплитуда (dB)" }
alty_label = { "Phase shift (degrees)", "Фазовый сдвиг (градусы)" }
title_label = { "Single Pole Low-Pass Filter", "Однополюсный Низко-Частотный Фильтр" }
line_label = { "-20 dB/decade", "-20 dB/десяток" }
----------------------------------------------------------------------------
-- plot1
--
-- Log-linear plot.
----------------------------------------------------------------------------
function plot1(typ, x_label, y_label, alty_label, title_label, line_label)
freql = {}
ampl = {}
phase = {}
pl.adv(0)
-- Set up data for log plot
f0 = 1
for i = 1, 101 do
freql[i] = -2 + (i-1)/20
freq = 10^freql[i]
ampl[i] = 20 * math.log10(1/math.sqrt(1+(freq/f0)^2))
phase[i] = -180/math.pi*math.atan(freq/f0)
end
pl.vpor(0.15, 0.85, 0.1, 0.9)
pl.wind(-2, 3, -80, 0)
-- Try different axis and labelling styles.
pl.col0(1)
if typ==0 then
pl.box("bclnst", 0, 0, "bnstv", 0, 0)
else
pl.box("bcfghlnst", 0, 0, "bcghnstv", 0, 0)
end
-- Plot ampl vs freq
pl.col0(2)
pl.line(freql, ampl)
pl.col0(1)
pl.ptex(1.6, -30, 1, -20, 0.5, line_label)
-- Put labels on
pl.col0(1)
pl.mtex("b", 3.2, 0.5, 0.5, x_label)
pl.mtex("t", 2, 0.5, 0.5, title_label)
pl.col0(2)
pl.mtex("l", 5, 0.5, 0.5, y_label)
-- For the gridless case, put phase vs freq on same plot
if typ==0 then
pl.col0(1)
pl.wind(-2, 3, -100, 0)
pl.box("", 0, 0, "cmstv", 30, 3)
pl.col0(3)
pl.line(freql, phase)
pl.col0(3)
pl.mtex("r", 5, 0.5, 0.5, alty_label)
end
end
----------------------------------------------------------------------------
-- main
--
-- Illustration of logarithmic axes, and redefinition of window.
----------------------------------------------------------------------------
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL)
-- Initialize plplot
pl.init()
pl.font(2)
-- Make log plots using two different styles.
for i = 1, 2 do
plot1(0, x_label[i], y_label[i], alty_label[i], title_label[i], line_label[i])
end
pl.plend()

View File

@ -0,0 +1,129 @@
--[[ $Id: x27.lua 9526 2009-02-13 22:06:13Z smekal $
Drawing "spirograph" curves - epitrochoids, cycolids, roulettes
Copyright (C) 2009 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
function cycloid()
-- TODO
end
function spiro( params )
NPNT = 20000
xcoord = {}
ycoord = {}
-- Fill the coordinates
windings = params[4]
steps = math.floor(NPNT/windings)
dphi = 8*math.acos(-1)/steps
xmin = 0 -- This initialisation is safe!
xmax = 0
ymin = 0
ymax = 0
for i = 1, windings*steps+1 do
phi = (i-1) * dphi
phiw = (params[1]-params[2])/params[2]*phi
xcoord[i] = (params[1]-params[2])*math.cos(phi) + params[3]*math.cos(phiw)
ycoord[i] = (params[1]-params[2])*math.sin(phi) - params[3]*math.sin(phiw)
if xmin>xcoord[i] then xmin = xcoord[i] end
if xmax<xcoord[i] then xmax = xcoord[i] end
if ymin>ycoord[i] then ymin = ycoord[i] end
if ymax<ycoord[i] then ymax = ycoord[i] end
end
if (xmax-xmin)>(ymax-ymin) then
scale = xmax - xmin
else
scale = ymax - ymin
end
xmin = -0.65*scale
xmax = 0.65*scale
ymin = -0.65*scale
ymax = 0.65*scale
pl.wind(xmin, xmax, ymin, ymax)
pl.col0(1)
pl.line(xcoord, ycoord)
end
----------------------------------------------------------------------------
-- main
--
-- Generates two kinds of plots:
-- - construction of a cycloid (animated)
-- - series of epitrochoids and hypotrochoids
----------------------------------------------------------------------------
-- R, r, p, N
params = {
{ 21, 7, 7, 3 }, -- Deltoid
{ 21, 7, 10, 3 },
{ 21, -7, 10, 3 },
{ 20, 3, 7, 20 },
{ 20, 3, 10, 20 },
{ 20, -3, 10, 20 },
{ 20, 13, 7, 20 },
{ 20, 13, 20, 20 },
{ 20,-13, 20, 20 } }
-- plplot initialization
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL)
-- Initialize plplot
pl.init()
-- Illustrate the construction of a cycloid
cycloid()
-- Loop over the various curves
-- First an overview, then all curves one by one
pl.ssub(3, 3) -- Three by three window
for i = 1, 9 do
pl.adv(0)
pl.vpor(0, 1, 0, 1)
spiro(params[i])
end
pl.adv(0)
pl.ssub(1, 1) -- One window per curve
for i = 1, 9 do
pl.adv(0)
pl.vpor(0, 1, 0, 1)
spiro(params[i])
end
-- Don't forget to call plend() to finish off!
pl.plend()

View File

@ -0,0 +1,376 @@
--[[ $Id: x28.lua 10710 2009-12-08 06:51:27Z airwin $
pl.mtex3, plptex3 demo.
Copyright (C) 2009 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
-- Choose these values to correspond to tick marks.
XPTS = 2
YPTS = 2
NREVOLUTION = 16
NROTATION = 8
NSHEAR = 8
----------------------------------------------------------------------------
-- main
--
-- Demonstrates plotting text in 3D.
----------------------------------------------------------------------------
xmin=0
xmax=1
xmid = 0.5*(xmax + xmin)
xrange = xmax - xmin
ymin=0
ymax=1
ymid = 0.5*(ymax + ymin)
yrange = ymax - ymin
zmin=0
zmax=1
zmid = 0.5*(zmax + zmin)
zrange = zmax - zmin
ysmin = ymin + 0.1 * yrange
ysmax = ymax - 0.1 * yrange
ysrange = ysmax - ysmin
dysrot = ysrange / ( NROTATION - 1 )
dysshear = ysrange / ( NSHEAR - 1 )
zsmin = zmin + 0.1 * zrange
zsmax = zmax - 0.1 * zrange
zsrange = zsmax - zsmin
dzsrot = zsrange / ( NROTATION - 1 )
dzsshear = zsrange / ( NSHEAR - 1 )
pstring = "The future of our civilization depends on software freedom."
-- Allocate and define the minimal x, y, and z to insure 3D box
x = {}
y = {}
z = {}
for i = 1, XPTS do
x[i] = xmin + (i-1) * (xmax-xmin)/(XPTS-1)
end
for j = 1, YPTS do
y[j] = ymin + (j-1) * (ymax-ymin)/(YPTS-1)
end
for i = 1, XPTS do
z[i] = {}
for j = 1, YPTS do
z[i][j] = 0
end
end
-- Parse and process command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL)
pl.init()
-- Page 1: Demonstrate inclination and shear capability pattern.
pl.adv(0)
pl.vpor(-0.15, 1.15, -0.05, 1.05)
pl.wind(-1.2, 1.2, -0.8, 1.5)
pl.w3d(1, 1, 1, xmin, xmax, ymin, ymax, zmin, zmax, 20, 45)
pl.col0(2)
pl.box3("b", "", xmax-xmin, 0,
"b", "", ymax-ymin, 0,
"bcd", "", zmax-zmin, 0)
-- z = zmin.
pl.schr(0, 1)
for i = 1, NREVOLUTION do
omega = 2*math.pi*(i-1)/NREVOLUTION
sin_omega = math.sin(omega)
cos_omega = math.cos(omega)
x_inclination = 0.5*xrange*cos_omega
y_inclination = 0.5*yrange*sin_omega
z_inclination = 0
x_shear = -0.5*xrange*sin_omega
y_shear = 0.5*yrange*cos_omega
z_shear = 0
pl.ptex3( xmid, ymid, zmin, x_inclination, y_inclination, z_inclination,
x_shear, y_shear, z_shear, 0, " revolution")
end
-- x = xmax.
pl.schr(0, 1)
for i = 1, NREVOLUTION do
omega = 2.*math.pi*(i-1)/NREVOLUTION
sin_omega = math.sin(omega)
cos_omega = math.cos(omega)
x_inclination = 0.
y_inclination = -0.5*yrange*cos_omega
z_inclination = 0.5*zrange*sin_omega
x_shear = 0
y_shear = 0.5*yrange*sin_omega
z_shear = 0.5*zrange*cos_omega
pl.ptex3(xmax, ymid, zmid, x_inclination, y_inclination, z_inclination,
x_shear, y_shear, z_shear, 0, " revolution")
end
-- y = ymax.
pl.schr(0, 1)
for i = 1, NREVOLUTION do
omega = 2.*math.pi*(i-1)/NREVOLUTION
sin_omega = math.sin(omega)
cos_omega = math.cos(omega)
x_inclination = 0.5*xrange*cos_omega
y_inclination = 0.
z_inclination = 0.5*zrange*sin_omega
x_shear = -0.5*xrange*sin_omega
y_shear = 0.
z_shear = 0.5*zrange*cos_omega
pl.ptex3(xmid, ymax, zmid, x_inclination, y_inclination, z_inclination,
x_shear, y_shear, z_shear, 0, " revolution")
end
-- Draw minimal 3D grid to finish defining the 3D box.
pl.mesh(x, y, z, pl.DRAW_LINEXY)
-- Page 2: Demonstrate rotation of string around its axis.
pl.adv(0)
pl.vpor(-0.15, 1.15, -0.05, 1.05)
pl.wind(-1.2, 1.2, -0.8, 1.5)
pl.w3d(1, 1, 1, xmin, xmax, ymin, ymax, zmin, zmax, 20, 45)
pl.col0(2)
pl.box3("b", "", xmax-xmin, 0,
"b", "", ymax-ymin, 0,
"bcd", "", zmax-zmin, 0)
-- y = ymax.
pl.schr(0, 1)
x_inclination = 1
y_inclination = 0
z_inclination = 0
x_shear = 0
for i = 1, NROTATION do
omega = 2.*math.pi*(i-1)/NROTATION
sin_omega = math.sin(omega)
cos_omega = math.cos(omega)
y_shear = 0.5*yrange*sin_omega
z_shear = 0.5*zrange*cos_omega
zs = zsmax - dzsrot * (i-1)
pl.ptex3(xmid, ymax, zs,
x_inclination, y_inclination, z_inclination,
x_shear, y_shear, z_shear,
0.5, "rotation for y = y#dmax#u")
end
-- x = xmax.
pl.schr(0, 1)
x_inclination = 0
y_inclination = -1
z_inclination = 0
y_shear = 0
for i = 1, NROTATION do
omega = 2.*math.pi*(i-1)/NROTATION
sin_omega = math.sin(omega)
cos_omega = math.cos(omega)
x_shear = 0.5*xrange*sin_omega
z_shear = 0.5*zrange*cos_omega
zs = zsmax - dzsrot * (i-1)
pl.ptex3(xmax, ymid, zs,
x_inclination, y_inclination, z_inclination,
x_shear, y_shear, z_shear,
0.5, "rotation for x = x#dmax#u")
end
-- z = zmin.
pl.schr(0, 1)
x_inclination = 1
y_inclination = 0
z_inclination = 0
x_shear = 0
for i = 1, NROTATION do
omega = 2.*math.pi*(i-1)/NROTATION
sin_omega = math.sin(omega)
cos_omega = math.cos(omega)
y_shear = 0.5*yrange*cos_omega
z_shear = 0.5*zrange*sin_omega
ys = ysmax - dysrot * (i-1)
pl.ptex3(xmid, ys, zmin,
x_inclination, y_inclination, z_inclination,
x_shear, y_shear, z_shear,
0.5, "rotation for z = z#dmin#u")
end
-- Draw minimal 3D grid to finish defining the 3D box.
pl.mesh(x, y, z, pl.DRAW_LINEXY)
-- Page 3: Demonstrate shear of string along its axis.
-- Work around xcairo and pngcairo (but not pscairo) problems for
-- shear vector too close to axis of string. (N.B. no workaround
-- would be domega = 0.)
domega = 0.05
pl.adv(0)
pl.vpor(-0.15, 1.15, -0.05, 1.05)
pl.wind(-1.2, 1.2, -0.8, 1.5)
pl.w3d(1, 1, 1, xmin, xmax, ymin, ymax, zmin, zmax, 20, 45)
pl.col0(2)
pl.box3("b", "", xmax-xmin, 0,
"b", "", ymax-ymin, 0,
"bcd", "", zmax-zmin, 0)
-- y = ymax.
pl.schr(0, 1)
x_inclination = 1
y_inclination = 0
z_inclination = 0
y_shear = 0
for i = 1, NSHEAR do
omega = domega + 2.*math.pi*(i-1)/NSHEAR
sin_omega = math.sin(omega)
cos_omega = math.cos(omega)
x_shear = 0.5*xrange*sin_omega
z_shear = 0.5*zrange*cos_omega
zs = zsmax - dzsshear * (i-1)
pl.ptex3(xmid, ymax, zs,
x_inclination, y_inclination, z_inclination,
x_shear, y_shear, z_shear,
0.5, "shear for y = y#dmax#u")
end
-- x = xmax.
pl.schr(0, 1)
x_inclination = 0
y_inclination = -1
z_inclination = 0
x_shear = 0
for i = 1, NSHEAR do
omega = domega + 2.*math.pi*(i-1)/NSHEAR
sin_omega = math.sin(omega)
cos_omega = math.cos(omega)
y_shear = -0.5*yrange*sin_omega
z_shear = 0.5*zrange*cos_omega
zs = zsmax - dzsshear * (i-1)
pl.ptex3(xmax, ymid, zs,
x_inclination, y_inclination, z_inclination,
x_shear, y_shear, z_shear,
0.5, "shear for x = x#dmax#u")
end
-- z = zmin.
pl.schr(0, 1)
x_inclination = 1
y_inclination = 0
z_inclination = 0
z_shear = 0
for i = 1, NSHEAR do
omega = domega + 2.*math.pi*(i-1)/NSHEAR
sin_omega = math.sin(omega)
cos_omega = math.cos(omega)
y_shear = 0.5*yrange*cos_omega
x_shear = 0.5*xrange*sin_omega
ys = ysmax - dysshear * (i-1)
pl.ptex3(xmid, ys, zmin,
x_inclination, y_inclination, z_inclination,
x_shear, y_shear, z_shear,
0.5, "shear for z = z#dmin#u")
end
-- Draw minimal 3D grid to finish defining the 3D box.
pl.mesh(x, y, z, pl.DRAW_LINEXY)
-- Page 4: Demonstrate drawing a string on a 3D path.
pl.adv(0)
pl.vpor(-0.15, 1.15, -0.05, 1.05)
pl.wind(-1.2, 1.2, -0.8, 1.5)
pl.w3d(1, 1, 1, xmin, xmax, ymin, ymax, zmin, zmax, 40, -30)
pl.col0(2)
pl.box3("b", "", xmax-xmin, 0,
"b", "", ymax-ymin, 0,
"bcd", "", zmax-zmin, 0)
pl.schr(0, 1.2)
-- domega controls the spacing between the various characters of the
-- string and also the maximum value of omega for the given number
-- of characters in *pstring.
domega = 2.*math.pi/string.len(pstring)
omega = 0
-- 3D function is a helix of the given radius and pitch
radius = 0.5
pitch = 1/(2*math.pi)
for i = 1, string.len(pstring) do
sin_omega = math.sin(omega)
cos_omega = math.cos(omega)
xpos = xmid + radius*sin_omega
ypos = ymid - radius*cos_omega
zpos = zmin + pitch*omega
-- In general, the inclination is proportional to the derivative of
--the position wrt theta.
x_inclination = radius*cos_omega
y_inclination = radius*sin_omega
z_inclination = pitch
-- The shear vector should be perpendicular to the 3D line with Z
-- component maximized, but for low pitch a good approximation is
--a constant vector that is parallel to the Z axis.
x_shear = 0
y_shear = 0
z_shear = 1
pl.ptex3(xpos, ypos, zpos, x_inclination, y_inclination, z_inclination,
x_shear, y_shear, z_shear, 0.5, string.sub(pstring, i, i))
omega = omega + domega
end
-- Draw minimal 3D grid to finish defining the 3D box.
pl.mesh(x, y, z, pl.DRAW_LINEXY)
-- Page 5: Demonstrate pl.mtex3 axis labelling capability
pl.adv(0)
pl.vpor(-0.15, 1.15, -0.05, 1.05)
pl.wind(-1.2, 1.2, -0.8, 1.5)
pl.w3d(1, 1, 1, xmin, xmax, ymin, ymax, zmin, zmax, 20, 45)
pl.col0(2)
pl.box3("b", "", xmax-xmin, 0,
"b", "", ymax-ymin, 0,
"bcd", "", zmax-zmin, 0)
pl.schr(0, 1)
pl.mtex3("xp", 3, 0.5, 0.5, "Arbitrarily displaced")
pl.mtex3("xp", 4.5, 0.5, 0.5, "primary X-axis label")
pl.mtex3("xs", -2.5, 0.5, 0.5, "Arbitrarily displaced")
pl.mtex3("xs", -1, 0.5, 0.5, "secondary X-axis label")
pl.mtex3("yp", 3, 0.5, 0.5, "Arbitrarily displaced")
pl.mtex3("yp", 4.5, 0.5, 0.5, "primary Y-axis label")
pl.mtex3("ys", -2.5, 0.5, 0.5, "Arbitrarily displaced")
pl.mtex3("ys", -1, 0.5, 0.5, "secondary Y-axis label")
pl.mtex3("zp", 4.5, 0.5, 0.5, "Arbitrarily displaced")
pl.mtex3("zp", 3, 0.5, 0.5, "primary Z-axis label")
pl.mtex3("zs", -2.5, 0.5, 0.5, "Arbitrarily displaced")
pl.mtex3("zs", -1, 0.5, 0.5, "secondary Z-axis label")
-- Draw minimal 3D grid to finish defining the 3D box.
pl.mesh(x, y, z, pl.DRAW_LINEXY)
pl.plend()

View File

@ -0,0 +1,327 @@
--[[ $Id: x29.lua 10299 2009-08-19 17:54:27Z smekal $
Sample plots using date / time formatting for axes
Copyright (C) 2009 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
-- Plot a model diurnal cycle of temperature
function plot1()
x = {}
y = {}
xerr1 = {}
xerr2 = {}
yerr1 = {}
yerr2 = {}
-- Data points every 10 minutes for 1 day
npts = 73
xmin = 0
xmax = 60*60*24 -- Number of seconds in a day
ymin = 10
ymax = 20
for i = 1, npts do
x[i] = xmax*((i-1)/npts)
y[i] = 15 - 5*math.cos(2*math.pi*((i-1)/npts))
-- Set x error bars to +/- 5 minute
xerr1[i] = x[i]-60*5
xerr2[i] = x[i]+60*5
-- Set y error bars to +/- 0.1 deg C
yerr1[i] = y[i]-0.1
yerr2[i] = y[i]+0.1
end
pl.adv(0)
-- Rescale major ticks marks by 0.5
pl.smaj(0, 0.5)
-- Rescale minor ticks and error bar marks by 0.5
pl.smin(0, 0.5)
pl.vsta()
pl.wind(xmin, xmax, ymin, ymax)
-- Draw a box with ticks spaced every 3 hour in X and 1 degree C in Y.
pl.col0(1)
-- Set time format to be hours:minutes
pl.timefmt("%H:%M")
pl.box("bcnstd", 3*60*60, 3, "bcnstv", 1, 5)
pl.col0(3)
pl.lab("Time (hours:mins)", "Temperature (degC)", "@frPLplot Example 29 - Daily temperature")
pl.col0(4)
pl.line(x, y)
pl.col0(2)
pl.errx(xerr1, xerr2, y)
pl.col0(3)
pl.erry(x, yerr1, yerr2)
-- Rescale major / minor tick marks back to default
pl.smin(0, 1)
pl.smaj(0, 1)
end
-- Plot the number of hours of daylight as a function of day for a year
function plot2()
x = {}
y = {}
-- Latitude for London
lat = 51.5
npts = 365
xmin = 0
xmax = npts*60*60*24
ymin = 0
ymax = 24
-- Formula for hours of daylight from
-- "A Model Comparison for Daylength as a Function of Latitude and
-- Day of the Year", 1995, Ecological Modelling, 80, pp 87-95.
for j = 1, npts do
x[j] = (j-1)*60*60*24
p = math.asin(0.39795*math.cos(0.2163108 + 2*math.atan(0.9671396*math.tan(0.00860*(j-1-186)))))
d = 24 - (24/math.pi)*
math.acos( (math.sin(0.8333*math.pi/180) + math.sin(lat*math.pi/180)*math.sin(p)) /
(math.cos(lat*math.pi/180)*math.cos(p)) )
y[j] = d
end
pl.col0(1)
-- Set time format to be abbreviated month name followed by day of month
pl.timefmt("%b %d")
pl.prec(1, 1)
pl.env(xmin, xmax, ymin, ymax, 0, 40)
pl.col0(3)
pl.lab("Date", "Hours of daylight", "@frPLplot Example 29 - Hours of daylight at 51.5N")
pl.col0(4)
pl.line(x, y)
pl.prec(0, 0)
end
function plot3()
x = {}
y = {}
tstart = 1133395200
npts = 62
xmin = tstart
xmax = xmin + npts*60*60*24
ymin = 0
ymax = 5
for i = 1, npts do
x[i] = xmin + (i-1)*60*60*24
y[i] = 1 + math.sin(2*math.pi*(i-1)/7) + math.exp(math.min(i-1,npts-i+1)/31)
end
pl.adv(0)
pl.vsta()
pl.wind(xmin, xmax, ymin, ymax)
pl.col0(1)
-- Set time format to be ISO 8601 standard YYYY-MM-DD. Note that this is
--equivalent to %f for C99 compliant implementations of strftime.
pl.timefmt("%Y-%m-%d")
-- Draw a box with ticks spaced every 14 days in X and 1 hour in Y.
pl.box("bcnstd", 14*24*60*60,14, "bcnstv", 1, 4)
pl.col0(3)
pl.lab("Date", "Hours of television watched", "@frPLplot Example 29 - Hours of television watched in Dec 2005 / Jan 2006")
pl.col0(4)
-- Rescale symbol size (used by plpoin) by 0.5
pl.ssym(0, 0.5)
pl.poin(x, y, 2)
pl.line(x, y)
end
function plot4()
-- TAI-UTC (seconds) as a function of time.
-- Use Besselian epochs as the continuous time interval just to prove
-- this does not introduce any issues.
x = {}
y = {}
-- Use the definition given in http://en.wikipedia.org/wiki/Besselian_epoch
-- B = 1900. + (JD -2415020.31352)/365.242198781
-- ==> (as calculated with aid of "bc -l" command)
-- B = (MJD + 678940.364163900)/365.242198781
-- ==>
-- MJD = B*365.24219878 - 678940.364163900
scale = 365.242198781
offset1 = -678940
offset2 = -0.3641639
pl.configtime(scale, offset1, offset2, 0, 0, 0, 0, 0, 0, 0, 0.)
for kind = 0, 6 do
if kind == 0 then
xmin = pl.ctime(1950, 0, 2, 0, 0, 0)
xmax = pl.ctime(2020, 0, 2, 0, 0, 0)
npts = 70*12 + 1
ymin = 0
ymax = 36
time_format = "%Y%"
if_TAI_time_format = 1
title_suffix = "from 1950 to 2020"
xtitle = "Year"
xlabel_step = 10
end
if kind==1 or kind==2 then
xmin = pl.ctime(1961, 7, 1, 0, 0, 1.64757-0.20)
xmax = pl.ctime(1961, 7, 1, 0, 0, 1.64757+0.20)
npts = 1001
ymin = 1.625
ymax = 1.725
time_format = "%S%2%"
title_suffix = "near 1961-08-01 (TAI)"
xlabel_step = 0.05/(scale*86400)
if kind==1 then
if_TAI_time_format = 1
xtitle = "Seconds (TAI)"
else
if_TAI_time_format = 0
xtitle = "Seconds (TAI) labelled with corresponding UTC"
end
end
if kind==3 or kind==4 then
xmin = pl.ctime(1963, 10, 1, 0, 0, 2.6972788-0.20)
xmax = pl.ctime(1963, 10, 1, 0, 0, 2.6972788+0.20)
npts = 1001
ymin = 2.55
ymax = 2.75
time_format = "%S%2%"
title_suffix = "near 1963-11-01 (TAI)"
xlabel_step = 0.05/(scale*86400)
if kind==3 then
if_TAI_time_format = 1
xtitle = "Seconds (TAI)"
else
if_TAI_time_format = 0
xtitle = "Seconds (TAI) labelled with corresponding UTC"
end
end
if kind==5 or kind==6 then
xmin = pl.ctime(2009, 0, 1, 0, 0, 34-5)
xmax = pl.ctime(2009, 0, 1, 0, 0, 34+5)
npts = 1001
ymin = 32.5
ymax = 34.5
time_format = "%S%2%"
title_suffix = "near 2009-01-01 (TAI)"
xlabel_step = 1/(scale*86400)
if kind==5 then
if_TAI_time_format = 1
xtitle = "Seconds (TAI)"
else
if_TAI_time_format = 0
xtitle = "Seconds (TAI) labelled with corresponding UTC"
end
end
for i = 1, npts do
x[i] = xmin + (i-1)*(xmax-xmin)/(npts-1)
pl.configtime(scale, offset1, offset2, 0, 0, 0, 0, 0, 0, 0, 0)
tai = x[i]
tai_year, tai_month, tai_day, tai_hour, tai_min, tai_sec = pl.btime(tai)
pl.configtime(scale, offset1, offset2, 2, 0, 0, 0, 0, 0, 0, 0)
utc_year, utc_month, utc_day, utc_hour, utc_min, utc_sec = pl.btime(tai)
pl.configtime(scale, offset1, offset2, 0, 0, 0, 0, 0, 0, 0, 0.)
utc = pl.ctime(utc_year, utc_month, utc_day, utc_hour, utc_min, utc_sec)
y[i]=(tai-utc)*scale*86400.
end
pl.adv(0)
pl.vsta()
pl.wind(xmin, xmax, ymin, ymax)
pl.col0(1)
if if_TAI_time_format ~= 0 then
pl.configtime(scale, offset1, offset2, 0, 0, 0, 0, 0, 0, 0, 0)
else
pl.configtime(scale, offset1, offset2, 2, 0, 0, 0, 0, 0, 0, 0)
end
pl.timefmt(time_format)
pl.box("bcnstd", xlabel_step, 0, "bcnstv", 0., 0)
pl.col0(3)
title = "@frPLplot Example 29 - TAI-UTC " .. title_suffix
pl.lab(xtitle, "TAI-UTC (sec)", title)
pl.col0(4)
pl.line(x, y)
end
end
----------------------------------------------------------------------------
-- main
--
-- Draws several plots which demonstrate the use of date / time formats for
-- the axis labels.
-- Time formatting is done using the system strftime routine. See the
-- documentation of this for full details of the available formats.
--
-- 1) Plotting temperature over a day (using hours / minutes)
-- 2) Plotting
--
-- Note: Times are stored as seconds since the epoch (usually 1st Jan 1970).
--
----------------------------------------------------------------------------
-- Parse command line arguments
pl.parseopts(arg, pl.PL_PARSE_FULL)
-- Initialize plplot
pl.init()
-- Change the escape character to a '@' instead of the default '#'
pl.sesc('@')
plot1()
plot2()
plot3()
plot4()
-- Don't forget to call plend() to finish off!
pl.plend()

View File

@ -0,0 +1,137 @@
--[[ $Id: x30.lua 10668 2009-12-02 08:38:49Z airwin $
Alpha color values demonstration.
Copyright (C) 2008 Werner Smekal
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
red = { 0, 255, 0, 0 }
green = { 0, 0, 255, 0 }
blue = { 0, 0, 0, 255 }
alpha = { 1, 1, 1, 1 }
px = { 0.1, 0.5, 0.5, 0.1 }
py = { 0.1, 0.1, 0.5, 0.5 }
pos = { 0, 1 }
rcoord = { 1, 1 }
gcoord = { 0, 0 }
bcoord = { 0, 0 }
acoord = { 0, 1 }
rev = { 0, 0 }
pl.parseopts (arg, pl.PL_PARSE_FULL);
pl.init()
pl.scmap0n(4)
pl.scmap0a(red, green, blue, alpha)
-- Page 1:
--
-- This is a series of red, green and blue rectangles overlaid
-- on each other with gradually increasing transparency.
-- Set up the window
pl.adv(0)
pl.vpor(0, 1, 0, 1)
pl.wind(0, 1, 0, 1)
pl.col0(0)
pl.box("", 1, 0, "", 1, 0)
-- Draw the boxes
for i = 0, 8 do
icol = math.mod(i, 3) + 1
-- Get a color, change its transparency and
-- set it as the current color.
r, g, b, a = pl.gcol0a(icol)
pl.scol0a(icol, r, g, b, 1-i/9)
pl.col0(icol)
-- Draw the rectangle
pl.fill(px, py)
-- Shift the rectangles coordinates
for j = 1, 4 do
px[j] = px[j] + 0.5/9
py[j] = py[j] + 0.5/9
end
end
-- Page 2:
-- This is a bunch of boxes colored red, green or blue with a single
-- large (red) box of linearly varying transparency overlaid. The
-- overlaid box is completely transparent at the bottom and completely
-- opaque at the top.
-- Set up the window
pl.adv(0)
pl.vpor(0.1, 0.9, 0.1, 0.9)
pl.wind(0.0, 1.0, 0.0, 1.0)
-- Draw the boxes. There are 25 of them drawn on a 5 x 5 grid.
for i = 0, 4 do
-- Set box X position
px[1] = 0.05 + 0.2 * i
px[2] = px[1] + 0.1
px[3] = px[2]
px[4] = px[1]
-- We don't want the boxes to be transparent, so since we changed
-- the colors transparencies in the first example we have to change
-- the transparencies back to completely opaque.
icol = math.mod(i, 3) + 1
r, g, b, a = pl.gcol0a(icol)
pl.scol0a(icol, r, g, b, 1)
pl.col0(icol)
for j = 0, 4 do
-- Set box y position and draw the box.
py[1] = 0.05 + 0.2 * j
py[2] = py[1]
py[3] = py[1] + 0.1
py[4] = py[3]
pl.fill(px, py)
end
end
-- Create the color map with 128 colors and use plscmap1la to initialize
-- the color values with a linearly varying red transparency (or alpha)
pl.scmap1n(128)
pl.scmap1la(1, pos, rcoord, gcoord, bcoord, acoord, rev)
-- Use that cmap1 to create a transparent red gradient for the whole
-- window.
px[1] = 0.
px[2] = 1.
px[3] = 1.
px[4] = 0.
py[1] = 0.
py[2] = 0.
py[3] = 1.
py[4] = 1.
pl.gradient(px, py, 90.)
pl.plend()

View File

@ -0,0 +1,225 @@
--[[ $Id: x31.lua 9533 2009-02-16 22:18:37Z smekal $
Copyright (C) 2008 Werner Smekal
set/get tester
This file is part of PLplot.
PLplot is free software you can redistribute it and/or modify
it under the terms of the GNU General Library Public License as published
by the Free Software Foundation either version 2 of the License, or
(at your option) any later version.
PLplot is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with PLplot if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
--]]
-- initialise Lua bindings for PLplot examples.
dofile("plplot_examples.lua")
r1 = { 0, 255 }
g1 = { 255, 0 }
b1 = { 0, 0 }
a1 = { 1, 1 }
-- Parse and process command line arguments
status = 0
pl.parseopts(arg, pl.PL_PARSE_FULL)
-- Test setting / getting familying parameters before plinit
-- Save values set by plparseopts to be restored later.
fam0, num0, bmax0 = pl.gfam()
fam1 = 0
num1 = 10
bmax1 = 1000
pl.sfam(fam1, num1, bmax1)
-- Retrieve the same values?
fam2, num2, bmax2 = pl.gfam()
print(string.format("family parameters: fam, num, bmax = %d %d %d", fam2, num2, bmax2))
if fam2~=fam1 or num2~=num1 or bmax2~=bmax1 then
io.stderr:write("plgfam test failed\n")
status = 1
end
-- Restore values set initially by plparseopts.
pl.sfam(fam0, num0, bmax0)
-- Test setting / getting page parameters before plinit
-- Save values set by plparseopts to be restored later.
xp0, yp0, xleng0, yleng0, xoff0, yoff0 = pl.gpage()
xp1 = 200.
yp1 = 200.
xleng1 = 400
yleng1 = 200
xoff1 = 10
yoff1 = 20
pl.spage(xp1, yp1, xleng1, yleng1, xoff1, yoff1)
-- Retrieve the same values?
xp2, yp2, xleng2, yleng2, xoff2, yoff2 = pl.gpage()
print(string.format("page parameters: xp, yp, xleng, yleng, xoff, yoff = %f %f %d %d %d %d", xp2, yp2, xleng2, yleng2, xoff2, yoff2))
if xp2~=xp1 or yp2~=yp1 or xleng2~=xleng1 or yleng2~=yleng1 or xoff2~=xoff1 or yoff2~=yoff1 then
io.stderr:write("plgpage test failed\n")
status = 1
end
-- Restore values set initially by plparseopts.
pl.spage(xp0, yp0, xleng0, yleng0, xoff0, yoff0)
-- Test setting / getting compression parameter across plinit.
compression1 = 95
pl.scompression(compression1)
-- Initialize plplot
pl.init()
-- Test if device initialization screwed around with the preset
-- compression parameter.
compression2 = pl.gcompression()
print("Output various PLplot parameters")
print("compression parameter = " .. compression2)
if compression2~=compression1 then
io.stderr:write("plgcompression test failed\n")
status = 1
end
-- Exercise plscolor, plscol0, plscmap1, and plscmap1a to make sure
--they work without any obvious error messages.
pl.scolor(1)
pl.scol0(1, 255, 0, 0)
pl.scmap1(r1, g1, b1)
pl.scmap1a(r1, g1, b1, a1)
level2 = pl.glevel()
print("level parameter = " .. level2)
if level2~=1 then
io.stderr:write("plglevel test failed.\n")
status = 1
end
pl.adv(0)
pl.vpor(0.01, 0.99, 0.02, 0.49)
xmin, xmax, ymin, ymax = pl.gvpd()
print(string.format("plvpor: xmin, xmax, ymin, ymax = %f %f %f %f", xmin, xmax, ymin, ymax))
if xmin~=0.01 or xmax~=0.99 or ymin~=0.02 or ymax~=0.49 then
io.stderr:write("plgvpd test failed\n")
status = 1
end
xmid = 0.5*(xmin+xmax)
ymid = 0.5*(ymin+ymax)
pl.wind(0.2, 0.3, 0.4, 0.5)
xmin, xmax, ymin, ymax = pl.gvpw()
print(string.format("plwind: xmin, xmax, ymin, ymax = %f %f %f %f", xmin, xmax, ymin, ymax))
if xmin~=0.2 or xmax~=0.3 or ymin~=0.4 or ymax~=0.5 then
io.stderr:write("plgvpw test failed\n")
status = 1
end
-- Get world coordinates for middle of viewport
wx, wy, win = pl.calc_world(xmid,ymid)
print(string.format("world parameters: wx, wy, win = %f %f %d", wx, wy, win))
if math.abs(wx-0.5*(xmin+xmax))>1.0e-5 or math.abs(wy-0.5*(ymin+ymax))>1.0e-5 then
io.stderr:write("plcalc_world test failed\n")
status = 1
end
-- Retrieve and print the name of the output file (if any).
-- This goes to stderr not stdout since it will vary between tests and
-- we want stdout to be identical for compare test.
fnam = pl.gfnam()
if fnam=="" then
print("No output file name is set")
else
print("Output file name read")
end
io.stderr:write(string.format("Output file name is %s\n",fnam))
-- Set and get the number of digits used to display axis labels
-- Note digits is currently ignored in pls[xyz]ax and
-- therefore it does not make sense to test the returned
-- value
pl.sxax(3,0)
digmax, digits = pl.gxax()
print(string.format("x axis parameters: digmax, digits = %d %d", digmax, digits))
if digmax~=3 then
io.stderr:write("plgxax test failed\n")
status = 1
end
pl.syax(4,0)
digmax, digits = pl.gyax()
print(string.format("y axis parameters: digmax, digits = %d %d", digmax, digits))
if digmax~=4 then
io.stderr:write("plgyax test failed\n")
status = 1
end
pl.szax(5,0)
digmax,digits = pl.gzax()
print(string.format("z axis parameters: digmax, digits = %d %d", digmax, digits))
if digmax~=5 then
io.stderr:write("plgzax test failed\n")
status = 1
end
pl.sdidev(0.05, pl.PL_NOTSET, 0.1, 0.2)
mar, aspect, jx, jy = pl.gdidev()
print(string.format("device-space window parameters: mar, aspect, jx, jy = %f %f %f %f" , mar, aspect, jx, jy))
if mar~=0.05 or jx~=0.1 or jy~=0.2 then
io.stderr:write("plgdidev test failed\n")
status = 1
end
pl.sdiori(1.0)
ori = pl.gdiori()
print(string.format("ori parameter = %f", ori))
if ori~=1.0 then
io.stderr:write("plgdiori test failed\n")
status = 1
end
pl.sdiplt(0.1, 0.2, 0.9, 0.8)
xmin, ymin, xmax, ymax = pl.gdiplt()
print(string.format("plot-space window parameters: xmin, ymin, xmax, ymax = %f %f %f %f", xmin, ymin, xmax, ymax))
if xmin~=0.1 or xmax~=0.9 or ymin~=0.2 or ymax~=0.8 then
io.stderr:write("plgdiplt test failed\n")
status = 1
end
pl.sdiplz(0.1, 0.1, 0.9, 0.9)
zxmin, zymin, zxmax, zymax = pl.gdiplt()
print(string.format("zoomed plot-space window parameters: xmin, ymin, xmax, ymax = %f %f %f %f", zxmin, zymin, zxmax, zymax))
if math.abs(zxmin -(xmin + (xmax-xmin)*0.1)) > 1.0e-5 or
math.abs(zxmax -(xmin+(xmax-xmin)*0.9)) > 1.0e-5 or
math.abs(zymin -(ymin+(ymax-ymin)*0.1)) > 1.0e-5 or
math.abs(zymax -(ymin+(ymax-ymin)*0.9)) > 1.0e-5 then
io.stderr:write("plsdiplz test failed\n")
status = 1
end
pl.scolbg(10, 20, 30)
r, g, b = pl.gcolbg()
print(string.format("background colour parameters: r, g, b = %d %d %d", r, g, b))
if r~=10 or g~=20 or b~=30 then
io.stderr:write("plgcolbg test failed\n")
status = 1
end
pl.scolbga(20, 30, 40, 0.5)
r, g, b, a = pl.gcolbga()
print(string.format("background/transparency colour parameters: r, g, b, a = %d %d %d %f", r, g, b, a))
if r~=20 or g~=30 or b~=40 or a~=0.5 then
io.stderr:write("plgcolbga test failed\n")
status = 1
end
pl.plend()