1
0
mirror of git://projects.qi-hardware.com/openwrt-packages.git synced 2024-12-22 16:31:09 +02:00

new pakcage: icarus python miner software

This commit is contained in:
Xiangfu Liu 2012-02-09 11:14:14 +08:00
parent cc8b88b103
commit f8417fdf94
160 changed files with 25478 additions and 0 deletions

45
icarus-miner/Makefile Normal file
View File

@ -0,0 +1,45 @@
#
# This is free software, licensed under the GNU General Public License v2.
# See /LICENSE for more information.
# those files can found under: so far those python build for ar71xx (tl-wr1043nd)
# pyserial_2.4-1_ar71xx.ipk
# python_2.6.4-3_ar71xx.ipk
# python-mini_2.6.4-3_ar71xx.ipk
# https://github.com/ngzhang/Icarus/tree/master/miner_software
# more info please check:
# http://en.qi-hardware.com/wiki/Icarus#Using_TP-link.2Ftl-wr1043nd_as_host
include $(TOPDIR)/rules.mk
PKG_NAME:=icarus-miner
PKG_VERSION:=20120209
include $(INCLUDE_DIR)/package.mk
define Package/icarus-miner
PKGARCH:=all
MAINTAINER:="Xiangfu Liu" <xiangfu@sharism.cc>
TITLE:=icarus miner software
SECTION:=utils
CATEGORY:=Utilities
URL:=http://en.qi-hardware.com/wiki/Icarus
DEPENDS:=+librt +libpthread +libffi +zlib +kmod-usb-serial-pl2303
endef
define Build/Compile
endef
define Package/icarus-miner/install
$(CP) ./data/* $(1)/
endef
define Package/icarus-miner/postinst
#!/bin/sh
crontab /root/crontab.icarus
/etc/init.d/cron enable
/etc/init.d/cron start
endef
$(eval $(call BuildPackage,icarus-miner))

View File

@ -0,0 +1 @@
*/10 * * * * cd /root/scripts && ./icarus_monitor.sh

View File

@ -0,0 +1,323 @@
#!/usr/bin/env python
# by teknohog
# Python wrapper for my serial port FPGA Bitcoin miners
from jsonrpc import ServiceProxy
from time import ctime, sleep, time
from serial import Serial
from threading import Thread, Event, Lock
from Queue import Queue
from optparse import OptionParser
def stats(count, starttime):
# 2**32 hashes per share (difficulty 1)
mhshare = 4294.967296
s = sum(count)
tdelta = time() - starttime
rate = s * mhshare / tdelta
# This is only a rough estimate of the true hash rate,
# particularly when the number of events is low. However, since
# the events follow a Poisson distribution, we can estimate the
# standard deviation (sqrt(n) for n events). Thus we get some idea
# on how rough an estimate this is.
# s should always be positive when this function is called, but
# checking for robustness anyway
if s > 0:
stddev = rate / s**0.5
else:
stddev = 0
return "[%i accepted, %i failed, %.2f +/- %.2f Mhash/s]" % (count[0], count[1], rate, stddev)
class Reader(Thread):
def __init__(self):
Thread.__init__(self)
self.daemon = True
# flush the input buffer
#ser.read(1000)
def run(self):
while True:
nonce = ser.read(4)
if len(nonce) == 4:
# Keep this order, because writer.block will be
# updated due to the golden event.
submitter = Submitter(writer.block, nonce)
submitter.start()
if options.debug:
print("raise golden event\n")
golden.set()
class Writer(Thread):
def __init__(self):
Thread.__init__(self)
# Keep something sensible available while waiting for the
# first getwork
#self.block = "0" * 256
#self.midstate = "0" * 64
# This will produce nonce 063c5e01 -> debug by using a bogus URL
self.block = "0000000120c8222d0497a7ab44a1a2c7bf39de941c9970b1dc7cdc400000079700000000e88aabe1f353238c668d8a4df9318e614c10c474f8cdf8bc5f6397b946c33d7c4e7242c31a098ea500000000000000800000000000000000000000000000000000000000000000000000000000000000000000000000000080020000"
self.midstate = "33c5bf5751ec7f7e056443b5aee3800331432c83f404d9de38b94ecbf907b92d"
self.daemon = True
def run(self):
while True:
result =0
#try:
# work = bitcoin.getwork()
# self.block = work['data']
# self.midstate = work['midstate']
#except:
# print("RPC getwork error")
# In this case, keep crunching with the old data. It will get
# stale at some point, but it's better than doing nothing.
# Just a reminder of how Python slices work in reverse
#rdata = self.block.decode('hex')[::-1]
#rdata2 = rdata[32:64]
work = wq.read_work_queue()
self.block = work['data']
self.midstate = work['midstate']
#print("push work to miner")
rdata2 = self.block.decode('hex')[95:63:-1]
rmid = self.midstate.decode('hex')[::-1]
payload = rmid + rdata2
ser.write(payload)
result = golden.wait(options.askrate)
if result:
golden.clear()
if options.debug:
print("clear golden event")
class WorkQueue:
def __init__(self, max_num):
self.max_num = max_num+1
self.ptr = 0
self.ptr_tobe = 0;
self.tail = 0
self.in_wr = 0;
self.work = {}
self.work_queue = []
for i in range(self.max_num):
self.work_queue.append({})
def get_from_server(self):
get_success = 0
while get_success != 1 :
try:
self.work_queue[self.ptr_tobe] = bitcoin.getwork()
get_success = 1
except:
print("RPC getwork error")
def is_full(self):
ptr_mutex.acquire()
full = (self.ptr + 1) % self.max_num == self.tail
ptr_mutex.release()
return full
def write_work_queue(self):
#print("update work queue")
ptr_mutex.acquire()
if (self.ptr + 1) % self.max_num == self.tail:
if options.debug:
print("Queue is full")
self.tail = (self.tail + 1) % self.max_num
self.ptr_tobe = (self.ptr + 1) % self.max_num
#print("write0:tail=", self.tail, "ptr_tobe=", self.ptr_tobe, "ptr="+self.ptr)
if options.debug:
print "write0:tail=%d, ptr_tobe=%d, ptr=%d" % (self.tail, self.ptr_tobe, self.ptr)
ptr_mutex.release()
#self.work_queue[self.ptr] = bitcoin.getwork()
write_queue_mutex.acquire()
self.get_from_server()
write_queue_mutex.release()
ptr_mutex.acquire()
if (self.ptr + 1) % self.max_num != self.ptr_tobe:
self.work_queue[self.ptr] = self.work_queue[self.ptr_tobe]
else:
self.ptr = self.ptr_tobe
if options.debug:
print "write1:tail=%d, ptr_tobe=%d, ptr=%d" % (self.tail, self.ptr_tobe, self.ptr)
#print("write1:tail="+self.tail+"ptr_tobe="+self.ptr_tobe+"ptr="+self.ptr)
ptr_mutex.release()
#print("1update work queue")
def read_work_queue(self):
ptr_mutex.acquire()
#print("read from queue")
if options.debug:
print"read0:tail=%d, ptr=%d" % (self.tail, self.ptr)
if self.ptr == self.tail:
ptr_mutex.release()
#print("Queue is empty")
#print("1read from queue")
write_queue_mutex.acquire()
ptr_mutex.acquire()
if self.ptr == self.tail:
print("reader get queue")
self.ptr_tobe = (self.ptr + 1) % self.max_num
self.get_from_server()
self.ptr = self.ptr_tobe
write_queue_mutex.release()
self.work = self.work_queue[self.ptr]
if self.ptr == 0:
self.ptr = self.max_num - 1
else:
self.ptr = self.ptr - 1
#print("read0:tail="+self.tail+"ptr="+self.ptr)
if options.debug:
print"read1:tail=%d, ptr=%d" % (self.tail, self.ptr)
ptr_mutex.release()
return self.work
class GetWorkQueue(Thread):
def __init__(self):
Thread.__init__(self)
self.daemon = True
self.delay = (options.askrate>>1)+1
def run(self):
while True:
if options.debug:
print("GetWorkQueue thread")
wq.write_work_queue()
#if (self.ptr + 1) % self.max_num == self.tail:
if(wq.is_full()):
sleep(4)
if options.debug:
print("queue is full, slow down request")
else:
if options.debug:
print("****\nfill the work queue at speed\n****")
#else:
# sleep(2)
class Submitter(Thread):
def __init__(self, block, nonce):
Thread.__init__(self)
self.block = block
self.nonce = nonce
def run(self):
# This thread will be created upon every submit, as they may
# come in sooner than the submits finish.
print("Block found on " + ctime() + "\n")
if stride > 0:
n = self.nonce.encode('hex')
print(n + " % " + str(stride) + " = " + str(int(n, 16) % stride))
elif options.debug:
print(self.nonce.encode('hex'))
hrnonce = self.nonce[::-1].encode('hex')
data = self.block[:152] + hrnonce + self.block[160:]
try:
result = bitcoin.getwork(data)
print("Upstream result: " + str(result))
print(self.nonce.encode('hex'))
except:
print("RPC send error")
print(self.nonce.encode('hex'))
# a sensible boolean for stats
result = False
results_queue.put(result)
class Display_stats(Thread):
def __init__(self):
Thread.__init__(self)
self.count = [0, 0]
self.starttime = time()
self.daemon = True
print("Miner started on " + ctime())
def run(self):
while True:
result = results_queue.get()
if result:
self.count[0] += 1
else:
self.count[1] += 1
print(stats(self.count, self.starttime))
results_queue.task_done()
parser = OptionParser()
parser.add_option("-a", "--askrate", dest="askrate", default=8, help="Seconds between getwork requests")
parser.add_option("-d", "--debug", dest="debug", default=False, action="store_true", help="Show each nonce result in hex")
parser.add_option("-m", "--miners", dest="miners", default=0, help="Show the nonce result remainder mod MINERS, to identify the node in a cluster")
parser.add_option("-u", "--url", dest="url", default="http://test_fpga_btc@hotmail.com:lzhjxntswc@pit.deepbit.net:8332/", help="URL for bitcoind or mining pool, typically http://user:password@host:8332/")
parser.add_option("-s", "--serial", dest="serial_port", default="com3", help="Serial port, e.g. /dev/ttyS0 on unix or COM1 in Windows")
(options, args) = parser.parse_args()
stride = int(options.miners)
golden = Event()
ptr_mutex = Lock();
write_queue_mutex = Lock();
bitcoin = ServiceProxy(options.url)
results_queue = Queue()
ser = Serial(options.serial_port, 115200, timeout=options.askrate)
wq = WorkQueue(5)
reader = Reader()
writer = Writer()
get_work_queue = GetWorkQueue()
disp = Display_stats()
get_work_queue.start()
reader.start()
writer.start()
disp.start()
try:
while True:
# Threads are generally hard to interrupt. So they are left
# running as daemons, and we do something simple here that can
# be easily terminated to bring down the entire script.
sleep(10000)
except KeyboardInterrupt:
print("Terminated")

View File

@ -0,0 +1,22 @@
#!/bin/sh
API_KEY=http://deepbit.net/api/4edf2d91069172fdae000000_DE38384EE2
WORKER=http://xiangfu.z@gmail.com_1:1234@pit.deepbit.net:8332/
################################################
SCRIPT_PATH=`pwd`
${SCRIPT_PATH}/icarus_undermanager.py -a ${API_KEY} > ${SCRIPT_PATH}/u.log 2>&1
TRUE_COUNT=`less ${SCRIPT_PATH}/u.log | grep "\"alive\": true" | wc -l`
HASHRATE=`less ${SCRIPT_PATH}/u.log | grep "\"hashrate\": 0," | wc -l`
if [ "${TRUE_COUNT}" == "0" ] || [ "${HASHRATE}" == "1" ]; then
echo `date` >> ${SCRIPT_PATH}/restart.log
ps ax | grep "python.*miner.py" | grep -v grep | sed 's/^ *//' | cut -d ' ' -f 1 | xargs kill -15
ICARUS_MINING_PATH="../queue_ver"
(cd ${ICARUS_MINING_PATH} && ./miner.py -u ${WORKER} -s /dev/ttyUSB0 > /dev/null 2>&1 &)
fi

View File

@ -0,0 +1,28 @@
#!/usr/bin/env python
import json, urllib
from optparse import OptionParser
class Deepbit(object):
@staticmethod
def get_stats(url):
try:
result = json.load(urllib.urlopen(url))
except:
# An error occurred; raise an exception
raise NameError('Could not get the data, sorry. Maybe a non-functional internet connection or wrong API key?')
return result
try:
parser = OptionParser()
parser.add_option("-a",
"--api-key",
dest="api",
default="http://deepbit.net/api/4edf2d91069172fdae000000_DE38384EE2",
help="JSON API key")
(options, args) = parser.parse_args()
print json.dumps(Deepbit.get_stats(options.api), indent=2)
except Exception as e:
print e

View File

@ -0,0 +1,8 @@
#!/bin/sh
WORKER=http://xiangfu.z@gmail.com_1:1234@pit.deepbit.net:8332/
ps ax | grep "python.*miner.py" | grep -v grep | sed 's/^ *//' | cut -d ' ' -f 1 | xargs kill -15
ICARUS_MINING_PATH="../queue_ver"
(cd ${ICARUS_MINING_PATH} && ./miner.py -u ${WORKER} -s /dev/ttyUSB0 > /dev/null 2>&1 &)

View File

@ -0,0 +1 @@
python2.6

Binary file not shown.

View File

@ -0,0 +1,244 @@
"""A multi-producer, multi-consumer queue."""
from time import time as _time
from collections import deque
import heapq
__all__ = ['Empty', 'Full', 'Queue', 'PriorityQueue', 'LifoQueue']
class Empty(Exception):
"Exception raised by Queue.get(block=0)/get_nowait()."
pass
class Full(Exception):
"Exception raised by Queue.put(block=0)/put_nowait()."
pass
class Queue:
"""Create a queue object with a given maximum size.
If maxsize is <= 0, the queue size is infinite.
"""
def __init__(self, maxsize=0):
try:
import threading
except ImportError:
import dummy_threading as threading
self.maxsize = maxsize
self._init(maxsize)
# mutex must be held whenever the queue is mutating. All methods
# that acquire mutex must release it before returning. mutex
# is shared between the three conditions, so acquiring and
# releasing the conditions also acquires and releases mutex.
self.mutex = threading.Lock()
# Notify not_empty whenever an item is added to the queue; a
# thread waiting to get is notified then.
self.not_empty = threading.Condition(self.mutex)
# Notify not_full whenever an item is removed from the queue;
# a thread waiting to put is notified then.
self.not_full = threading.Condition(self.mutex)
# Notify all_tasks_done whenever the number of unfinished tasks
# drops to zero; thread waiting to join() is notified to resume
self.all_tasks_done = threading.Condition(self.mutex)
self.unfinished_tasks = 0
def task_done(self):
"""Indicate that a formerly enqueued task is complete.
Used by Queue consumer threads. For each get() used to fetch a task,
a subsequent call to task_done() tells the queue that the processing
on the task is complete.
If a join() is currently blocking, it will resume when all items
have been processed (meaning that a task_done() call was received
for every item that had been put() into the queue).
Raises a ValueError if called more times than there were items
placed in the queue.
"""
self.all_tasks_done.acquire()
try:
unfinished = self.unfinished_tasks - 1
if unfinished <= 0:
if unfinished < 0:
raise ValueError('task_done() called too many times')
self.all_tasks_done.notify_all()
self.unfinished_tasks = unfinished
finally:
self.all_tasks_done.release()
def join(self):
"""Blocks until all items in the Queue have been gotten and processed.
The count of unfinished tasks goes up whenever an item is added to the
queue. The count goes down whenever a consumer thread calls task_done()
to indicate the item was retrieved and all work on it is complete.
When the count of unfinished tasks drops to zero, join() unblocks.
"""
self.all_tasks_done.acquire()
try:
while self.unfinished_tasks:
self.all_tasks_done.wait()
finally:
self.all_tasks_done.release()
def qsize(self):
"""Return the approximate size of the queue (not reliable!)."""
self.mutex.acquire()
n = self._qsize()
self.mutex.release()
return n
def empty(self):
"""Return True if the queue is empty, False otherwise (not reliable!)."""
self.mutex.acquire()
n = not self._qsize()
self.mutex.release()
return n
def full(self):
"""Return True if the queue is full, False otherwise (not reliable!)."""
self.mutex.acquire()
n = 0 < self.maxsize == self._qsize()
self.mutex.release()
return n
def put(self, item, block=True, timeout=None):
"""Put an item into the queue.
If optional args 'block' is true and 'timeout' is None (the default),
block if necessary until a free slot is available. If 'timeout' is
a positive number, it blocks at most 'timeout' seconds and raises
the Full exception if no free slot was available within that time.
Otherwise ('block' is false), put an item on the queue if a free slot
is immediately available, else raise the Full exception ('timeout'
is ignored in that case).
"""
self.not_full.acquire()
try:
if self.maxsize > 0:
if not block:
if self._qsize() == self.maxsize:
raise Full
elif timeout is None:
while self._qsize() == self.maxsize:
self.not_full.wait()
elif timeout < 0:
raise ValueError("'timeout' must be a positive number")
else:
endtime = _time() + timeout
while self._qsize() == self.maxsize:
remaining = endtime - _time()
if remaining <= 0.0:
raise Full
self.not_full.wait(remaining)
self._put(item)
self.unfinished_tasks += 1
self.not_empty.notify()
finally:
self.not_full.release()
def put_nowait(self, item):
"""Put an item into the queue without blocking.
Only enqueue the item if a free slot is immediately available.
Otherwise raise the Full exception.
"""
return self.put(item, False)
def get(self, block=True, timeout=None):
"""Remove and return an item from the queue.
If optional args 'block' is true and 'timeout' is None (the default),
block if necessary until an item is available. If 'timeout' is
a positive number, it blocks at most 'timeout' seconds and raises
the Empty exception if no item was available within that time.
Otherwise ('block' is false), return an item if one is immediately
available, else raise the Empty exception ('timeout' is ignored
in that case).
"""
self.not_empty.acquire()
try:
if not block:
if not self._qsize():
raise Empty
elif timeout is None:
while not self._qsize():
self.not_empty.wait()
elif timeout < 0:
raise ValueError("'timeout' must be a positive number")
else:
endtime = _time() + timeout
while not self._qsize():
remaining = endtime - _time()
if remaining <= 0.0:
raise Empty
self.not_empty.wait(remaining)
item = self._get()
self.not_full.notify()
return item
finally:
self.not_empty.release()
def get_nowait(self):
"""Remove and return an item from the queue without blocking.
Only get an item if one is immediately available. Otherwise
raise the Empty exception.
"""
return self.get(False)
# Override these methods to implement other queue organizations
# (e.g. stack or priority queue).
# These will only be called with appropriate locks held
# Initialize the queue representation
def _init(self, maxsize):
self.queue = deque()
def _qsize(self, len=len):
return len(self.queue)
# Put a new item in the queue
def _put(self, item):
self.queue.append(item)
# Get an item from the queue
def _get(self):
return self.queue.popleft()
class PriorityQueue(Queue):
'''Variant of Queue that retrieves open entries in priority order (lowest first).
Entries are typically tuples of the form: (priority number, data).
'''
def _init(self, maxsize):
self.queue = []
def _qsize(self, len=len):
return len(self.queue)
def _put(self, item, heappush=heapq.heappush):
heappush(self.queue, item)
def _get(self, heappop=heapq.heappop):
return heappop(self.queue)
class LifoQueue(Queue):
'''Variant of Queue that retrieves most recently added entries first.'''
def _init(self, maxsize):
self.queue = []
def _qsize(self, len=len):
return len(self.queue)
def _put(self, item):
self.queue.append(item)
def _get(self):
return self.queue.pop()

Binary file not shown.

View File

@ -0,0 +1,323 @@
r"""File-like objects that read from or write to a string buffer.
This implements (nearly) all stdio methods.
f = StringIO() # ready for writing
f = StringIO(buf) # ready for reading
f.close() # explicitly release resources held
flag = f.isatty() # always false
pos = f.tell() # get current position
f.seek(pos) # set current position
f.seek(pos, mode) # mode 0: absolute; 1: relative; 2: relative to EOF
buf = f.read() # read until EOF
buf = f.read(n) # read up to n bytes
buf = f.readline() # read until end of line ('\n') or EOF
list = f.readlines()# list of f.readline() results until EOF
f.truncate([size]) # truncate file at to at most size (default: current pos)
f.write(buf) # write at current position
f.writelines(list) # for line in list: f.write(line)
f.getvalue() # return whole file's contents as a string
Notes:
- Using a real file is often faster (but less convenient).
- There's also a much faster implementation in C, called cStringIO, but
it's not subclassable.
- fileno() is left unimplemented so that code which uses it triggers
an exception early.
- Seeking far beyond EOF and then writing will insert real null
bytes that occupy space in the buffer.
- There's a simple test set (see end of this file).
"""
try:
from errno import EINVAL
except ImportError:
EINVAL = 22
__all__ = ["StringIO"]
def _complain_ifclosed(closed):
if closed:
raise ValueError, "I/O operation on closed file"
class StringIO:
"""class StringIO([buffer])
When a StringIO object is created, it can be initialized to an existing
string by passing the string to the constructor. If no string is given,
the StringIO will start empty.
The StringIO object can accept either Unicode or 8-bit strings, but
mixing the two may take some care. If both are used, 8-bit strings that
cannot be interpreted as 7-bit ASCII (that use the 8th bit) will cause
a UnicodeError to be raised when getvalue() is called.
"""
def __init__(self, buf = ''):
# Force self.buf to be a string or unicode
if not isinstance(buf, basestring):
buf = str(buf)
self.buf = buf
self.len = len(buf)
self.buflist = []
self.pos = 0
self.closed = False
self.softspace = 0
def __iter__(self):
return self
def next(self):
"""A file object is its own iterator, for example iter(f) returns f
(unless f is closed). When a file is used as an iterator, typically
in a for loop (for example, for line in f: print line), the next()
method is called repeatedly. This method returns the next input line,
or raises StopIteration when EOF is hit.
"""
_complain_ifclosed(self.closed)
r = self.readline()
if not r:
raise StopIteration
return r
def close(self):
"""Free the memory buffer.
"""
if not self.closed:
self.closed = True
del self.buf, self.pos
def isatty(self):
"""Returns False because StringIO objects are not connected to a
tty-like device.
"""
_complain_ifclosed(self.closed)
return False
def seek(self, pos, mode = 0):
"""Set the file's current position.
The mode argument is optional and defaults to 0 (absolute file
positioning); other values are 1 (seek relative to the current
position) and 2 (seek relative to the file's end).
There is no return value.
"""
_complain_ifclosed(self.closed)
if self.buflist:
self.buf += ''.join(self.buflist)
self.buflist = []
if mode == 1:
pos += self.pos
elif mode == 2:
pos += self.len
self.pos = max(0, pos)
def tell(self):
"""Return the file's current position."""
_complain_ifclosed(self.closed)
return self.pos
def read(self, n = -1):
"""Read at most size bytes from the file
(less if the read hits EOF before obtaining size bytes).
If the size argument is negative or omitted, read all data until EOF
is reached. The bytes are returned as a string object. An empty
string is returned when EOF is encountered immediately.
"""
_complain_ifclosed(self.closed)
if self.buflist:
self.buf += ''.join(self.buflist)
self.buflist = []
if n < 0:
newpos = self.len
else:
newpos = min(self.pos+n, self.len)
r = self.buf[self.pos:newpos]
self.pos = newpos
return r
def readline(self, length=None):
r"""Read one entire line from the file.
A trailing newline character is kept in the string (but may be absent
when a file ends with an incomplete line). If the size argument is
present and non-negative, it is a maximum byte count (including the
trailing newline) and an incomplete line may be returned.
An empty string is returned only when EOF is encountered immediately.
Note: Unlike stdio's fgets(), the returned string contains null
characters ('\0') if they occurred in the input.
"""
_complain_ifclosed(self.closed)
if self.buflist:
self.buf += ''.join(self.buflist)
self.buflist = []
i = self.buf.find('\n', self.pos)
if i < 0:
newpos = self.len
else:
newpos = i+1
if length is not None:
if self.pos + length < newpos:
newpos = self.pos + length
r = self.buf[self.pos:newpos]
self.pos = newpos
return r
def readlines(self, sizehint = 0):
"""Read until EOF using readline() and return a list containing the
lines thus read.
If the optional sizehint argument is present, instead of reading up
to EOF, whole lines totalling approximately sizehint bytes (or more
to accommodate a final whole line).
"""
total = 0
lines = []
line = self.readline()
while line:
lines.append(line)
total += len(line)
if 0 < sizehint <= total:
break
line = self.readline()
return lines
def truncate(self, size=None):
"""Truncate the file's size.
If the optional size argument is present, the file is truncated to
(at most) that size. The size defaults to the current position.
The current file position is not changed unless the position
is beyond the new file size.
If the specified size exceeds the file's current size, the
file remains unchanged.
"""
_complain_ifclosed(self.closed)
if size is None:
size = self.pos
elif size < 0:
raise IOError(EINVAL, "Negative size not allowed")
elif size < self.pos:
self.pos = size
self.buf = self.getvalue()[:size]
self.len = size
def write(self, s):
"""Write a string to the file.
There is no return value.
"""
_complain_ifclosed(self.closed)
if not s: return
# Force s to be a string or unicode
if not isinstance(s, basestring):
s = str(s)
spos = self.pos
slen = self.len
if spos == slen:
self.buflist.append(s)
self.len = self.pos = spos + len(s)
return
if spos > slen:
self.buflist.append('\0'*(spos - slen))
slen = spos
newpos = spos + len(s)
if spos < slen:
if self.buflist:
self.buf += ''.join(self.buflist)
self.buflist = [self.buf[:spos], s, self.buf[newpos:]]
self.buf = ''
if newpos > slen:
slen = newpos
else:
self.buflist.append(s)
slen = newpos
self.len = slen
self.pos = newpos
def writelines(self, iterable):
"""Write a sequence of strings to the file. The sequence can be any
iterable object producing strings, typically a list of strings. There
is no return value.
(The name is intended to match readlines(); writelines() does not add
line separators.)
"""
write = self.write
for line in iterable:
write(line)
def flush(self):
"""Flush the internal buffer
"""
_complain_ifclosed(self.closed)
def getvalue(self):
"""
Retrieve the entire contents of the "file" at any time before
the StringIO object's close() method is called.
The StringIO object can accept either Unicode or 8-bit strings,
but mixing the two may take some care. If both are used, 8-bit
strings that cannot be interpreted as 7-bit ASCII (that use the
8th bit) will cause a UnicodeError to be raised when getvalue()
is called.
"""
if self.buflist:
self.buf += ''.join(self.buflist)
self.buflist = []
return self.buf
# A little test suite
def test():
import sys
if sys.argv[1:]:
file = sys.argv[1]
else:
file = '/etc/passwd'
lines = open(file, 'r').readlines()
text = open(file, 'r').read()
f = StringIO()
for line in lines[:-2]:
f.write(line)
f.writelines(lines[-2:])
if f.getvalue() != text:
raise RuntimeError, 'write failed'
length = f.tell()
print 'File length =', length
f.seek(len(lines[0]))
f.write(lines[1])
f.seek(0)
print 'First line =', repr(f.readline())
print 'Position =', f.tell()
line = f.readline()
print 'Second line =', repr(line)
f.seek(-len(line), 1)
line2 = f.read(len(line))
if line != line2:
raise RuntimeError, 'bad result after seek back'
f.seek(len(line2), 1)
list = f.readlines()
line = list[-1]
f.seek(f.tell() - len(line))
line2 = f.read()
if line != line2:
raise RuntimeError, 'bad result after seek back from EOF'
print 'Read', len(list), 'more lines'
print 'File length =', f.tell()
if f.tell() != length:
raise RuntimeError, 'bad length'
f.truncate(length/2)
f.seek(0, 2)
print 'Truncated length =', f.tell()
if f.tell() != length/2:
raise RuntimeError, 'truncate did not adjust length'
f.close()
if __name__ == '__main__':
test()

Binary file not shown.

View File

@ -0,0 +1,179 @@
"""A more or less complete user-defined wrapper around dictionary objects."""
class UserDict:
def __init__(self, dict=None, **kwargs):
self.data = {}
if dict is not None:
self.update(dict)
if len(kwargs):
self.update(kwargs)
def __repr__(self): return repr(self.data)
def __cmp__(self, dict):
if isinstance(dict, UserDict):
return cmp(self.data, dict.data)
else:
return cmp(self.data, dict)
def __len__(self): return len(self.data)
def __getitem__(self, key):
if key in self.data:
return self.data[key]
if hasattr(self.__class__, "__missing__"):
return self.__class__.__missing__(self, key)
raise KeyError(key)
def __setitem__(self, key, item): self.data[key] = item
def __delitem__(self, key): del self.data[key]
def clear(self): self.data.clear()
def copy(self):
if self.__class__ is UserDict:
return UserDict(self.data.copy())
import copy
data = self.data
try:
self.data = {}
c = copy.copy(self)
finally:
self.data = data
c.update(self)
return c
def keys(self): return self.data.keys()
def items(self): return self.data.items()
def iteritems(self): return self.data.iteritems()
def iterkeys(self): return self.data.iterkeys()
def itervalues(self): return self.data.itervalues()
def values(self): return self.data.values()
def has_key(self, key): return key in self.data
def update(self, dict=None, **kwargs):
if dict is None:
pass
elif isinstance(dict, UserDict):
self.data.update(dict.data)
elif isinstance(dict, type({})) or not hasattr(dict, 'items'):
self.data.update(dict)
else:
for k, v in dict.items():
self[k] = v
if len(kwargs):
self.data.update(kwargs)
def get(self, key, failobj=None):
if key not in self:
return failobj
return self[key]
def setdefault(self, key, failobj=None):
if key not in self:
self[key] = failobj
return self[key]
def pop(self, key, *args):
return self.data.pop(key, *args)
def popitem(self):
return self.data.popitem()
def __contains__(self, key):
return key in self.data
@classmethod
def fromkeys(cls, iterable, value=None):
d = cls()
for key in iterable:
d[key] = value
return d
class IterableUserDict(UserDict):
def __iter__(self):
return iter(self.data)
import _abcoll
_abcoll.MutableMapping.register(IterableUserDict)
class DictMixin:
# Mixin defining all dictionary methods for classes that already have
# a minimum dictionary interface including getitem, setitem, delitem,
# and keys. Without knowledge of the subclass constructor, the mixin
# does not define __init__() or copy(). In addition to the four base
# methods, progressively more efficiency comes with defining
# __contains__(), __iter__(), and iteritems().
# second level definitions support higher levels
def __iter__(self):
for k in self.keys():
yield k
def has_key(self, key):
try:
value = self[key]
except KeyError:
return False
return True
def __contains__(self, key):
return self.has_key(key)
# third level takes advantage of second level definitions
def iteritems(self):
for k in self:
yield (k, self[k])
def iterkeys(self):
return self.__iter__()
# fourth level uses definitions from lower levels
def itervalues(self):
for _, v in self.iteritems():
yield v
def values(self):
return [v for _, v in self.iteritems()]
def items(self):
return list(self.iteritems())
def clear(self):
for key in self.keys():
del self[key]
def setdefault(self, key, default=None):
try:
return self[key]
except KeyError:
self[key] = default
return default
def pop(self, key, *args):
if len(args) > 1:
raise TypeError, "pop expected at most 2 arguments, got "\
+ repr(1 + len(args))
try:
value = self[key]
except KeyError:
if args:
return args[0]
raise
del self[key]
return value
def popitem(self):
try:
k, v = self.iteritems().next()
except StopIteration:
raise KeyError, 'container is empty'
del self[k]
return (k, v)
def update(self, other=None, **kwargs):
# Make progressively weaker assumptions about "other"
if other is None:
pass
elif hasattr(other, 'iteritems'): # iteritems saves memory and lookups
for k, v in other.iteritems():
self[k] = v
elif hasattr(other, 'keys'):
for k in other.keys():
self[k] = other[k]
else:
for k, v in other:
self[k] = v
if kwargs:
self.update(kwargs)
def get(self, key, default=None):
try:
return self[key]
except KeyError:
return default
def __repr__(self):
return repr(dict(self.iteritems()))
def __cmp__(self, other):
if other is None:
return 1
if isinstance(other, DictMixin):
other = dict(other.iteritems())
return cmp(dict(self.iteritems()), other)
def __len__(self):
return len(self.keys())

Binary file not shown.

View File

@ -0,0 +1,157 @@
""" Standard "encodings" Package
Standard Python encoding modules are stored in this package
directory.
Codec modules must have names corresponding to normalized encoding
names as defined in the normalize_encoding() function below, e.g.
'utf-8' must be implemented by the module 'utf_8.py'.
Each codec module must export the following interface:
* getregentry() -> codecs.CodecInfo object
The getregentry() API must a CodecInfo object with encoder, decoder,
incrementalencoder, incrementaldecoder, streamwriter and streamreader
atttributes which adhere to the Python Codec Interface Standard.
In addition, a module may optionally also define the following
APIs which are then used by the package's codec search function:
* getaliases() -> sequence of encoding name strings to use as aliases
Alias names returned by getaliases() must be normalized encoding
names as defined by normalize_encoding().
Written by Marc-Andre Lemburg (mal@lemburg.com).
(c) Copyright CNRI, All Rights Reserved. NO WARRANTY.
"""#"
import codecs
from encodings import aliases
import __builtin__
_cache = {}
_unknown = '--unknown--'
_import_tail = ['*']
_norm_encoding_map = (' . '
'0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ '
' abcdefghijklmnopqrstuvwxyz '
' '
' '
' ')
_aliases = aliases.aliases
class CodecRegistryError(LookupError, SystemError):
pass
def normalize_encoding(encoding):
""" Normalize an encoding name.
Normalization works as follows: all non-alphanumeric
characters except the dot used for Python package names are
collapsed and replaced with a single underscore, e.g. ' -;#'
becomes '_'. Leading and trailing underscores are removed.
Note that encoding names should be ASCII only; if they do use
non-ASCII characters, these must be Latin-1 compatible.
"""
# Make sure we have an 8-bit string, because .translate() works
# differently for Unicode strings.
if hasattr(__builtin__, "unicode") and isinstance(encoding, unicode):
# Note that .encode('latin-1') does *not* use the codec
# registry, so this call doesn't recurse. (See unicodeobject.c
# PyUnicode_AsEncodedString() for details)
encoding = encoding.encode('latin-1')
return '_'.join(encoding.translate(_norm_encoding_map).split())
def search_function(encoding):
# Cache lookup
entry = _cache.get(encoding, _unknown)
if entry is not _unknown:
return entry
# Import the module:
#
# First try to find an alias for the normalized encoding
# name and lookup the module using the aliased name, then try to
# lookup the module using the standard import scheme, i.e. first
# try in the encodings package, then at top-level.
#
norm_encoding = normalize_encoding(encoding)
aliased_encoding = _aliases.get(norm_encoding) or \
_aliases.get(norm_encoding.replace('.', '_'))
if aliased_encoding is not None:
modnames = [aliased_encoding,
norm_encoding]
else:
modnames = [norm_encoding]
for modname in modnames:
if not modname or '.' in modname:
continue
try:
# Import is absolute to prevent the possibly malicious import of a
# module with side-effects that is not in the 'encodings' package.
mod = __import__('encodings.' + modname, fromlist=_import_tail,
level=0)
except ImportError:
pass
else:
break
else:
mod = None
try:
getregentry = mod.getregentry
except AttributeError:
# Not a codec module
mod = None
if mod is None:
# Cache misses
_cache[encoding] = None
return None
# Now ask the module for the registry entry
entry = getregentry()
if not isinstance(entry, codecs.CodecInfo):
if not 4 <= len(entry) <= 7:
raise CodecRegistryError,\
'module "%s" (%s) failed to register' % \
(mod.__name__, mod.__file__)
if not callable(entry[0]) or \
not callable(entry[1]) or \
(entry[2] is not None and not callable(entry[2])) or \
(entry[3] is not None and not callable(entry[3])) or \
(len(entry) > 4 and entry[4] is not None and not callable(entry[4])) or \
(len(entry) > 5 and entry[5] is not None and not callable(entry[5])):
raise CodecRegistryError,\
'incompatible codecs in module "%s" (%s)' % \
(mod.__name__, mod.__file__)
if len(entry)<7 or entry[6] is None:
entry += (None,)*(6-len(entry)) + (mod.__name__.split(".", 1)[1],)
entry = codecs.CodecInfo(*entry)
# Cache the codec registry entry
_cache[encoding] = entry
# Register its aliases (without overwriting previously registered
# aliases)
try:
codecaliases = mod.getaliases()
except AttributeError:
pass
else:
for alias in codecaliases:
if not _aliases.has_key(alias):
_aliases[alias] = modname
# Return the registry entry
return entry
# Register the search_function in the Python codec registry
codecs.register(search_function)

Binary file not shown.

View File

@ -0,0 +1,562 @@
# Copyright 2007 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.
"""Abstract Base Classes (ABCs) for collections, according to PEP 3119.
DON'T USE THIS MODULE DIRECTLY! The classes here should be imported
via collections; they are defined here only to alleviate certain
bootstrapping issues. Unit tests are in test_collections.
"""
from abc import ABCMeta, abstractmethod
import sys
__all__ = ["Hashable", "Iterable", "Iterator",
"Sized", "Container", "Callable",
"Set", "MutableSet",
"Mapping", "MutableMapping",
"MappingView", "KeysView", "ItemsView", "ValuesView",
"Sequence", "MutableSequence",
]
### ONE-TRICK PONIES ###
class Hashable:
__metaclass__ = ABCMeta
@abstractmethod
def __hash__(self):
return 0
@classmethod
def __subclasshook__(cls, C):
if cls is Hashable:
for B in C.__mro__:
if "__hash__" in B.__dict__:
if B.__dict__["__hash__"]:
return True
break
return NotImplemented
class Iterable:
__metaclass__ = ABCMeta
@abstractmethod
def __iter__(self):
while False:
yield None
@classmethod
def __subclasshook__(cls, C):
if cls is Iterable:
if any("__iter__" in B.__dict__ for B in C.__mro__):
return True
return NotImplemented
Iterable.register(str)
class Iterator(Iterable):
@abstractmethod
def next(self):
raise StopIteration
def __iter__(self):
return self
@classmethod
def __subclasshook__(cls, C):
if cls is Iterator:
if any("next" in B.__dict__ for B in C.__mro__):
return True
return NotImplemented
class Sized:
__metaclass__ = ABCMeta
@abstractmethod
def __len__(self):
return 0
@classmethod
def __subclasshook__(cls, C):
if cls is Sized:
if any("__len__" in B.__dict__ for B in C.__mro__):
return True
return NotImplemented
class Container:
__metaclass__ = ABCMeta
@abstractmethod
def __contains__(self, x):
return False
@classmethod
def __subclasshook__(cls, C):
if cls is Container:
if any("__contains__" in B.__dict__ for B in C.__mro__):
return True
return NotImplemented
class Callable:
__metaclass__ = ABCMeta
@abstractmethod
def __call__(self, *args, **kwds):
return False
@classmethod
def __subclasshook__(cls, C):
if cls is Callable:
if any("__call__" in B.__dict__ for B in C.__mro__):
return True
return NotImplemented
### SETS ###
class Set(Sized, Iterable, Container):
"""A set is a finite, iterable container.
This class provides concrete generic implementations of all
methods except for __contains__, __iter__ and __len__.
To override the comparisons (presumably for speed, as the
semantics are fixed), all you have to do is redefine __le__ and
then the other operations will automatically follow suit.
"""
def __le__(self, other):
if not isinstance(other, Set):
return NotImplemented
if len(self) > len(other):
return False
for elem in self:
if elem not in other:
return False
return True
def __lt__(self, other):
if not isinstance(other, Set):
return NotImplemented
return len(self) < len(other) and self.__le__(other)
def __gt__(self, other):
if not isinstance(other, Set):
return NotImplemented
return other < self
def __ge__(self, other):
if not isinstance(other, Set):
return NotImplemented
return other <= self
def __eq__(self, other):
if not isinstance(other, Set):
return NotImplemented
return len(self) == len(other) and self.__le__(other)
def __ne__(self, other):
return not (self == other)
@classmethod
def _from_iterable(cls, it):
'''Construct an instance of the class from any iterable input.
Must override this method if the class constructor signature
does not accept an iterable for an input.
'''
return cls(it)
def __and__(self, other):
if not isinstance(other, Iterable):
return NotImplemented
return self._from_iterable(value for value in other if value in self)
def isdisjoint(self, other):
for value in other:
if value in self:
return False
return True
def __or__(self, other):
if not isinstance(other, Iterable):
return NotImplemented
chain = (e for s in (self, other) for e in s)
return self._from_iterable(chain)
def __sub__(self, other):
if not isinstance(other, Set):
if not isinstance(other, Iterable):
return NotImplemented
other = self._from_iterable(other)
return self._from_iterable(value for value in self
if value not in other)
def __xor__(self, other):
if not isinstance(other, Set):
if not isinstance(other, Iterable):
return NotImplemented
other = self._from_iterable(other)
return (self - other) | (other - self)
# Sets are not hashable by default, but subclasses can change this
__hash__ = None
def _hash(self):
"""Compute the hash value of a set.
Note that we don't define __hash__: not all sets are hashable.
But if you define a hashable set type, its __hash__ should
call this function.
This must be compatible __eq__.
All sets ought to compare equal if they contain the same
elements, regardless of how they are implemented, and
regardless of the order of the elements; so there's not much
freedom for __eq__ or __hash__. We match the algorithm used
by the built-in frozenset type.
"""
MAX = sys.maxint
MASK = 2 * MAX + 1
n = len(self)
h = 1927868237 * (n + 1)
h &= MASK
for x in self:
hx = hash(x)
h ^= (hx ^ (hx << 16) ^ 89869747) * 3644798167
h &= MASK
h = h * 69069 + 907133923
h &= MASK
if h > MAX:
h -= MASK + 1
if h == -1:
h = 590923713
return h
Set.register(frozenset)
class MutableSet(Set):
@abstractmethod
def add(self, value):
"""Add an element."""
raise NotImplementedError
@abstractmethod
def discard(self, value):
"""Remove an element. Do not raise an exception if absent."""
raise NotImplementedError
def remove(self, value):
"""Remove an element. If not a member, raise a KeyError."""
if value not in self:
raise KeyError(value)
self.discard(value)
def pop(self):
"""Return the popped value. Raise KeyError if empty."""
it = iter(self)
try:
value = next(it)
except StopIteration:
raise KeyError
self.discard(value)
return value
def clear(self):
"""This is slow (creates N new iterators!) but effective."""
try:
while True:
self.pop()
except KeyError:
pass
def __ior__(self, it):
for value in it:
self.add(value)
return self
def __iand__(self, it):
for value in (self - it):
self.discard(value)
return self
def __ixor__(self, it):
if not isinstance(it, Set):
it = self._from_iterable(it)
for value in it:
if value in self:
self.discard(value)
else:
self.add(value)
return self
def __isub__(self, it):
for value in it:
self.discard(value)
return self
MutableSet.register(set)
### MAPPINGS ###
class Mapping(Sized, Iterable, Container):
@abstractmethod
def __getitem__(self, key):
raise KeyError
def get(self, key, default=None):
try:
return self[key]
except KeyError:
return default
def __contains__(self, key):
try:
self[key]
except KeyError:
return False
else:
return True
def iterkeys(self):
return iter(self)
def itervalues(self):
for key in self:
yield self[key]
def iteritems(self):
for key in self:
yield (key, self[key])
def keys(self):
return list(self)
def items(self):
return [(key, self[key]) for key in self]
def values(self):
return [self[key] for key in self]
# Mappings are not hashable by default, but subclasses can change this
__hash__ = None
def __eq__(self, other):
return isinstance(other, Mapping) and \
dict(self.items()) == dict(other.items())
def __ne__(self, other):
return not (self == other)
class MappingView(Sized):
def __init__(self, mapping):
self._mapping = mapping
def __len__(self):
return len(self._mapping)
class KeysView(MappingView, Set):
def __contains__(self, key):
return key in self._mapping
def __iter__(self):
for key in self._mapping:
yield key
class ItemsView(MappingView, Set):
def __contains__(self, item):
key, value = item
try:
v = self._mapping[key]
except KeyError:
return False
else:
return v == value
def __iter__(self):
for key in self._mapping:
yield (key, self._mapping[key])
class ValuesView(MappingView):
def __contains__(self, value):
for key in self._mapping:
if value == self._mapping[key]:
return True
return False
def __iter__(self):
for key in self._mapping:
yield self._mapping[key]
class MutableMapping(Mapping):
@abstractmethod
def __setitem__(self, key, value):
raise KeyError
@abstractmethod
def __delitem__(self, key):
raise KeyError
__marker = object()
def pop(self, key, default=__marker):
try:
value = self[key]
except KeyError:
if default is self.__marker:
raise
return default
else:
del self[key]
return value
def popitem(self):
try:
key = next(iter(self))
except StopIteration:
raise KeyError
value = self[key]
del self[key]
return key, value
def clear(self):
try:
while True:
self.popitem()
except KeyError:
pass
def update(self, other=(), **kwds):
if isinstance(other, Mapping):
for key in other:
self[key] = other[key]
elif hasattr(other, "keys"):
for key in other.keys():
self[key] = other[key]
else:
for key, value in other:
self[key] = value
for key, value in kwds.items():
self[key] = value
def setdefault(self, key, default=None):
try:
return self[key]
except KeyError:
self[key] = default
return default
MutableMapping.register(dict)
### SEQUENCES ###
class Sequence(Sized, Iterable, Container):
"""All the operations on a read-only sequence.
Concrete subclasses must override __new__ or __init__,
__getitem__, and __len__.
"""
@abstractmethod
def __getitem__(self, index):
raise IndexError
def __iter__(self):
i = 0
try:
while True:
v = self[i]
yield v
i += 1
except IndexError:
return
def __contains__(self, value):
for v in self:
if v == value:
return True
return False
def __reversed__(self):
for i in reversed(range(len(self))):
yield self[i]
def index(self, value):
for i, v in enumerate(self):
if v == value:
return i
raise ValueError
def count(self, value):
return sum(1 for v in self if v == value)
Sequence.register(tuple)
Sequence.register(basestring)
Sequence.register(buffer)
Sequence.register(xrange)
class MutableSequence(Sequence):
@abstractmethod
def __setitem__(self, index, value):
raise IndexError
@abstractmethod
def __delitem__(self, index):
raise IndexError
@abstractmethod
def insert(self, index, value):
raise IndexError
def append(self, value):
self.insert(len(self), value)
def reverse(self):
n = len(self)
for i in range(n//2):
self[i], self[n-i-1] = self[n-i-1], self[i]
def extend(self, values):
for v in values:
self.append(v)
def pop(self, index=-1):
v = self[index]
del self[index]
return v
def remove(self, value):
del self[self.index(value)]
def __iadd__(self, values):
self.extend(values)
return self
MutableSequence.register(list)

Binary file not shown.

View File

@ -0,0 +1,174 @@
# Copyright 2007 Google, Inc. All Rights Reserved.
# Licensed to PSF under a Contributor Agreement.
"""Abstract Base Classes (ABCs) according to PEP 3119."""
def abstractmethod(funcobj):
"""A decorator indicating abstract methods.
Requires that the metaclass is ABCMeta or derived from it. A
class that has a metaclass derived from ABCMeta cannot be
instantiated unless all of its abstract methods are overridden.
The abstract methods can be called using any of the normal
'super' call mechanisms.
Usage:
class C:
__metaclass__ = ABCMeta
@abstractmethod
def my_abstract_method(self, ...):
...
"""
funcobj.__isabstractmethod__ = True
return funcobj
class abstractproperty(property):
"""A decorator indicating abstract properties.
Requires that the metaclass is ABCMeta or derived from it. A
class that has a metaclass derived from ABCMeta cannot be
instantiated unless all of its abstract properties are overridden.
The abstract properties can be called using any of the normal
'super' call mechanisms.
Usage:
class C:
__metaclass__ = ABCMeta
@abstractproperty
def my_abstract_property(self):
...
This defines a read-only property; you can also define a read-write
abstract property using the 'long' form of property declaration:
class C:
__metaclass__ = ABCMeta
def getx(self): ...
def setx(self, value): ...
x = abstractproperty(getx, setx)
"""
__isabstractmethod__ = True
class ABCMeta(type):
"""Metaclass for defining Abstract Base Classes (ABCs).
Use this metaclass to create an ABC. An ABC can be subclassed
directly, and then acts as a mix-in class. You can also register
unrelated concrete classes (even built-in classes) and unrelated
ABCs as 'virtual subclasses' -- these and their descendants will
be considered subclasses of the registering ABC by the built-in
issubclass() function, but the registering ABC won't show up in
their MRO (Method Resolution Order) nor will method
implementations defined by the registering ABC be callable (not
even via super()).
"""
# A global counter that is incremented each time a class is
# registered as a virtual subclass of anything. It forces the
# negative cache to be cleared before its next use.
_abc_invalidation_counter = 0
def __new__(mcls, name, bases, namespace):
cls = super(ABCMeta, mcls).__new__(mcls, name, bases, namespace)
# Compute set of abstract method names
abstracts = set(name
for name, value in namespace.items()
if getattr(value, "__isabstractmethod__", False))
for base in bases:
for name in getattr(base, "__abstractmethods__", set()):
value = getattr(cls, name, None)
if getattr(value, "__isabstractmethod__", False):
abstracts.add(name)
cls.__abstractmethods__ = frozenset(abstracts)
# Set up inheritance registry
cls._abc_registry = set()
cls._abc_cache = set()
cls._abc_negative_cache = set()
cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter
return cls
def register(cls, subclass):
"""Register a virtual subclass of an ABC."""
if not isinstance(cls, type):
raise TypeError("Can only register classes")
if issubclass(subclass, cls):
return # Already a subclass
# Subtle: test for cycles *after* testing for "already a subclass";
# this means we allow X.register(X) and interpret it as a no-op.
if issubclass(cls, subclass):
# This would create a cycle, which is bad for the algorithm below
raise RuntimeError("Refusing to create an inheritance cycle")
cls._abc_registry.add(subclass)
ABCMeta._abc_invalidation_counter += 1 # Invalidate negative cache
def _dump_registry(cls, file=None):
"""Debug helper to print the ABC registry."""
print >> file, "Class: %s.%s" % (cls.__module__, cls.__name__)
print >> file, "Inv.counter: %s" % ABCMeta._abc_invalidation_counter
for name in sorted(cls.__dict__.keys()):
if name.startswith("_abc_"):
value = getattr(cls, name)
print >> file, "%s: %r" % (name, value)
def __instancecheck__(cls, instance):
"""Override for isinstance(instance, cls)."""
# Inline the cache checking when it's simple.
subclass = getattr(instance, '__class__', None)
if subclass in cls._abc_cache:
return True
subtype = type(instance)
if subtype is subclass or subclass is None:
if (cls._abc_negative_cache_version ==
ABCMeta._abc_invalidation_counter and
subtype in cls._abc_negative_cache):
return False
# Fall back to the subclass check.
return cls.__subclasscheck__(subtype)
return (cls.__subclasscheck__(subclass) or
cls.__subclasscheck__(subtype))
def __subclasscheck__(cls, subclass):
"""Override for issubclass(subclass, cls)."""
# Check cache
if subclass in cls._abc_cache:
return True
# Check negative cache; may have to invalidate
if cls._abc_negative_cache_version < ABCMeta._abc_invalidation_counter:
# Invalidate the negative cache
cls._abc_negative_cache = set()
cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter
elif subclass in cls._abc_negative_cache:
return False
# Check the subclass hook
ok = cls.__subclasshook__(subclass)
if ok is not NotImplemented:
assert isinstance(ok, bool)
if ok:
cls._abc_cache.add(subclass)
else:
cls._abc_negative_cache.add(subclass)
return ok
# Check if it's a direct subclass
if cls in getattr(subclass, '__mro__', ()):
cls._abc_cache.add(subclass)
return True
# Check if it's a subclass of a registered class (recursive)
for rcls in cls._abc_registry:
if issubclass(subclass, rcls):
cls._abc_cache.add(subclass)
return True
# Check if it's a subclass of a subclass (recursive)
for scls in cls.__subclasses__():
if issubclass(subclass, scls):
cls._abc_cache.add(subclass)
return True
# No dice; update negative cache
cls._abc_negative_cache.add(subclass)
return False

Binary file not shown.

View File

@ -0,0 +1,522 @@
""" Encoding Aliases Support
This module is used by the encodings package search function to
map encodings names to module names.
Note that the search function normalizes the encoding names before
doing the lookup, so the mapping will have to map normalized
encoding names to module names.
Contents:
The following aliases dictionary contains mappings of all IANA
character set names for which the Python core library provides
codecs. In addition to these, a few Python specific codec
aliases have also been added.
"""
aliases = {
# Please keep this list sorted alphabetically by value !
# ascii codec
'646' : 'ascii',
'ansi_x3.4_1968' : 'ascii',
'ansi_x3_4_1968' : 'ascii', # some email headers use this non-standard name
'ansi_x3.4_1986' : 'ascii',
'cp367' : 'ascii',
'csascii' : 'ascii',
'ibm367' : 'ascii',
'iso646_us' : 'ascii',
'iso_646.irv_1991' : 'ascii',
'iso_ir_6' : 'ascii',
'us' : 'ascii',
'us_ascii' : 'ascii',
# base64_codec codec
'base64' : 'base64_codec',
'base_64' : 'base64_codec',
# big5 codec
'big5_tw' : 'big5',
'csbig5' : 'big5',
# big5hkscs codec
'big5_hkscs' : 'big5hkscs',
'hkscs' : 'big5hkscs',
# bz2_codec codec
'bz2' : 'bz2_codec',
# cp037 codec
'037' : 'cp037',
'csibm037' : 'cp037',
'ebcdic_cp_ca' : 'cp037',
'ebcdic_cp_nl' : 'cp037',
'ebcdic_cp_us' : 'cp037',
'ebcdic_cp_wt' : 'cp037',
'ibm037' : 'cp037',
'ibm039' : 'cp037',
# cp1026 codec
'1026' : 'cp1026',
'csibm1026' : 'cp1026',
'ibm1026' : 'cp1026',
# cp1140 codec
'1140' : 'cp1140',
'ibm1140' : 'cp1140',
# cp1250 codec
'1250' : 'cp1250',
'windows_1250' : 'cp1250',
# cp1251 codec
'1251' : 'cp1251',
'windows_1251' : 'cp1251',
# cp1252 codec
'1252' : 'cp1252',
'windows_1252' : 'cp1252',
# cp1253 codec
'1253' : 'cp1253',
'windows_1253' : 'cp1253',
# cp1254 codec
'1254' : 'cp1254',
'windows_1254' : 'cp1254',
# cp1255 codec
'1255' : 'cp1255',
'windows_1255' : 'cp1255',
# cp1256 codec
'1256' : 'cp1256',
'windows_1256' : 'cp1256',
# cp1257 codec
'1257' : 'cp1257',
'windows_1257' : 'cp1257',
# cp1258 codec
'1258' : 'cp1258',
'windows_1258' : 'cp1258',
# cp424 codec
'424' : 'cp424',
'csibm424' : 'cp424',
'ebcdic_cp_he' : 'cp424',
'ibm424' : 'cp424',
# cp437 codec
'437' : 'cp437',
'cspc8codepage437' : 'cp437',
'ibm437' : 'cp437',
# cp500 codec
'500' : 'cp500',
'csibm500' : 'cp500',
'ebcdic_cp_be' : 'cp500',
'ebcdic_cp_ch' : 'cp500',
'ibm500' : 'cp500',
# cp775 codec
'775' : 'cp775',
'cspc775baltic' : 'cp775',
'ibm775' : 'cp775',
# cp850 codec
'850' : 'cp850',
'cspc850multilingual' : 'cp850',
'ibm850' : 'cp850',
# cp852 codec
'852' : 'cp852',
'cspcp852' : 'cp852',
'ibm852' : 'cp852',
# cp855 codec
'855' : 'cp855',
'csibm855' : 'cp855',
'ibm855' : 'cp855',
# cp857 codec
'857' : 'cp857',
'csibm857' : 'cp857',
'ibm857' : 'cp857',
# cp860 codec
'860' : 'cp860',
'csibm860' : 'cp860',
'ibm860' : 'cp860',
# cp861 codec
'861' : 'cp861',
'cp_is' : 'cp861',
'csibm861' : 'cp861',
'ibm861' : 'cp861',
# cp862 codec
'862' : 'cp862',
'cspc862latinhebrew' : 'cp862',
'ibm862' : 'cp862',
# cp863 codec
'863' : 'cp863',
'csibm863' : 'cp863',
'ibm863' : 'cp863',
# cp864 codec
'864' : 'cp864',
'csibm864' : 'cp864',
'ibm864' : 'cp864',
# cp865 codec
'865' : 'cp865',
'csibm865' : 'cp865',
'ibm865' : 'cp865',
# cp866 codec
'866' : 'cp866',
'csibm866' : 'cp866',
'ibm866' : 'cp866',
# cp869 codec
'869' : 'cp869',
'cp_gr' : 'cp869',
'csibm869' : 'cp869',
'ibm869' : 'cp869',
# cp932 codec
'932' : 'cp932',
'ms932' : 'cp932',
'mskanji' : 'cp932',
'ms_kanji' : 'cp932',
# cp949 codec
'949' : 'cp949',
'ms949' : 'cp949',
'uhc' : 'cp949',
# cp950 codec
'950' : 'cp950',
'ms950' : 'cp950',
# euc_jis_2004 codec
'jisx0213' : 'euc_jis_2004',
'eucjis2004' : 'euc_jis_2004',
'euc_jis2004' : 'euc_jis_2004',
# euc_jisx0213 codec
'eucjisx0213' : 'euc_jisx0213',
# euc_jp codec
'eucjp' : 'euc_jp',
'ujis' : 'euc_jp',
'u_jis' : 'euc_jp',
# euc_kr codec
'euckr' : 'euc_kr',
'korean' : 'euc_kr',
'ksc5601' : 'euc_kr',
'ks_c_5601' : 'euc_kr',
'ks_c_5601_1987' : 'euc_kr',
'ksx1001' : 'euc_kr',
'ks_x_1001' : 'euc_kr',
# gb18030 codec
'gb18030_2000' : 'gb18030',
# gb2312 codec
'chinese' : 'gb2312',
'csiso58gb231280' : 'gb2312',
'euc_cn' : 'gb2312',
'euccn' : 'gb2312',
'eucgb2312_cn' : 'gb2312',
'gb2312_1980' : 'gb2312',
'gb2312_80' : 'gb2312',
'iso_ir_58' : 'gb2312',
# gbk codec
'936' : 'gbk',
'cp936' : 'gbk',
'ms936' : 'gbk',
# hex_codec codec
'hex' : 'hex_codec',
# hp_roman8 codec
'roman8' : 'hp_roman8',
'r8' : 'hp_roman8',
'csHPRoman8' : 'hp_roman8',
# hz codec
'hzgb' : 'hz',
'hz_gb' : 'hz',
'hz_gb_2312' : 'hz',
# iso2022_jp codec
'csiso2022jp' : 'iso2022_jp',
'iso2022jp' : 'iso2022_jp',
'iso_2022_jp' : 'iso2022_jp',
# iso2022_jp_1 codec
'iso2022jp_1' : 'iso2022_jp_1',
'iso_2022_jp_1' : 'iso2022_jp_1',
# iso2022_jp_2 codec
'iso2022jp_2' : 'iso2022_jp_2',
'iso_2022_jp_2' : 'iso2022_jp_2',
# iso2022_jp_2004 codec
'iso_2022_jp_2004' : 'iso2022_jp_2004',
'iso2022jp_2004' : 'iso2022_jp_2004',
# iso2022_jp_3 codec
'iso2022jp_3' : 'iso2022_jp_3',
'iso_2022_jp_3' : 'iso2022_jp_3',
# iso2022_jp_ext codec
'iso2022jp_ext' : 'iso2022_jp_ext',
'iso_2022_jp_ext' : 'iso2022_jp_ext',
# iso2022_kr codec
'csiso2022kr' : 'iso2022_kr',
'iso2022kr' : 'iso2022_kr',
'iso_2022_kr' : 'iso2022_kr',
# iso8859_10 codec
'csisolatin6' : 'iso8859_10',
'iso_8859_10' : 'iso8859_10',
'iso_8859_10_1992' : 'iso8859_10',
'iso_ir_157' : 'iso8859_10',
'l6' : 'iso8859_10',
'latin6' : 'iso8859_10',
# iso8859_11 codec
'thai' : 'iso8859_11',
'iso_8859_11' : 'iso8859_11',
'iso_8859_11_2001' : 'iso8859_11',
# iso8859_13 codec
'iso_8859_13' : 'iso8859_13',
'l7' : 'iso8859_13',
'latin7' : 'iso8859_13',
# iso8859_14 codec
'iso_8859_14' : 'iso8859_14',
'iso_8859_14_1998' : 'iso8859_14',
'iso_celtic' : 'iso8859_14',
'iso_ir_199' : 'iso8859_14',
'l8' : 'iso8859_14',
'latin8' : 'iso8859_14',
# iso8859_15 codec
'iso_8859_15' : 'iso8859_15',
'l9' : 'iso8859_15',
'latin9' : 'iso8859_15',
# iso8859_16 codec
'iso_8859_16' : 'iso8859_16',
'iso_8859_16_2001' : 'iso8859_16',
'iso_ir_226' : 'iso8859_16',
'l10' : 'iso8859_16',
'latin10' : 'iso8859_16',
# iso8859_2 codec
'csisolatin2' : 'iso8859_2',
'iso_8859_2' : 'iso8859_2',
'iso_8859_2_1987' : 'iso8859_2',
'iso_ir_101' : 'iso8859_2',
'l2' : 'iso8859_2',
'latin2' : 'iso8859_2',
# iso8859_3 codec
'csisolatin3' : 'iso8859_3',
'iso_8859_3' : 'iso8859_3',
'iso_8859_3_1988' : 'iso8859_3',
'iso_ir_109' : 'iso8859_3',
'l3' : 'iso8859_3',
'latin3' : 'iso8859_3',
# iso8859_4 codec
'csisolatin4' : 'iso8859_4',
'iso_8859_4' : 'iso8859_4',
'iso_8859_4_1988' : 'iso8859_4',
'iso_ir_110' : 'iso8859_4',
'l4' : 'iso8859_4',
'latin4' : 'iso8859_4',
# iso8859_5 codec
'csisolatincyrillic' : 'iso8859_5',
'cyrillic' : 'iso8859_5',
'iso_8859_5' : 'iso8859_5',
'iso_8859_5_1988' : 'iso8859_5',
'iso_ir_144' : 'iso8859_5',
# iso8859_6 codec
'arabic' : 'iso8859_6',
'asmo_708' : 'iso8859_6',
'csisolatinarabic' : 'iso8859_6',
'ecma_114' : 'iso8859_6',
'iso_8859_6' : 'iso8859_6',
'iso_8859_6_1987' : 'iso8859_6',
'iso_ir_127' : 'iso8859_6',
# iso8859_7 codec
'csisolatingreek' : 'iso8859_7',
'ecma_118' : 'iso8859_7',
'elot_928' : 'iso8859_7',
'greek' : 'iso8859_7',
'greek8' : 'iso8859_7',
'iso_8859_7' : 'iso8859_7',
'iso_8859_7_1987' : 'iso8859_7',
'iso_ir_126' : 'iso8859_7',
# iso8859_8 codec
'csisolatinhebrew' : 'iso8859_8',
'hebrew' : 'iso8859_8',
'iso_8859_8' : 'iso8859_8',
'iso_8859_8_1988' : 'iso8859_8',
'iso_ir_138' : 'iso8859_8',
# iso8859_9 codec
'csisolatin5' : 'iso8859_9',
'iso_8859_9' : 'iso8859_9',
'iso_8859_9_1989' : 'iso8859_9',
'iso_ir_148' : 'iso8859_9',
'l5' : 'iso8859_9',
'latin5' : 'iso8859_9',
# johab codec
'cp1361' : 'johab',
'ms1361' : 'johab',
# koi8_r codec
'cskoi8r' : 'koi8_r',
# latin_1 codec
#
# Note that the latin_1 codec is implemented internally in C and a
# lot faster than the charmap codec iso8859_1 which uses the same
# encoding. This is why we discourage the use of the iso8859_1
# codec and alias it to latin_1 instead.
#
'8859' : 'latin_1',
'cp819' : 'latin_1',
'csisolatin1' : 'latin_1',
'ibm819' : 'latin_1',
'iso8859' : 'latin_1',
'iso8859_1' : 'latin_1',
'iso_8859_1' : 'latin_1',
'iso_8859_1_1987' : 'latin_1',
'iso_ir_100' : 'latin_1',
'l1' : 'latin_1',
'latin' : 'latin_1',
'latin1' : 'latin_1',
# mac_cyrillic codec
'maccyrillic' : 'mac_cyrillic',
# mac_greek codec
'macgreek' : 'mac_greek',
# mac_iceland codec
'maciceland' : 'mac_iceland',
# mac_latin2 codec
'maccentraleurope' : 'mac_latin2',
'maclatin2' : 'mac_latin2',
# mac_roman codec
'macroman' : 'mac_roman',
# mac_turkish codec
'macturkish' : 'mac_turkish',
# mbcs codec
'dbcs' : 'mbcs',
# ptcp154 codec
'csptcp154' : 'ptcp154',
'pt154' : 'ptcp154',
'cp154' : 'ptcp154',
'cyrillic-asian' : 'ptcp154',
# quopri_codec codec
'quopri' : 'quopri_codec',
'quoted_printable' : 'quopri_codec',
'quotedprintable' : 'quopri_codec',
# rot_13 codec
'rot13' : 'rot_13',
# shift_jis codec
'csshiftjis' : 'shift_jis',
'shiftjis' : 'shift_jis',
'sjis' : 'shift_jis',
's_jis' : 'shift_jis',
# shift_jis_2004 codec
'shiftjis2004' : 'shift_jis_2004',
'sjis_2004' : 'shift_jis_2004',
's_jis_2004' : 'shift_jis_2004',
# shift_jisx0213 codec
'shiftjisx0213' : 'shift_jisx0213',
'sjisx0213' : 'shift_jisx0213',
's_jisx0213' : 'shift_jisx0213',
# tactis codec
'tis260' : 'tactis',
# tis_620 codec
'tis620' : 'tis_620',
'tis_620_0' : 'tis_620',
'tis_620_2529_0' : 'tis_620',
'tis_620_2529_1' : 'tis_620',
'iso_ir_166' : 'tis_620',
# utf_16 codec
'u16' : 'utf_16',
'utf16' : 'utf_16',
# utf_16_be codec
'unicodebigunmarked' : 'utf_16_be',
'utf_16be' : 'utf_16_be',
# utf_16_le codec
'unicodelittleunmarked' : 'utf_16_le',
'utf_16le' : 'utf_16_le',
# utf_32 codec
'u32' : 'utf_32',
'utf32' : 'utf_32',
# utf_32_be codec
'utf_32be' : 'utf_32_be',
# utf_32_le codec
'utf_32le' : 'utf_32_le',
# utf_7 codec
'u7' : 'utf_7',
'utf7' : 'utf_7',
'unicode_1_1_utf_7' : 'utf_7',
# utf_8 codec
'u8' : 'utf_8',
'utf' : 'utf_8',
'utf8' : 'utf_8',
'utf8_ucs2' : 'utf_8',
'utf8_ucs4' : 'utf_8',
# uu_codec codec
'uu' : 'uu_codec',
# zlib_codec codec
'zip' : 'zlib_codec',
'zlib' : 'zlib_codec',
}

Binary file not shown.

View File

@ -0,0 +1,50 @@
""" Python 'ascii' Codec
Written by Marc-Andre Lemburg (mal@lemburg.com).
(c) Copyright CNRI, All Rights Reserved. NO WARRANTY.
"""
import codecs
### Codec APIs
class Codec(codecs.Codec):
# Note: Binding these as C functions will result in the class not
# converting them to methods. This is intended.
encode = codecs.ascii_encode
decode = codecs.ascii_decode
class IncrementalEncoder(codecs.IncrementalEncoder):
def encode(self, input, final=False):
return codecs.ascii_encode(input, self.errors)[0]
class IncrementalDecoder(codecs.IncrementalDecoder):
def decode(self, input, final=False):
return codecs.ascii_decode(input, self.errors)[0]
class StreamWriter(Codec,codecs.StreamWriter):
pass
class StreamReader(Codec,codecs.StreamReader):
pass
class StreamConverter(StreamWriter,StreamReader):
encode = codecs.ascii_decode
decode = codecs.ascii_encode
### encodings module API
def getregentry():
return codecs.CodecInfo(
name='ascii',
encode=Codec.encode,
decode=Codec.decode,
incrementalencoder=IncrementalEncoder,
incrementaldecoder=IncrementalDecoder,
streamwriter=StreamWriter,
streamreader=StreamReader,
)

Binary file not shown.

View File

@ -0,0 +1,359 @@
#! /usr/bin/env python
"""RFC 3548: Base16, Base32, Base64 Data Encodings"""
# Modified 04-Oct-1995 by Jack Jansen to use binascii module
# Modified 30-Dec-2003 by Barry Warsaw to add full RFC 3548 support
import re
import struct
import binascii
__all__ = [
# Legacy interface exports traditional RFC 1521 Base64 encodings
'encode', 'decode', 'encodestring', 'decodestring',
# Generalized interface for other encodings
'b64encode', 'b64decode', 'b32encode', 'b32decode',
'b16encode', 'b16decode',
# Standard Base64 encoding
'standard_b64encode', 'standard_b64decode',
# Some common Base64 alternatives. As referenced by RFC 3458, see thread
# starting at:
#
# http://zgp.org/pipermail/p2p-hackers/2001-September/000316.html
'urlsafe_b64encode', 'urlsafe_b64decode',
]
_translation = [chr(_x) for _x in range(256)]
EMPTYSTRING = ''
def _translate(s, altchars):
translation = _translation[:]
for k, v in altchars.items():
translation[ord(k)] = v
return s.translate(''.join(translation))
# Base64 encoding/decoding uses binascii
def b64encode(s, altchars=None):
"""Encode a string using Base64.
s is the string to encode. Optional altchars must be a string of at least
length 2 (additional characters are ignored) which specifies an
alternative alphabet for the '+' and '/' characters. This allows an
application to e.g. generate url or filesystem safe Base64 strings.
The encoded string is returned.
"""
# Strip off the trailing newline
encoded = binascii.b2a_base64(s)[:-1]
if altchars is not None:
return _translate(encoded, {'+': altchars[0], '/': altchars[1]})
return encoded
def b64decode(s, altchars=None):
"""Decode a Base64 encoded string.
s is the string to decode. Optional altchars must be a string of at least
length 2 (additional characters are ignored) which specifies the
alternative alphabet used instead of the '+' and '/' characters.
The decoded string is returned. A TypeError is raised if s were
incorrectly padded or if there are non-alphabet characters present in the
string.
"""
if altchars is not None:
s = _translate(s, {altchars[0]: '+', altchars[1]: '/'})
try:
return binascii.a2b_base64(s)
except binascii.Error, msg:
# Transform this exception for consistency
raise TypeError(msg)
def standard_b64encode(s):
"""Encode a string using the standard Base64 alphabet.
s is the string to encode. The encoded string is returned.
"""
return b64encode(s)
def standard_b64decode(s):
"""Decode a string encoded with the standard Base64 alphabet.
s is the string to decode. The decoded string is returned. A TypeError
is raised if the string is incorrectly padded or if there are non-alphabet
characters present in the string.
"""
return b64decode(s)
def urlsafe_b64encode(s):
"""Encode a string using a url-safe Base64 alphabet.
s is the string to encode. The encoded string is returned. The alphabet
uses '-' instead of '+' and '_' instead of '/'.
"""
return b64encode(s, '-_')
def urlsafe_b64decode(s):
"""Decode a string encoded with the standard Base64 alphabet.
s is the string to decode. The decoded string is returned. A TypeError
is raised if the string is incorrectly padded or if there are non-alphabet
characters present in the string.
The alphabet uses '-' instead of '+' and '_' instead of '/'.
"""
return b64decode(s, '-_')
# Base32 encoding/decoding must be done in Python
_b32alphabet = {
0: 'A', 9: 'J', 18: 'S', 27: '3',
1: 'B', 10: 'K', 19: 'T', 28: '4',
2: 'C', 11: 'L', 20: 'U', 29: '5',
3: 'D', 12: 'M', 21: 'V', 30: '6',
4: 'E', 13: 'N', 22: 'W', 31: '7',
5: 'F', 14: 'O', 23: 'X',
6: 'G', 15: 'P', 24: 'Y',
7: 'H', 16: 'Q', 25: 'Z',
8: 'I', 17: 'R', 26: '2',
}
_b32tab = _b32alphabet.items()
_b32tab.sort()
_b32tab = [v for k, v in _b32tab]
_b32rev = dict([(v, long(k)) for k, v in _b32alphabet.items()])
def b32encode(s):
"""Encode a string using Base32.
s is the string to encode. The encoded string is returned.
"""
parts = []
quanta, leftover = divmod(len(s), 5)
# Pad the last quantum with zero bits if necessary
if leftover:
s += ('\0' * (5 - leftover))
quanta += 1
for i in range(quanta):
# c1 and c2 are 16 bits wide, c3 is 8 bits wide. The intent of this
# code is to process the 40 bits in units of 5 bits. So we take the 1
# leftover bit of c1 and tack it onto c2. Then we take the 2 leftover
# bits of c2 and tack them onto c3. The shifts and masks are intended
# to give us values of exactly 5 bits in width.
c1, c2, c3 = struct.unpack('!HHB', s[i*5:(i+1)*5])
c2 += (c1 & 1) << 16 # 17 bits wide
c3 += (c2 & 3) << 8 # 10 bits wide
parts.extend([_b32tab[c1 >> 11], # bits 1 - 5
_b32tab[(c1 >> 6) & 0x1f], # bits 6 - 10
_b32tab[(c1 >> 1) & 0x1f], # bits 11 - 15
_b32tab[c2 >> 12], # bits 16 - 20 (1 - 5)
_b32tab[(c2 >> 7) & 0x1f], # bits 21 - 25 (6 - 10)
_b32tab[(c2 >> 2) & 0x1f], # bits 26 - 30 (11 - 15)
_b32tab[c3 >> 5], # bits 31 - 35 (1 - 5)
_b32tab[c3 & 0x1f], # bits 36 - 40 (1 - 5)
])
encoded = EMPTYSTRING.join(parts)
# Adjust for any leftover partial quanta
if leftover == 1:
return encoded[:-6] + '======'
elif leftover == 2:
return encoded[:-4] + '===='
elif leftover == 3:
return encoded[:-3] + '==='
elif leftover == 4:
return encoded[:-1] + '='
return encoded
def b32decode(s, casefold=False, map01=None):
"""Decode a Base32 encoded string.
s is the string to decode. Optional casefold is a flag specifying whether
a lowercase alphabet is acceptable as input. For security purposes, the
default is False.
RFC 3548 allows for optional mapping of the digit 0 (zero) to the letter O
(oh), and for optional mapping of the digit 1 (one) to either the letter I
(eye) or letter L (el). The optional argument map01 when not None,
specifies which letter the digit 1 should be mapped to (when map01 is not
None, the digit 0 is always mapped to the letter O). For security
purposes the default is None, so that 0 and 1 are not allowed in the
input.
The decoded string is returned. A TypeError is raised if s were
incorrectly padded or if there are non-alphabet characters present in the
string.
"""
quanta, leftover = divmod(len(s), 8)
if leftover:
raise TypeError('Incorrect padding')
# Handle section 2.4 zero and one mapping. The flag map01 will be either
# False, or the character to map the digit 1 (one) to. It should be
# either L (el) or I (eye).
if map01:
s = _translate(s, {'0': 'O', '1': map01})
if casefold:
s = s.upper()
# Strip off pad characters from the right. We need to count the pad
# characters because this will tell us how many null bytes to remove from
# the end of the decoded string.
padchars = 0
mo = re.search('(?P<pad>[=]*)$', s)
if mo:
padchars = len(mo.group('pad'))
if padchars > 0:
s = s[:-padchars]
# Now decode the full quanta
parts = []
acc = 0
shift = 35
for c in s:
val = _b32rev.get(c)
if val is None:
raise TypeError('Non-base32 digit found')
acc += _b32rev[c] << shift
shift -= 5
if shift < 0:
parts.append(binascii.unhexlify('%010x' % acc))
acc = 0
shift = 35
# Process the last, partial quanta
last = binascii.unhexlify('%010x' % acc)
if padchars == 0:
last = '' # No characters
elif padchars == 1:
last = last[:-1]
elif padchars == 3:
last = last[:-2]
elif padchars == 4:
last = last[:-3]
elif padchars == 6:
last = last[:-4]
else:
raise TypeError('Incorrect padding')
parts.append(last)
return EMPTYSTRING.join(parts)
# RFC 3548, Base 16 Alphabet specifies uppercase, but hexlify() returns
# lowercase. The RFC also recommends against accepting input case
# insensitively.
def b16encode(s):
"""Encode a string using Base16.
s is the string to encode. The encoded string is returned.
"""
return binascii.hexlify(s).upper()
def b16decode(s, casefold=False):
"""Decode a Base16 encoded string.
s is the string to decode. Optional casefold is a flag specifying whether
a lowercase alphabet is acceptable as input. For security purposes, the
default is False.
The decoded string is returned. A TypeError is raised if s were
incorrectly padded or if there are non-alphabet characters present in the
string.
"""
if casefold:
s = s.upper()
if re.search('[^0-9A-F]', s):
raise TypeError('Non-base16 digit found')
return binascii.unhexlify(s)
# Legacy interface. This code could be cleaned up since I don't believe
# binascii has any line length limitations. It just doesn't seem worth it
# though.
MAXLINESIZE = 76 # Excluding the CRLF
MAXBINSIZE = (MAXLINESIZE//4)*3
def encode(input, output):
"""Encode a file."""
while True:
s = input.read(MAXBINSIZE)
if not s:
break
while len(s) < MAXBINSIZE:
ns = input.read(MAXBINSIZE-len(s))
if not ns:
break
s += ns
line = binascii.b2a_base64(s)
output.write(line)
def decode(input, output):
"""Decode a file."""
while True:
line = input.readline()
if not line:
break
s = binascii.a2b_base64(line)
output.write(s)
def encodestring(s):
"""Encode a string into multiple lines of base-64 data."""
pieces = []
for i in range(0, len(s), MAXBINSIZE):
chunk = s[i : i + MAXBINSIZE]
pieces.append(binascii.b2a_base64(chunk))
return "".join(pieces)
def decodestring(s):
"""Decode a string."""
return binascii.a2b_base64(s)
# Useable as a script...
def test():
"""Small test program"""
import sys, getopt
try:
opts, args = getopt.getopt(sys.argv[1:], 'deut')
except getopt.error, msg:
sys.stdout = sys.stderr
print msg
print """usage: %s [-d|-e|-u|-t] [file|-]
-d, -u: decode
-e: encode (default)
-t: encode and decode string 'Aladdin:open sesame'"""%sys.argv[0]
sys.exit(2)
func = encode
for o, a in opts:
if o == '-e': func = encode
if o == '-d': func = decode
if o == '-u': func = decode
if o == '-t': test1(); return
if args and args[0] != '-':
func(open(args[0], 'rb'), sys.stdout)
else:
func(sys.stdin, sys.stdout)
def test1():
s0 = "Aladdin:open sesame"
s1 = encodestring(s0)
s2 = decodestring(s1)
print s0, repr(s1), s2
if __name__ == '__main__':
test()

Binary file not shown.

View File

@ -0,0 +1,92 @@
"""Bisection algorithms."""
def insort_right(a, x, lo=0, hi=None):
"""Insert item x in list a, and keep it sorted assuming a is sorted.
If x is already in a, insert it to the right of the rightmost x.
Optional args lo (default 0) and hi (default len(a)) bound the
slice of a to be searched.
"""
if lo < 0:
raise ValueError('lo must be non-negative')
if hi is None:
hi = len(a)
while lo < hi:
mid = (lo+hi)//2
if x < a[mid]: hi = mid
else: lo = mid+1
a.insert(lo, x)
insort = insort_right # backward compatibility
def bisect_right(a, x, lo=0, hi=None):
"""Return the index where to insert item x in list a, assuming a is sorted.
The return value i is such that all e in a[:i] have e <= x, and all e in
a[i:] have e > x. So if x already appears in the list, a.insert(x) will
insert just after the rightmost x already there.
Optional args lo (default 0) and hi (default len(a)) bound the
slice of a to be searched.
"""
if lo < 0:
raise ValueError('lo must be non-negative')
if hi is None:
hi = len(a)
while lo < hi:
mid = (lo+hi)//2
if x < a[mid]: hi = mid
else: lo = mid+1
return lo
bisect = bisect_right # backward compatibility
def insort_left(a, x, lo=0, hi=None):
"""Insert item x in list a, and keep it sorted assuming a is sorted.
If x is already in a, insert it to the left of the leftmost x.
Optional args lo (default 0) and hi (default len(a)) bound the
slice of a to be searched.
"""
if lo < 0:
raise ValueError('lo must be non-negative')
if hi is None:
hi = len(a)
while lo < hi:
mid = (lo+hi)//2
if a[mid] < x: lo = mid+1
else: hi = mid
a.insert(lo, x)
def bisect_left(a, x, lo=0, hi=None):
"""Return the index where to insert item x in list a, assuming a is sorted.
The return value i is such that all e in a[:i] have e < x, and all e in
a[i:] have e >= x. So if x already appears in the list, a.insert(x) will
insert just before the leftmost x already there.
Optional args lo (default 0) and hi (default len(a)) bound the
slice of a to be searched.
"""
if lo < 0:
raise ValueError('lo must be non-negative')
if hi is None:
hi = len(a)
while lo < hi:
mid = (lo+hi)//2
if a[mid] < x: lo = mid+1
else: hi = mid
return lo
# Overwrite above definitions with a fast C implementation
try:
from _bisect import bisect_right, bisect_left, insort_left, insort_right, insort, bisect
except ImportError:
pass

Binary file not shown.

File diff suppressed because it is too large Load Diff

Binary file not shown.

View File

@ -0,0 +1,149 @@
__all__ = ['deque', 'defaultdict', 'namedtuple']
# For bootstrapping reasons, the collection ABCs are defined in _abcoll.py.
# They should however be considered an integral part of collections.py.
from _abcoll import *
import _abcoll
__all__ += _abcoll.__all__
from _collections import deque, defaultdict
from operator import itemgetter as _itemgetter
from keyword import iskeyword as _iskeyword
import sys as _sys
def namedtuple(typename, field_names, verbose=False):
"""Returns a new subclass of tuple with named fields.
>>> Point = namedtuple('Point', 'x y')
>>> Point.__doc__ # docstring for the new class
'Point(x, y)'
>>> p = Point(11, y=22) # instantiate with positional args or keywords
>>> p[0] + p[1] # indexable like a plain tuple
33
>>> x, y = p # unpack like a regular tuple
>>> x, y
(11, 22)
>>> p.x + p.y # fields also accessable by name
33
>>> d = p._asdict() # convert to a dictionary
>>> d['x']
11
>>> Point(**d) # convert from a dictionary
Point(x=11, y=22)
>>> p._replace(x=100) # _replace() is like str.replace() but targets named fields
Point(x=100, y=22)
"""
# Parse and validate the field names. Validation serves two purposes,
# generating informative error messages and preventing template injection attacks.
if isinstance(field_names, basestring):
field_names = field_names.replace(',', ' ').split() # names separated by whitespace and/or commas
field_names = tuple(map(str, field_names))
for name in (typename,) + field_names:
if not all(c.isalnum() or c=='_' for c in name):
raise ValueError('Type names and field names can only contain alphanumeric characters and underscores: %r' % name)
if _iskeyword(name):
raise ValueError('Type names and field names cannot be a keyword: %r' % name)
if name[0].isdigit():
raise ValueError('Type names and field names cannot start with a number: %r' % name)
seen_names = set()
for name in field_names:
if name.startswith('_'):
raise ValueError('Field names cannot start with an underscore: %r' % name)
if name in seen_names:
raise ValueError('Encountered duplicate field name: %r' % name)
seen_names.add(name)
# Create and fill-in the class template
numfields = len(field_names)
argtxt = repr(field_names).replace("'", "")[1:-1] # tuple repr without parens or quotes
reprtxt = ', '.join('%s=%%r' % name for name in field_names)
dicttxt = ', '.join('%r: t[%d]' % (name, pos) for pos, name in enumerate(field_names))
template = '''class %(typename)s(tuple):
'%(typename)s(%(argtxt)s)' \n
__slots__ = () \n
_fields = %(field_names)r \n
def __new__(_cls, %(argtxt)s):
return _tuple.__new__(_cls, (%(argtxt)s)) \n
@classmethod
def _make(cls, iterable, new=tuple.__new__, len=len):
'Make a new %(typename)s object from a sequence or iterable'
result = new(cls, iterable)
if len(result) != %(numfields)d:
raise TypeError('Expected %(numfields)d arguments, got %%d' %% len(result))
return result \n
def __repr__(self):
return '%(typename)s(%(reprtxt)s)' %% self \n
def _asdict(t):
'Return a new dict which maps field names to their values'
return {%(dicttxt)s} \n
def _replace(_self, **kwds):
'Return a new %(typename)s object replacing specified fields with new values'
result = _self._make(map(kwds.pop, %(field_names)r, _self))
if kwds:
raise ValueError('Got unexpected field names: %%r' %% kwds.keys())
return result \n
def __getnewargs__(self):
return tuple(self) \n\n''' % locals()
for i, name in enumerate(field_names):
template += ' %s = _property(_itemgetter(%d))\n' % (name, i)
if verbose:
print template
# Execute the template string in a temporary namespace and
# support tracing utilities by setting a value for frame.f_globals['__name__']
namespace = dict(_itemgetter=_itemgetter, __name__='namedtuple_%s' % typename,
_property=property, _tuple=tuple)
try:
exec template in namespace
except SyntaxError, e:
raise SyntaxError(e.message + ':\n' + template)
result = namespace[typename]
# For pickling to work, the __module__ variable needs to be set to the frame
# where the named tuple is created. Bypass this step in enviroments where
# sys._getframe is not defined (Jython for example).
if hasattr(_sys, '_getframe'):
result.__module__ = _sys._getframe(1).f_globals.get('__name__', '__main__')
return result
if __name__ == '__main__':
# verify that instances can be pickled
from cPickle import loads, dumps
Point = namedtuple('Point', 'x, y', True)
p = Point(x=10, y=20)
assert p == loads(dumps(p))
# test and demonstrate ability to override methods
class Point(namedtuple('Point', 'x y')):
__slots__ = ()
@property
def hypot(self):
return (self.x ** 2 + self.y ** 2) ** 0.5
def __str__(self):
return 'Point: x=%6.3f y=%6.3f hypot=%6.3f' % (self.x, self.y, self.hypot)
for p in Point(3, 4), Point(14, 5/7.):
print p
class Point(namedtuple('Point', 'x y')):
'Point class with optimized _make() and _replace() without error-checking'
__slots__ = ()
_make = classmethod(tuple.__new__)
def _replace(self, _map=map, **kwds):
return self._make(_map(kwds.get, ('x', 'y'), self))
print Point(11, 22)._replace(x=100)
Point3D = namedtuple('Point3D', Point._fields + ('z',))
print Point3D.__doc__
import doctest
TestResults = namedtuple('TestResults', 'failed attempted')
print TestResults(*doctest.testmod())

Binary file not shown.

View File

@ -0,0 +1,201 @@
"""Helper to provide extensibility for pickle/cPickle.
This is only useful to add pickle support for extension types defined in
C, not for instances of user-defined classes.
"""
from types import ClassType as _ClassType
__all__ = ["pickle", "constructor",
"add_extension", "remove_extension", "clear_extension_cache"]
dispatch_table = {}
def pickle(ob_type, pickle_function, constructor_ob=None):
if type(ob_type) is _ClassType:
raise TypeError("copy_reg is not intended for use with classes")
if not hasattr(pickle_function, '__call__'):
raise TypeError("reduction functions must be callable")
dispatch_table[ob_type] = pickle_function
# The constructor_ob function is a vestige of safe for unpickling.
# There is no reason for the caller to pass it anymore.
if constructor_ob is not None:
constructor(constructor_ob)
def constructor(object):
if not hasattr(object, '__call__'):
raise TypeError("constructors must be callable")
# Example: provide pickling support for complex numbers.
try:
complex
except NameError:
pass
else:
def pickle_complex(c):
return complex, (c.real, c.imag)
pickle(complex, pickle_complex, complex)
# Support for pickling new-style objects
def _reconstructor(cls, base, state):
if base is object:
obj = object.__new__(cls)
else:
obj = base.__new__(cls, state)
if base.__init__ != object.__init__:
base.__init__(obj, state)
return obj
_HEAPTYPE = 1<<9
# Python code for object.__reduce_ex__ for protocols 0 and 1
def _reduce_ex(self, proto):
assert proto < 2
for base in self.__class__.__mro__:
if hasattr(base, '__flags__') and not base.__flags__ & _HEAPTYPE:
break
else:
base = object # not really reachable
if base is object:
state = None
else:
if base is self.__class__:
raise TypeError, "can't pickle %s objects" % base.__name__
state = base(self)
args = (self.__class__, base, state)
try:
getstate = self.__getstate__
except AttributeError:
if getattr(self, "__slots__", None):
raise TypeError("a class that defines __slots__ without "
"defining __getstate__ cannot be pickled")
try:
dict = self.__dict__
except AttributeError:
dict = None
else:
dict = getstate()
if dict:
return _reconstructor, args, dict
else:
return _reconstructor, args
# Helper for __reduce_ex__ protocol 2
def __newobj__(cls, *args):
return cls.__new__(cls, *args)
def _slotnames(cls):
"""Return a list of slot names for a given class.
This needs to find slots defined by the class and its bases, so we
can't simply return the __slots__ attribute. We must walk down
the Method Resolution Order and concatenate the __slots__ of each
class found there. (This assumes classes don't modify their
__slots__ attribute to misrepresent their slots after the class is
defined.)
"""
# Get the value from a cache in the class if possible
names = cls.__dict__.get("__slotnames__")
if names is not None:
return names
# Not cached -- calculate the value
names = []
if not hasattr(cls, "__slots__"):
# This class has no slots
pass
else:
# Slots found -- gather slot names from all base classes
for c in cls.__mro__:
if "__slots__" in c.__dict__:
slots = c.__dict__['__slots__']
# if class has a single slot, it can be given as a string
if isinstance(slots, basestring):
slots = (slots,)
for name in slots:
# special descriptors
if name in ("__dict__", "__weakref__"):
continue
# mangled names
elif name.startswith('__') and not name.endswith('__'):
names.append('_%s%s' % (c.__name__, name))
else:
names.append(name)
# Cache the outcome in the class if at all possible
try:
cls.__slotnames__ = names
except:
pass # But don't die if we can't
return names
# A registry of extension codes. This is an ad-hoc compression
# mechanism. Whenever a global reference to <module>, <name> is about
# to be pickled, the (<module>, <name>) tuple is looked up here to see
# if it is a registered extension code for it. Extension codes are
# universal, so that the meaning of a pickle does not depend on
# context. (There are also some codes reserved for local use that
# don't have this restriction.) Codes are positive ints; 0 is
# reserved.
_extension_registry = {} # key -> code
_inverted_registry = {} # code -> key
_extension_cache = {} # code -> object
# Don't ever rebind those names: cPickle grabs a reference to them when
# it's initialized, and won't see a rebinding.
def add_extension(module, name, code):
"""Register an extension code."""
code = int(code)
if not 1 <= code <= 0x7fffffff:
raise ValueError, "code out of range"
key = (module, name)
if (_extension_registry.get(key) == code and
_inverted_registry.get(code) == key):
return # Redundant registrations are benign
if key in _extension_registry:
raise ValueError("key %s is already registered with code %s" %
(key, _extension_registry[key]))
if code in _inverted_registry:
raise ValueError("code %s is already in use for key %s" %
(code, _inverted_registry[code]))
_extension_registry[key] = code
_inverted_registry[code] = key
def remove_extension(module, name, code):
"""Unregister an extension code. For testing only."""
key = (module, name)
if (_extension_registry.get(key) != code or
_inverted_registry.get(code) != key):
raise ValueError("key %s is not registered with code %s" %
(key, code))
del _extension_registry[key]
del _inverted_registry[code]
if code in _extension_cache:
del _extension_cache[code]
def clear_extension_cache():
_extension_cache.clear()
# Standard extension code assignments
# Reserved ranges
# First Last Count Purpose
# 1 127 127 Reserved for Python standard library
# 128 191 64 Reserved for Zope
# 192 239 48 Reserved for 3rd parties
# 240 255 16 Reserved for private use (will never be assigned)
# 256 Inf Inf Reserved for future assignment
# Extension codes are assigned by the Python Software Foundation.

Binary file not shown.

View File

@ -0,0 +1,157 @@
""" Standard "encodings" Package
Standard Python encoding modules are stored in this package
directory.
Codec modules must have names corresponding to normalized encoding
names as defined in the normalize_encoding() function below, e.g.
'utf-8' must be implemented by the module 'utf_8.py'.
Each codec module must export the following interface:
* getregentry() -> codecs.CodecInfo object
The getregentry() API must a CodecInfo object with encoder, decoder,
incrementalencoder, incrementaldecoder, streamwriter and streamreader
atttributes which adhere to the Python Codec Interface Standard.
In addition, a module may optionally also define the following
APIs which are then used by the package's codec search function:
* getaliases() -> sequence of encoding name strings to use as aliases
Alias names returned by getaliases() must be normalized encoding
names as defined by normalize_encoding().
Written by Marc-Andre Lemburg (mal@lemburg.com).
(c) Copyright CNRI, All Rights Reserved. NO WARRANTY.
"""#"
import codecs
from encodings import aliases
import __builtin__
_cache = {}
_unknown = '--unknown--'
_import_tail = ['*']
_norm_encoding_map = (' . '
'0123456789 ABCDEFGHIJKLMNOPQRSTUVWXYZ '
' abcdefghijklmnopqrstuvwxyz '
' '
' '
' ')
_aliases = aliases.aliases
class CodecRegistryError(LookupError, SystemError):
pass
def normalize_encoding(encoding):
""" Normalize an encoding name.
Normalization works as follows: all non-alphanumeric
characters except the dot used for Python package names are
collapsed and replaced with a single underscore, e.g. ' -;#'
becomes '_'. Leading and trailing underscores are removed.
Note that encoding names should be ASCII only; if they do use
non-ASCII characters, these must be Latin-1 compatible.
"""
# Make sure we have an 8-bit string, because .translate() works
# differently for Unicode strings.
if hasattr(__builtin__, "unicode") and isinstance(encoding, unicode):
# Note that .encode('latin-1') does *not* use the codec
# registry, so this call doesn't recurse. (See unicodeobject.c
# PyUnicode_AsEncodedString() for details)
encoding = encoding.encode('latin-1')
return '_'.join(encoding.translate(_norm_encoding_map).split())
def search_function(encoding):
# Cache lookup
entry = _cache.get(encoding, _unknown)
if entry is not _unknown:
return entry
# Import the module:
#
# First try to find an alias for the normalized encoding
# name and lookup the module using the aliased name, then try to
# lookup the module using the standard import scheme, i.e. first
# try in the encodings package, then at top-level.
#
norm_encoding = normalize_encoding(encoding)
aliased_encoding = _aliases.get(norm_encoding) or \
_aliases.get(norm_encoding.replace('.', '_'))
if aliased_encoding is not None:
modnames = [aliased_encoding,
norm_encoding]
else:
modnames = [norm_encoding]
for modname in modnames:
if not modname or '.' in modname:
continue
try:
# Import is absolute to prevent the possibly malicious import of a
# module with side-effects that is not in the 'encodings' package.
mod = __import__('encodings.' + modname, fromlist=_import_tail,
level=0)
except ImportError:
pass
else:
break
else:
mod = None
try:
getregentry = mod.getregentry
except AttributeError:
# Not a codec module
mod = None
if mod is None:
# Cache misses
_cache[encoding] = None
return None
# Now ask the module for the registry entry
entry = getregentry()
if not isinstance(entry, codecs.CodecInfo):
if not 4 <= len(entry) <= 7:
raise CodecRegistryError,\
'module "%s" (%s) failed to register' % \
(mod.__name__, mod.__file__)
if not callable(entry[0]) or \
not callable(entry[1]) or \
(entry[2] is not None and not callable(entry[2])) or \
(entry[3] is not None and not callable(entry[3])) or \
(len(entry) > 4 and entry[4] is not None and not callable(entry[4])) or \
(len(entry) > 5 and entry[5] is not None and not callable(entry[5])):
raise CodecRegistryError,\
'incompatible codecs in module "%s" (%s)' % \
(mod.__name__, mod.__file__)
if len(entry)<7 or entry[6] is None:
entry += (None,)*(6-len(entry)) + (mod.__name__.split(".", 1)[1],)
entry = codecs.CodecInfo(*entry)
# Cache the codec registry entry
_cache[encoding] = entry
# Register its aliases (without overwriting previously registered
# aliases)
try:
codecaliases = mod.getaliases()
except AttributeError:
pass
else:
for alias in codecaliases:
if not _aliases.has_key(alias):
_aliases[alias] = modname
# Return the registry entry
return entry
# Register the search_function in the Python codec registry
codecs.register(search_function)

View File

@ -0,0 +1,522 @@
""" Encoding Aliases Support
This module is used by the encodings package search function to
map encodings names to module names.
Note that the search function normalizes the encoding names before
doing the lookup, so the mapping will have to map normalized
encoding names to module names.
Contents:
The following aliases dictionary contains mappings of all IANA
character set names for which the Python core library provides
codecs. In addition to these, a few Python specific codec
aliases have also been added.
"""
aliases = {
# Please keep this list sorted alphabetically by value !
# ascii codec
'646' : 'ascii',
'ansi_x3.4_1968' : 'ascii',
'ansi_x3_4_1968' : 'ascii', # some email headers use this non-standard name
'ansi_x3.4_1986' : 'ascii',
'cp367' : 'ascii',
'csascii' : 'ascii',
'ibm367' : 'ascii',
'iso646_us' : 'ascii',
'iso_646.irv_1991' : 'ascii',
'iso_ir_6' : 'ascii',
'us' : 'ascii',
'us_ascii' : 'ascii',
# base64_codec codec
'base64' : 'base64_codec',
'base_64' : 'base64_codec',
# big5 codec
'big5_tw' : 'big5',
'csbig5' : 'big5',
# big5hkscs codec
'big5_hkscs' : 'big5hkscs',
'hkscs' : 'big5hkscs',
# bz2_codec codec
'bz2' : 'bz2_codec',
# cp037 codec
'037' : 'cp037',
'csibm037' : 'cp037',
'ebcdic_cp_ca' : 'cp037',
'ebcdic_cp_nl' : 'cp037',
'ebcdic_cp_us' : 'cp037',
'ebcdic_cp_wt' : 'cp037',
'ibm037' : 'cp037',
'ibm039' : 'cp037',
# cp1026 codec
'1026' : 'cp1026',
'csibm1026' : 'cp1026',
'ibm1026' : 'cp1026',
# cp1140 codec
'1140' : 'cp1140',
'ibm1140' : 'cp1140',
# cp1250 codec
'1250' : 'cp1250',
'windows_1250' : 'cp1250',
# cp1251 codec
'1251' : 'cp1251',
'windows_1251' : 'cp1251',
# cp1252 codec
'1252' : 'cp1252',
'windows_1252' : 'cp1252',
# cp1253 codec
'1253' : 'cp1253',
'windows_1253' : 'cp1253',
# cp1254 codec
'1254' : 'cp1254',
'windows_1254' : 'cp1254',
# cp1255 codec
'1255' : 'cp1255',
'windows_1255' : 'cp1255',
# cp1256 codec
'1256' : 'cp1256',
'windows_1256' : 'cp1256',
# cp1257 codec
'1257' : 'cp1257',
'windows_1257' : 'cp1257',
# cp1258 codec
'1258' : 'cp1258',
'windows_1258' : 'cp1258',
# cp424 codec
'424' : 'cp424',
'csibm424' : 'cp424',
'ebcdic_cp_he' : 'cp424',
'ibm424' : 'cp424',
# cp437 codec
'437' : 'cp437',
'cspc8codepage437' : 'cp437',
'ibm437' : 'cp437',
# cp500 codec
'500' : 'cp500',
'csibm500' : 'cp500',
'ebcdic_cp_be' : 'cp500',
'ebcdic_cp_ch' : 'cp500',
'ibm500' : 'cp500',
# cp775 codec
'775' : 'cp775',
'cspc775baltic' : 'cp775',
'ibm775' : 'cp775',
# cp850 codec
'850' : 'cp850',
'cspc850multilingual' : 'cp850',
'ibm850' : 'cp850',
# cp852 codec
'852' : 'cp852',
'cspcp852' : 'cp852',
'ibm852' : 'cp852',
# cp855 codec
'855' : 'cp855',
'csibm855' : 'cp855',
'ibm855' : 'cp855',
# cp857 codec
'857' : 'cp857',
'csibm857' : 'cp857',
'ibm857' : 'cp857',
# cp860 codec
'860' : 'cp860',
'csibm860' : 'cp860',
'ibm860' : 'cp860',
# cp861 codec
'861' : 'cp861',
'cp_is' : 'cp861',
'csibm861' : 'cp861',
'ibm861' : 'cp861',
# cp862 codec
'862' : 'cp862',
'cspc862latinhebrew' : 'cp862',
'ibm862' : 'cp862',
# cp863 codec
'863' : 'cp863',
'csibm863' : 'cp863',
'ibm863' : 'cp863',
# cp864 codec
'864' : 'cp864',
'csibm864' : 'cp864',
'ibm864' : 'cp864',
# cp865 codec
'865' : 'cp865',
'csibm865' : 'cp865',
'ibm865' : 'cp865',
# cp866 codec
'866' : 'cp866',
'csibm866' : 'cp866',
'ibm866' : 'cp866',
# cp869 codec
'869' : 'cp869',
'cp_gr' : 'cp869',
'csibm869' : 'cp869',
'ibm869' : 'cp869',
# cp932 codec
'932' : 'cp932',
'ms932' : 'cp932',
'mskanji' : 'cp932',
'ms_kanji' : 'cp932',
# cp949 codec
'949' : 'cp949',
'ms949' : 'cp949',
'uhc' : 'cp949',
# cp950 codec
'950' : 'cp950',
'ms950' : 'cp950',
# euc_jis_2004 codec
'jisx0213' : 'euc_jis_2004',
'eucjis2004' : 'euc_jis_2004',
'euc_jis2004' : 'euc_jis_2004',
# euc_jisx0213 codec
'eucjisx0213' : 'euc_jisx0213',
# euc_jp codec
'eucjp' : 'euc_jp',
'ujis' : 'euc_jp',
'u_jis' : 'euc_jp',
# euc_kr codec
'euckr' : 'euc_kr',
'korean' : 'euc_kr',
'ksc5601' : 'euc_kr',
'ks_c_5601' : 'euc_kr',
'ks_c_5601_1987' : 'euc_kr',
'ksx1001' : 'euc_kr',
'ks_x_1001' : 'euc_kr',
# gb18030 codec
'gb18030_2000' : 'gb18030',
# gb2312 codec
'chinese' : 'gb2312',
'csiso58gb231280' : 'gb2312',
'euc_cn' : 'gb2312',
'euccn' : 'gb2312',
'eucgb2312_cn' : 'gb2312',
'gb2312_1980' : 'gb2312',
'gb2312_80' : 'gb2312',
'iso_ir_58' : 'gb2312',
# gbk codec
'936' : 'gbk',
'cp936' : 'gbk',
'ms936' : 'gbk',
# hex_codec codec
'hex' : 'hex_codec',
# hp_roman8 codec
'roman8' : 'hp_roman8',
'r8' : 'hp_roman8',
'csHPRoman8' : 'hp_roman8',
# hz codec
'hzgb' : 'hz',
'hz_gb' : 'hz',
'hz_gb_2312' : 'hz',
# iso2022_jp codec
'csiso2022jp' : 'iso2022_jp',
'iso2022jp' : 'iso2022_jp',
'iso_2022_jp' : 'iso2022_jp',
# iso2022_jp_1 codec
'iso2022jp_1' : 'iso2022_jp_1',
'iso_2022_jp_1' : 'iso2022_jp_1',
# iso2022_jp_2 codec
'iso2022jp_2' : 'iso2022_jp_2',
'iso_2022_jp_2' : 'iso2022_jp_2',
# iso2022_jp_2004 codec
'iso_2022_jp_2004' : 'iso2022_jp_2004',
'iso2022jp_2004' : 'iso2022_jp_2004',
# iso2022_jp_3 codec
'iso2022jp_3' : 'iso2022_jp_3',
'iso_2022_jp_3' : 'iso2022_jp_3',
# iso2022_jp_ext codec
'iso2022jp_ext' : 'iso2022_jp_ext',
'iso_2022_jp_ext' : 'iso2022_jp_ext',
# iso2022_kr codec
'csiso2022kr' : 'iso2022_kr',
'iso2022kr' : 'iso2022_kr',
'iso_2022_kr' : 'iso2022_kr',
# iso8859_10 codec
'csisolatin6' : 'iso8859_10',
'iso_8859_10' : 'iso8859_10',
'iso_8859_10_1992' : 'iso8859_10',
'iso_ir_157' : 'iso8859_10',
'l6' : 'iso8859_10',
'latin6' : 'iso8859_10',
# iso8859_11 codec
'thai' : 'iso8859_11',
'iso_8859_11' : 'iso8859_11',
'iso_8859_11_2001' : 'iso8859_11',
# iso8859_13 codec
'iso_8859_13' : 'iso8859_13',
'l7' : 'iso8859_13',
'latin7' : 'iso8859_13',
# iso8859_14 codec
'iso_8859_14' : 'iso8859_14',
'iso_8859_14_1998' : 'iso8859_14',
'iso_celtic' : 'iso8859_14',
'iso_ir_199' : 'iso8859_14',
'l8' : 'iso8859_14',
'latin8' : 'iso8859_14',
# iso8859_15 codec
'iso_8859_15' : 'iso8859_15',
'l9' : 'iso8859_15',
'latin9' : 'iso8859_15',
# iso8859_16 codec
'iso_8859_16' : 'iso8859_16',
'iso_8859_16_2001' : 'iso8859_16',
'iso_ir_226' : 'iso8859_16',
'l10' : 'iso8859_16',
'latin10' : 'iso8859_16',
# iso8859_2 codec
'csisolatin2' : 'iso8859_2',
'iso_8859_2' : 'iso8859_2',
'iso_8859_2_1987' : 'iso8859_2',
'iso_ir_101' : 'iso8859_2',
'l2' : 'iso8859_2',
'latin2' : 'iso8859_2',
# iso8859_3 codec
'csisolatin3' : 'iso8859_3',
'iso_8859_3' : 'iso8859_3',
'iso_8859_3_1988' : 'iso8859_3',
'iso_ir_109' : 'iso8859_3',
'l3' : 'iso8859_3',
'latin3' : 'iso8859_3',
# iso8859_4 codec
'csisolatin4' : 'iso8859_4',
'iso_8859_4' : 'iso8859_4',
'iso_8859_4_1988' : 'iso8859_4',
'iso_ir_110' : 'iso8859_4',
'l4' : 'iso8859_4',
'latin4' : 'iso8859_4',
# iso8859_5 codec
'csisolatincyrillic' : 'iso8859_5',
'cyrillic' : 'iso8859_5',
'iso_8859_5' : 'iso8859_5',
'iso_8859_5_1988' : 'iso8859_5',
'iso_ir_144' : 'iso8859_5',
# iso8859_6 codec
'arabic' : 'iso8859_6',
'asmo_708' : 'iso8859_6',
'csisolatinarabic' : 'iso8859_6',
'ecma_114' : 'iso8859_6',
'iso_8859_6' : 'iso8859_6',
'iso_8859_6_1987' : 'iso8859_6',
'iso_ir_127' : 'iso8859_6',
# iso8859_7 codec
'csisolatingreek' : 'iso8859_7',
'ecma_118' : 'iso8859_7',
'elot_928' : 'iso8859_7',
'greek' : 'iso8859_7',
'greek8' : 'iso8859_7',
'iso_8859_7' : 'iso8859_7',
'iso_8859_7_1987' : 'iso8859_7',
'iso_ir_126' : 'iso8859_7',
# iso8859_8 codec
'csisolatinhebrew' : 'iso8859_8',
'hebrew' : 'iso8859_8',
'iso_8859_8' : 'iso8859_8',
'iso_8859_8_1988' : 'iso8859_8',
'iso_ir_138' : 'iso8859_8',
# iso8859_9 codec
'csisolatin5' : 'iso8859_9',
'iso_8859_9' : 'iso8859_9',
'iso_8859_9_1989' : 'iso8859_9',
'iso_ir_148' : 'iso8859_9',
'l5' : 'iso8859_9',
'latin5' : 'iso8859_9',
# johab codec
'cp1361' : 'johab',
'ms1361' : 'johab',
# koi8_r codec
'cskoi8r' : 'koi8_r',
# latin_1 codec
#
# Note that the latin_1 codec is implemented internally in C and a
# lot faster than the charmap codec iso8859_1 which uses the same
# encoding. This is why we discourage the use of the iso8859_1
# codec and alias it to latin_1 instead.
#
'8859' : 'latin_1',
'cp819' : 'latin_1',
'csisolatin1' : 'latin_1',
'ibm819' : 'latin_1',
'iso8859' : 'latin_1',
'iso8859_1' : 'latin_1',
'iso_8859_1' : 'latin_1',
'iso_8859_1_1987' : 'latin_1',
'iso_ir_100' : 'latin_1',
'l1' : 'latin_1',
'latin' : 'latin_1',
'latin1' : 'latin_1',
# mac_cyrillic codec
'maccyrillic' : 'mac_cyrillic',
# mac_greek codec
'macgreek' : 'mac_greek',
# mac_iceland codec
'maciceland' : 'mac_iceland',
# mac_latin2 codec
'maccentraleurope' : 'mac_latin2',
'maclatin2' : 'mac_latin2',
# mac_roman codec
'macroman' : 'mac_roman',
# mac_turkish codec
'macturkish' : 'mac_turkish',
# mbcs codec
'dbcs' : 'mbcs',
# ptcp154 codec
'csptcp154' : 'ptcp154',
'pt154' : 'ptcp154',
'cp154' : 'ptcp154',
'cyrillic-asian' : 'ptcp154',
# quopri_codec codec
'quopri' : 'quopri_codec',
'quoted_printable' : 'quopri_codec',
'quotedprintable' : 'quopri_codec',
# rot_13 codec
'rot13' : 'rot_13',
# shift_jis codec
'csshiftjis' : 'shift_jis',
'shiftjis' : 'shift_jis',
'sjis' : 'shift_jis',
's_jis' : 'shift_jis',
# shift_jis_2004 codec
'shiftjis2004' : 'shift_jis_2004',
'sjis_2004' : 'shift_jis_2004',
's_jis_2004' : 'shift_jis_2004',
# shift_jisx0213 codec
'shiftjisx0213' : 'shift_jisx0213',
'sjisx0213' : 'shift_jisx0213',
's_jisx0213' : 'shift_jisx0213',
# tactis codec
'tis260' : 'tactis',
# tis_620 codec
'tis620' : 'tis_620',
'tis_620_0' : 'tis_620',
'tis_620_2529_0' : 'tis_620',
'tis_620_2529_1' : 'tis_620',
'iso_ir_166' : 'tis_620',
# utf_16 codec
'u16' : 'utf_16',
'utf16' : 'utf_16',
# utf_16_be codec
'unicodebigunmarked' : 'utf_16_be',
'utf_16be' : 'utf_16_be',
# utf_16_le codec
'unicodelittleunmarked' : 'utf_16_le',
'utf_16le' : 'utf_16_le',
# utf_32 codec
'u32' : 'utf_32',
'utf32' : 'utf_32',
# utf_32_be codec
'utf_32be' : 'utf_32_be',
# utf_32_le codec
'utf_32le' : 'utf_32_le',
# utf_7 codec
'u7' : 'utf_7',
'utf7' : 'utf_7',
'unicode_1_1_utf_7' : 'utf_7',
# utf_8 codec
'u8' : 'utf_8',
'utf' : 'utf_8',
'utf8' : 'utf_8',
'utf8_ucs2' : 'utf_8',
'utf8_ucs4' : 'utf_8',
# uu_codec codec
'uu' : 'uu_codec',
# zlib_codec codec
'zip' : 'zlib_codec',
'zlib' : 'zlib_codec',
}

View File

@ -0,0 +1,50 @@
""" Python 'ascii' Codec
Written by Marc-Andre Lemburg (mal@lemburg.com).
(c) Copyright CNRI, All Rights Reserved. NO WARRANTY.
"""
import codecs
### Codec APIs
class Codec(codecs.Codec):
# Note: Binding these as C functions will result in the class not
# converting them to methods. This is intended.
encode = codecs.ascii_encode
decode = codecs.ascii_decode
class IncrementalEncoder(codecs.IncrementalEncoder):
def encode(self, input, final=False):
return codecs.ascii_encode(input, self.errors)[0]
class IncrementalDecoder(codecs.IncrementalDecoder):
def decode(self, input, final=False):
return codecs.ascii_decode(input, self.errors)[0]
class StreamWriter(Codec,codecs.StreamWriter):
pass
class StreamReader(Codec,codecs.StreamReader):
pass
class StreamConverter(StreamWriter,StreamReader):
encode = codecs.ascii_decode
decode = codecs.ascii_encode
### encodings module API
def getregentry():
return codecs.CodecInfo(
name='ascii',
encode=Codec.encode,
decode=Codec.decode,
incrementalencoder=IncrementalEncoder,
incrementaldecoder=IncrementalDecoder,
streamwriter=StreamWriter,
streamreader=StreamReader,
)

View File

@ -0,0 +1,79 @@
""" Python 'hex_codec' Codec - 2-digit hex content transfer encoding
Unlike most of the other codecs which target Unicode, this codec
will return Python string objects for both encode and decode.
Written by Marc-Andre Lemburg (mal@lemburg.com).
"""
import codecs, binascii
### Codec APIs
def hex_encode(input,errors='strict'):
""" Encodes the object input and returns a tuple (output
object, length consumed).
errors defines the error handling to apply. It defaults to
'strict' handling which is the only currently supported
error handling for this codec.
"""
assert errors == 'strict'
output = binascii.b2a_hex(input)
return (output, len(input))
def hex_decode(input,errors='strict'):
""" Decodes the object input and returns a tuple (output
object, length consumed).
input must be an object which provides the bf_getreadbuf
buffer slot. Python strings, buffer objects and memory
mapped files are examples of objects providing this slot.
errors defines the error handling to apply. It defaults to
'strict' handling which is the only currently supported
error handling for this codec.
"""
assert errors == 'strict'
output = binascii.a2b_hex(input)
return (output, len(input))
class Codec(codecs.Codec):
def encode(self, input,errors='strict'):
return hex_encode(input,errors)
def decode(self, input,errors='strict'):
return hex_decode(input,errors)
class IncrementalEncoder(codecs.IncrementalEncoder):
def encode(self, input, final=False):
assert self.errors == 'strict'
return binascii.b2a_hex(input)
class IncrementalDecoder(codecs.IncrementalDecoder):
def decode(self, input, final=False):
assert self.errors == 'strict'
return binascii.a2b_hex(input)
class StreamWriter(Codec,codecs.StreamWriter):
pass
class StreamReader(Codec,codecs.StreamReader):
pass
### encodings module API
def getregentry():
return codecs.CodecInfo(
name='hex',
encode=hex_encode,
decode=hex_decode,
incrementalencoder=IncrementalEncoder,
incrementaldecoder=IncrementalDecoder,
streamwriter=StreamWriter,
streamreader=StreamReader,
)

View File

@ -0,0 +1,51 @@
"""functools.py - Tools for working with functions and callable objects
"""
# Python module wrapper for _functools C module
# to allow utilities written in Python to be added
# to the functools module.
# Written by Nick Coghlan <ncoghlan at gmail.com>
# Copyright (C) 2006 Python Software Foundation.
# See C source code for _functools credits/copyright
from _functools import partial, reduce
# update_wrapper() and wraps() are tools to help write
# wrapper functions that can handle naive introspection
WRAPPER_ASSIGNMENTS = ('__module__', '__name__', '__doc__')
WRAPPER_UPDATES = ('__dict__',)
def update_wrapper(wrapper,
wrapped,
assigned = WRAPPER_ASSIGNMENTS,
updated = WRAPPER_UPDATES):
"""Update a wrapper function to look like the wrapped function
wrapper is the function to be updated
wrapped is the original function
assigned is a tuple naming the attributes assigned directly
from the wrapped function to the wrapper function (defaults to
functools.WRAPPER_ASSIGNMENTS)
updated is a tuple naming the attributes of the wrapper that
are updated with the corresponding attribute from the wrapped
function (defaults to functools.WRAPPER_UPDATES)
"""
for attr in assigned:
setattr(wrapper, attr, getattr(wrapped, attr))
for attr in updated:
getattr(wrapper, attr).update(getattr(wrapped, attr, {}))
# Return the wrapper so this can be used as a decorator via partial()
return wrapper
def wraps(wrapped,
assigned = WRAPPER_ASSIGNMENTS,
updated = WRAPPER_UPDATES):
"""Decorator factory to apply update_wrapper() to a wrapper function
Returns a decorator that invokes update_wrapper() with the decorated
function as the wrapper argument and the arguments to wraps() as the
remaining arguments. Default arguments are as for update_wrapper().
This is a convenience function to simplify applying partial() to
update_wrapper().
"""
return partial(update_wrapper, wrapped=wrapped,
assigned=assigned, updated=updated)

Binary file not shown.

View File

@ -0,0 +1,105 @@
"""
Path operations common to more than one OS
Do not use directly. The OS specific modules import the appropriate
functions from this module themselves.
"""
import os
import stat
__all__ = ['commonprefix', 'exists', 'getatime', 'getctime', 'getmtime',
'getsize', 'isdir', 'isfile']
# Does a path exist?
# This is false for dangling symbolic links on systems that support them.
def exists(path):
"""Test whether a path exists. Returns False for broken symbolic links"""
try:
st = os.stat(path)
except os.error:
return False
return True
# This follows symbolic links, so both islink() and isdir() can be true
# for the same path ono systems that support symlinks
def isfile(path):
"""Test whether a path is a regular file"""
try:
st = os.stat(path)
except os.error:
return False
return stat.S_ISREG(st.st_mode)
# Is a path a directory?
# This follows symbolic links, so both islink() and isdir()
# can be true for the same path on systems that support symlinks
def isdir(s):
"""Return true if the pathname refers to an existing directory."""
try:
st = os.stat(s)
except os.error:
return False
return stat.S_ISDIR(st.st_mode)
def getsize(filename):
"""Return the size of a file, reported by os.stat()."""
return os.stat(filename).st_size
def getmtime(filename):
"""Return the last modification time of a file, reported by os.stat()."""
return os.stat(filename).st_mtime
def getatime(filename):
"""Return the last access time of a file, reported by os.stat()."""
return os.stat(filename).st_atime
def getctime(filename):
"""Return the metadata change time of a file, reported by os.stat()."""
return os.stat(filename).st_ctime
# Return the longest prefix of all list elements.
def commonprefix(m):
"Given a list of pathnames, returns the longest common leading component"
if not m: return ''
s1 = min(m)
s2 = max(m)
for i, c in enumerate(s1):
if c != s2[i]:
return s1[:i]
return s1
# Split a path in root and extension.
# The extension is everything starting at the last dot in the last
# pathname component; the root is everything before that.
# It is always true that root + ext == p.
# Generic implementation of splitext, to be parametrized with
# the separators
def _splitext(p, sep, altsep, extsep):
"""Split the extension from a pathname.
Extension is everything from the last dot to the end, ignoring
leading dots. Returns "(root, ext)"; ext may be empty."""
sepIndex = p.rfind(sep)
if altsep:
altsepIndex = p.rfind(altsep)
sepIndex = max(sepIndex, altsepIndex)
dotIndex = p.rfind(extsep)
if dotIndex > sepIndex:
# skip all leading dots
filenameIndex = sepIndex + 1
while filenameIndex < dotIndex:
if p[filenameIndex] != extsep:
return p[:dotIndex], p[dotIndex:]
filenameIndex += 1
return p, ''

Binary file not shown.

View File

@ -0,0 +1,393 @@
# -*- coding: Latin-1 -*-
"""Heap queue algorithm (a.k.a. priority queue).
Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for
all k, counting elements from 0. For the sake of comparison,
non-existing elements are considered to be infinite. The interesting
property of a heap is that a[0] is always its smallest element.
Usage:
heap = [] # creates an empty heap
heappush(heap, item) # pushes a new item on the heap
item = heappop(heap) # pops the smallest item from the heap
item = heap[0] # smallest item on the heap without popping it
heapify(x) # transforms list into a heap, in-place, in linear time
item = heapreplace(heap, item) # pops and returns smallest item, and adds
# new item; the heap size is unchanged
Our API differs from textbook heap algorithms as follows:
- We use 0-based indexing. This makes the relationship between the
index for a node and the indexes for its children slightly less
obvious, but is more suitable since Python uses 0-based indexing.
- Our heappop() method returns the smallest item, not the largest.
These two make it possible to view the heap as a regular Python list
without surprises: heap[0] is the smallest item, and heap.sort()
maintains the heap invariant!
"""
# Original code by Kevin O'Connor, augmented by Tim Peters and Raymond Hettinger
__about__ = """Heap queues
[explanation by François Pinard]
Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for
all k, counting elements from 0. For the sake of comparison,
non-existing elements are considered to be infinite. The interesting
property of a heap is that a[0] is always its smallest element.
The strange invariant above is meant to be an efficient memory
representation for a tournament. The numbers below are `k', not a[k]:
0
1 2
3 4 5 6
7 8 9 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
In the tree above, each cell `k' is topping `2*k+1' and `2*k+2'. In
an usual binary tournament we see in sports, each cell is the winner
over the two cells it tops, and we can trace the winner down the tree
to see all opponents s/he had. However, in many computer applications
of such tournaments, we do not need to trace the history of a winner.
To be more memory efficient, when a winner is promoted, we try to
replace it by something else at a lower level, and the rule becomes
that a cell and the two cells it tops contain three different items,
but the top cell "wins" over the two topped cells.
If this heap invariant is protected at all time, index 0 is clearly
the overall winner. The simplest algorithmic way to remove it and
find the "next" winner is to move some loser (let's say cell 30 in the
diagram above) into the 0 position, and then percolate this new 0 down
the tree, exchanging values, until the invariant is re-established.
This is clearly logarithmic on the total number of items in the tree.
By iterating over all items, you get an O(n ln n) sort.
A nice feature of this sort is that you can efficiently insert new
items while the sort is going on, provided that the inserted items are
not "better" than the last 0'th element you extracted. This is
especially useful in simulation contexts, where the tree holds all
incoming events, and the "win" condition means the smallest scheduled
time. When an event schedule other events for execution, they are
scheduled into the future, so they can easily go into the heap. So, a
heap is a good structure for implementing schedulers (this is what I
used for my MIDI sequencer :-).
Various structures for implementing schedulers have been extensively
studied, and heaps are good for this, as they are reasonably speedy,
the speed is almost constant, and the worst case is not much different
than the average case. However, there are other representations which
are more efficient overall, yet the worst cases might be terrible.
Heaps are also very useful in big disk sorts. You most probably all
know that a big sort implies producing "runs" (which are pre-sorted
sequences, which size is usually related to the amount of CPU memory),
followed by a merging passes for these runs, which merging is often
very cleverly organised[1]. It is very important that the initial
sort produces the longest runs possible. Tournaments are a good way
to that. If, using all the memory available to hold a tournament, you
replace and percolate items that happen to fit the current run, you'll
produce runs which are twice the size of the memory for random input,
and much better for input fuzzily ordered.
Moreover, if you output the 0'th item on disk and get an input which
may not fit in the current tournament (because the value "wins" over
the last output value), it cannot fit in the heap, so the size of the
heap decreases. The freed memory could be cleverly reused immediately
for progressively building a second heap, which grows at exactly the
same rate the first heap is melting. When the first heap completely
vanishes, you switch heaps and start a new run. Clever and quite
effective!
In a word, heaps are useful memory structures to know. I use them in
a few applications, and I think it is good to keep a `heap' module
around. :-)
--------------------
[1] The disk balancing algorithms which are current, nowadays, are
more annoying than clever, and this is a consequence of the seeking
capabilities of the disks. On devices which cannot seek, like big
tape drives, the story was quite different, and one had to be very
clever to ensure (far in advance) that each tape movement will be the
most effective possible (that is, will best participate at
"progressing" the merge). Some tapes were even able to read
backwards, and this was also used to avoid the rewinding time.
Believe me, real good tape sorts were quite spectacular to watch!
From all times, sorting has always been a Great Art! :-)
"""
__all__ = ['heappush', 'heappop', 'heapify', 'heapreplace', 'merge',
'nlargest', 'nsmallest', 'heappushpop']
from itertools import islice, repeat, count, imap, izip, tee
from operator import itemgetter, neg
import bisect
def heappush(heap, item):
"""Push item onto heap, maintaining the heap invariant."""
heap.append(item)
_siftdown(heap, 0, len(heap)-1)
def heappop(heap):
"""Pop the smallest item off the heap, maintaining the heap invariant."""
lastelt = heap.pop() # raises appropriate IndexError if heap is empty
if heap:
returnitem = heap[0]
heap[0] = lastelt
_siftup(heap, 0)
else:
returnitem = lastelt
return returnitem
def heapreplace(heap, item):
"""Pop and return the current smallest value, and add the new item.
This is more efficient than heappop() followed by heappush(), and can be
more appropriate when using a fixed-size heap. Note that the value
returned may be larger than item! That constrains reasonable uses of
this routine unless written as part of a conditional replacement:
if item > heap[0]:
item = heapreplace(heap, item)
"""
returnitem = heap[0] # raises appropriate IndexError if heap is empty
heap[0] = item
_siftup(heap, 0)
return returnitem
def heappushpop(heap, item):
"""Fast version of a heappush followed by a heappop."""
if heap and heap[0] < item:
item, heap[0] = heap[0], item
_siftup(heap, 0)
return item
def heapify(x):
"""Transform list into a heap, in-place, in O(len(heap)) time."""
n = len(x)
# Transform bottom-up. The largest index there's any point to looking at
# is the largest with a child index in-range, so must have 2*i + 1 < n,
# or i < (n-1)/2. If n is even = 2*j, this is (2*j-1)/2 = j-1/2 so
# j-1 is the largest, which is n//2 - 1. If n is odd = 2*j+1, this is
# (2*j+1-1)/2 = j so j-1 is the largest, and that's again n//2-1.
for i in reversed(xrange(n//2)):
_siftup(x, i)
def nlargest(n, iterable):
"""Find the n largest elements in a dataset.
Equivalent to: sorted(iterable, reverse=True)[:n]
"""
it = iter(iterable)
result = list(islice(it, n))
if not result:
return result
heapify(result)
_heappushpop = heappushpop
for elem in it:
_heappushpop(result, elem)
result.sort(reverse=True)
return result
def nsmallest(n, iterable):
"""Find the n smallest elements in a dataset.
Equivalent to: sorted(iterable)[:n]
"""
if hasattr(iterable, '__len__') and n * 10 <= len(iterable):
# For smaller values of n, the bisect method is faster than a minheap.
# It is also memory efficient, consuming only n elements of space.
it = iter(iterable)
result = sorted(islice(it, 0, n))
if not result:
return result
insort = bisect.insort
pop = result.pop
los = result[-1] # los --> Largest of the nsmallest
for elem in it:
if los <= elem:
continue
insort(result, elem)
pop()
los = result[-1]
return result
# An alternative approach manifests the whole iterable in memory but
# saves comparisons by heapifying all at once. Also, saves time
# over bisect.insort() which has O(n) data movement time for every
# insertion. Finding the n smallest of an m length iterable requires
# O(m) + O(n log m) comparisons.
h = list(iterable)
heapify(h)
return map(heappop, repeat(h, min(n, len(h))))
# 'heap' is a heap at all indices >= startpos, except possibly for pos. pos
# is the index of a leaf with a possibly out-of-order value. Restore the
# heap invariant.
def _siftdown(heap, startpos, pos):
newitem = heap[pos]
# Follow the path to the root, moving parents down until finding a place
# newitem fits.
while pos > startpos:
parentpos = (pos - 1) >> 1
parent = heap[parentpos]
if newitem < parent:
heap[pos] = parent
pos = parentpos
continue
break
heap[pos] = newitem
# The child indices of heap index pos are already heaps, and we want to make
# a heap at index pos too. We do this by bubbling the smaller child of
# pos up (and so on with that child's children, etc) until hitting a leaf,
# then using _siftdown to move the oddball originally at index pos into place.
#
# We *could* break out of the loop as soon as we find a pos where newitem <=
# both its children, but turns out that's not a good idea, and despite that
# many books write the algorithm that way. During a heap pop, the last array
# element is sifted in, and that tends to be large, so that comparing it
# against values starting from the root usually doesn't pay (= usually doesn't
# get us out of the loop early). See Knuth, Volume 3, where this is
# explained and quantified in an exercise.
#
# Cutting the # of comparisons is important, since these routines have no
# way to extract "the priority" from an array element, so that intelligence
# is likely to be hiding in custom __cmp__ methods, or in array elements
# storing (priority, record) tuples. Comparisons are thus potentially
# expensive.
#
# On random arrays of length 1000, making this change cut the number of
# comparisons made by heapify() a little, and those made by exhaustive
# heappop() a lot, in accord with theory. Here are typical results from 3
# runs (3 just to demonstrate how small the variance is):
#
# Compares needed by heapify Compares needed by 1000 heappops
# -------------------------- --------------------------------
# 1837 cut to 1663 14996 cut to 8680
# 1855 cut to 1659 14966 cut to 8678
# 1847 cut to 1660 15024 cut to 8703
#
# Building the heap by using heappush() 1000 times instead required
# 2198, 2148, and 2219 compares: heapify() is more efficient, when
# you can use it.
#
# The total compares needed by list.sort() on the same lists were 8627,
# 8627, and 8632 (this should be compared to the sum of heapify() and
# heappop() compares): list.sort() is (unsurprisingly!) more efficient
# for sorting.
def _siftup(heap, pos):
endpos = len(heap)
startpos = pos
newitem = heap[pos]
# Bubble up the smaller child until hitting a leaf.
childpos = 2*pos + 1 # leftmost child position
while childpos < endpos:
# Set childpos to index of smaller child.
rightpos = childpos + 1
if rightpos < endpos and not heap[childpos] < heap[rightpos]:
childpos = rightpos
# Move the smaller child up.
heap[pos] = heap[childpos]
pos = childpos
childpos = 2*pos + 1
# The leaf at pos is empty now. Put newitem there, and bubble it up
# to its final resting place (by sifting its parents down).
heap[pos] = newitem
_siftdown(heap, startpos, pos)
# If available, use C implementation
try:
from _heapq import heappush, heappop, heapify, heapreplace, nlargest, nsmallest, heappushpop
except ImportError:
pass
def merge(*iterables):
'''Merge multiple sorted inputs into a single sorted output.
Similar to sorted(itertools.chain(*iterables)) but returns a generator,
does not pull the data into memory all at once, and assumes that each of
the input streams is already sorted (smallest to largest).
>>> list(merge([1,3,5,7], [0,2,4,8], [5,10,15,20], [], [25]))
[0, 1, 2, 3, 4, 5, 5, 7, 8, 10, 15, 20, 25]
'''
_heappop, _heapreplace, _StopIteration = heappop, heapreplace, StopIteration
h = []
h_append = h.append
for itnum, it in enumerate(map(iter, iterables)):
try:
next = it.next
h_append([next(), itnum, next])
except _StopIteration:
pass
heapify(h)
while 1:
try:
while 1:
v, itnum, next = s = h[0] # raises IndexError when h is empty
yield v
s[0] = next() # raises StopIteration when exhausted
_heapreplace(h, s) # restore heap condition
except _StopIteration:
_heappop(h) # remove empty iterator
except IndexError:
return
# Extend the implementations of nsmallest and nlargest to use a key= argument
_nsmallest = nsmallest
def nsmallest(n, iterable, key=None):
"""Find the n smallest elements in a dataset.
Equivalent to: sorted(iterable, key=key)[:n]
"""
if key is None:
it = izip(iterable, count()) # decorate
result = _nsmallest(n, it)
return map(itemgetter(0), result) # undecorate
in1, in2 = tee(iterable)
it = izip(imap(key, in1), count(), in2) # decorate
result = _nsmallest(n, it)
return map(itemgetter(2), result) # undecorate
_nlargest = nlargest
def nlargest(n, iterable, key=None):
"""Find the n largest elements in a dataset.
Equivalent to: sorted(iterable, key=key, reverse=True)[:n]
"""
if key is None:
it = izip(iterable, imap(neg, count())) # decorate
result = _nlargest(n, it)
return map(itemgetter(0), result) # undecorate
in1, in2 = tee(iterable)
it = izip(imap(key, in1), imap(neg, count()), in2) # decorate
result = _nlargest(n, it)
return map(itemgetter(2), result) # undecorate
if __name__ == "__main__":
# Simple sanity test
heap = []
data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
for item in data:
heappush(heap, item)
sort = []
while heap:
sort.append(heappop(heap))
print sort
import doctest
doctest.testmod()

Binary file not shown.

View File

@ -0,0 +1,79 @@
""" Python 'hex_codec' Codec - 2-digit hex content transfer encoding
Unlike most of the other codecs which target Unicode, this codec
will return Python string objects for both encode and decode.
Written by Marc-Andre Lemburg (mal@lemburg.com).
"""
import codecs, binascii
### Codec APIs
def hex_encode(input,errors='strict'):
""" Encodes the object input and returns a tuple (output
object, length consumed).
errors defines the error handling to apply. It defaults to
'strict' handling which is the only currently supported
error handling for this codec.
"""
assert errors == 'strict'
output = binascii.b2a_hex(input)
return (output, len(input))
def hex_decode(input,errors='strict'):
""" Decodes the object input and returns a tuple (output
object, length consumed).
input must be an object which provides the bf_getreadbuf
buffer slot. Python strings, buffer objects and memory
mapped files are examples of objects providing this slot.
errors defines the error handling to apply. It defaults to
'strict' handling which is the only currently supported
error handling for this codec.
"""
assert errors == 'strict'
output = binascii.a2b_hex(input)
return (output, len(input))
class Codec(codecs.Codec):
def encode(self, input,errors='strict'):
return hex_encode(input,errors)
def decode(self, input,errors='strict'):
return hex_decode(input,errors)
class IncrementalEncoder(codecs.IncrementalEncoder):
def encode(self, input, final=False):
assert self.errors == 'strict'
return binascii.b2a_hex(input)
class IncrementalDecoder(codecs.IncrementalDecoder):
def decode(self, input, final=False):
assert self.errors == 'strict'
return binascii.a2b_hex(input)
class StreamWriter(Codec,codecs.StreamWriter):
pass
class StreamReader(Codec,codecs.StreamReader):
pass
### encodings module API
def getregentry():
return codecs.CodecInfo(
name='hex',
encode=hex_encode,
decode=hex_decode,
incrementalencoder=IncrementalEncoder,
incrementaldecoder=IncrementalDecoder,
streamwriter=StreamWriter,
streamreader=StreamReader,
)

Binary file not shown.

File diff suppressed because it is too large Load Diff

Binary file not shown.

View File

@ -0,0 +1,318 @@
r"""A simple, fast, extensible JSON encoder and decoder
JSON (JavaScript Object Notation) <http://json.org> is a subset of
JavaScript syntax (ECMA-262 3rd edition) used as a lightweight data
interchange format.
json exposes an API familiar to uses of the standard library
marshal and pickle modules.
Encoding basic Python object hierarchies::
>>> import json
>>> json.dumps(['foo', {'bar': ('baz', None, 1.0, 2)}])
'["foo", {"bar": ["baz", null, 1.0, 2]}]'
>>> print json.dumps("\"foo\bar")
"\"foo\bar"
>>> print json.dumps(u'\u1234')
"\u1234"
>>> print json.dumps('\\')
"\\"
>>> print json.dumps({"c": 0, "b": 0, "a": 0}, sort_keys=True)
{"a": 0, "b": 0, "c": 0}
>>> from StringIO import StringIO
>>> io = StringIO()
>>> json.dump(['streaming API'], io)
>>> io.getvalue()
'["streaming API"]'
Compact encoding::
>>> import json
>>> json.dumps([1,2,3,{'4': 5, '6': 7}], separators=(',',':'))
'[1,2,3,{"4":5,"6":7}]'
Pretty printing (using repr() because of extraneous whitespace in the output)::
>>> import json
>>> print repr(json.dumps({'4': 5, '6': 7}, sort_keys=True, indent=4))
'{\n "4": 5, \n "6": 7\n}'
Decoding JSON::
>>> import json
>>> json.loads('["foo", {"bar":["baz", null, 1.0, 2]}]')
[u'foo', {u'bar': [u'baz', None, 1.0, 2]}]
>>> json.loads('"\\"foo\\bar"')
u'"foo\x08ar'
>>> from StringIO import StringIO
>>> io = StringIO('["streaming API"]')
>>> json.load(io)
[u'streaming API']
Specializing JSON object decoding::
>>> import json
>>> def as_complex(dct):
... if '__complex__' in dct:
... return complex(dct['real'], dct['imag'])
... return dct
...
>>> json.loads('{"__complex__": true, "real": 1, "imag": 2}',
... object_hook=as_complex)
(1+2j)
>>> import decimal
>>> json.loads('1.1', parse_float=decimal.Decimal)
Decimal('1.1')
Extending JSONEncoder::
>>> import json
>>> class ComplexEncoder(json.JSONEncoder):
... def default(self, obj):
... if isinstance(obj, complex):
... return [obj.real, obj.imag]
... return json.JSONEncoder.default(self, obj)
...
>>> dumps(2 + 1j, cls=ComplexEncoder)
'[2.0, 1.0]'
>>> ComplexEncoder().encode(2 + 1j)
'[2.0, 1.0]'
>>> list(ComplexEncoder().iterencode(2 + 1j))
['[', '2.0', ', ', '1.0', ']']
Using json.tool from the shell to validate and
pretty-print::
$ echo '{"json":"obj"}' | python -mjson.tool
{
"json": "obj"
}
$ echo '{ 1.2:3.4}' | python -mjson.tool
Expecting property name: line 1 column 2 (char 2)
Note that the JSON produced by this module's default settings
is a subset of YAML, so it may be used as a serializer for that as well.
"""
__version__ = '1.9'
__all__ = [
'dump', 'dumps', 'load', 'loads',
'JSONDecoder', 'JSONEncoder',
]
__author__ = 'Bob Ippolito <bob@redivi.com>'
from .decoder import JSONDecoder
from .encoder import JSONEncoder
_default_encoder = JSONEncoder(
skipkeys=False,
ensure_ascii=True,
check_circular=True,
allow_nan=True,
indent=None,
separators=None,
encoding='utf-8',
default=None,
)
def dump(obj, fp, skipkeys=False, ensure_ascii=True, check_circular=True,
allow_nan=True, cls=None, indent=None, separators=None,
encoding='utf-8', default=None, **kw):
"""Serialize ``obj`` as a JSON formatted stream to ``fp`` (a
``.write()``-supporting file-like object).
If ``skipkeys`` is ``True`` then ``dict`` keys that are not basic types
(``str``, ``unicode``, ``int``, ``long``, ``float``, ``bool``, ``None``)
will be skipped instead of raising a ``TypeError``.
If ``ensure_ascii`` is ``False``, then the some chunks written to ``fp``
may be ``unicode`` instances, subject to normal Python ``str`` to
``unicode`` coercion rules. Unless ``fp.write()`` explicitly
understands ``unicode`` (as in ``codecs.getwriter()``) this is likely
to cause an error.
If ``check_circular`` is ``False``, then the circular reference check
for container types will be skipped and a circular reference will
result in an ``OverflowError`` (or worse).
If ``allow_nan`` is ``False``, then it will be a ``ValueError`` to
serialize out of range ``float`` values (``nan``, ``inf``, ``-inf``)
in strict compliance of the JSON specification, instead of using the
JavaScript equivalents (``NaN``, ``Infinity``, ``-Infinity``).
If ``indent`` is a non-negative integer, then JSON array elements and object
members will be pretty-printed with that indent level. An indent level
of 0 will only insert newlines. ``None`` is the most compact representation.
If ``separators`` is an ``(item_separator, dict_separator)`` tuple
then it will be used instead of the default ``(', ', ': ')`` separators.
``(',', ':')`` is the most compact JSON representation.
``encoding`` is the character encoding for str instances, default is UTF-8.
``default(obj)`` is a function that should return a serializable version
of obj or raise TypeError. The default simply raises TypeError.
To use a custom ``JSONEncoder`` subclass (e.g. one that overrides the
``.default()`` method to serialize additional types), specify it with
the ``cls`` kwarg.
"""
# cached encoder
if (skipkeys is False and ensure_ascii is True and
check_circular is True and allow_nan is True and
cls is None and indent is None and separators is None and
encoding == 'utf-8' and default is None and not kw):
iterable = _default_encoder.iterencode(obj)
else:
if cls is None:
cls = JSONEncoder
iterable = cls(skipkeys=skipkeys, ensure_ascii=ensure_ascii,
check_circular=check_circular, allow_nan=allow_nan, indent=indent,
separators=separators, encoding=encoding,
default=default, **kw).iterencode(obj)
# could accelerate with writelines in some versions of Python, at
# a debuggability cost
for chunk in iterable:
fp.write(chunk)
def dumps(obj, skipkeys=False, ensure_ascii=True, check_circular=True,
allow_nan=True, cls=None, indent=None, separators=None,
encoding='utf-8', default=None, **kw):
"""Serialize ``obj`` to a JSON formatted ``str``.
If ``skipkeys`` is ``True`` then ``dict`` keys that are not basic types
(``str``, ``unicode``, ``int``, ``long``, ``float``, ``bool``, ``None``)
will be skipped instead of raising a ``TypeError``.
If ``ensure_ascii`` is ``False``, then the return value will be a
``unicode`` instance subject to normal Python ``str`` to ``unicode``
coercion rules instead of being escaped to an ASCII ``str``.
If ``check_circular`` is ``False``, then the circular reference check
for container types will be skipped and a circular reference will
result in an ``OverflowError`` (or worse).
If ``allow_nan`` is ``False``, then it will be a ``ValueError`` to
serialize out of range ``float`` values (``nan``, ``inf``, ``-inf``) in
strict compliance of the JSON specification, instead of using the
JavaScript equivalents (``NaN``, ``Infinity``, ``-Infinity``).
If ``indent`` is a non-negative integer, then JSON array elements and
object members will be pretty-printed with that indent level. An indent
level of 0 will only insert newlines. ``None`` is the most compact
representation.
If ``separators`` is an ``(item_separator, dict_separator)`` tuple
then it will be used instead of the default ``(', ', ': ')`` separators.
``(',', ':')`` is the most compact JSON representation.
``encoding`` is the character encoding for str instances, default is UTF-8.
``default(obj)`` is a function that should return a serializable version
of obj or raise TypeError. The default simply raises TypeError.
To use a custom ``JSONEncoder`` subclass (e.g. one that overrides the
``.default()`` method to serialize additional types), specify it with
the ``cls`` kwarg.
"""
# cached encoder
if (skipkeys is False and ensure_ascii is True and
check_circular is True and allow_nan is True and
cls is None and indent is None and separators is None and
encoding == 'utf-8' and default is None and not kw):
return _default_encoder.encode(obj)
if cls is None:
cls = JSONEncoder
return cls(
skipkeys=skipkeys, ensure_ascii=ensure_ascii,
check_circular=check_circular, allow_nan=allow_nan, indent=indent,
separators=separators, encoding=encoding, default=default,
**kw).encode(obj)
_default_decoder = JSONDecoder(encoding=None, object_hook=None)
def load(fp, encoding=None, cls=None, object_hook=None, parse_float=None,
parse_int=None, parse_constant=None, **kw):
"""Deserialize ``fp`` (a ``.read()``-supporting file-like object
containing a JSON document) to a Python object.
If the contents of ``fp`` is encoded with an ASCII based encoding other
than utf-8 (e.g. latin-1), then an appropriate ``encoding`` name must
be specified. Encodings that are not ASCII based (such as UCS-2) are
not allowed, and should be wrapped with
``codecs.getreader(fp)(encoding)``, or simply decoded to a ``unicode``
object and passed to ``loads()``
``object_hook`` is an optional function that will be called with the
result of any object literal decode (a ``dict``). The return value of
``object_hook`` will be used instead of the ``dict``. This feature
can be used to implement custom decoders (e.g. JSON-RPC class hinting).
To use a custom ``JSONDecoder`` subclass, specify it with the ``cls``
kwarg.
"""
return loads(fp.read(),
encoding=encoding, cls=cls, object_hook=object_hook,
parse_float=parse_float, parse_int=parse_int,
parse_constant=parse_constant, **kw)
def loads(s, encoding=None, cls=None, object_hook=None, parse_float=None,
parse_int=None, parse_constant=None, **kw):
"""Deserialize ``s`` (a ``str`` or ``unicode`` instance containing a JSON
document) to a Python object.
If ``s`` is a ``str`` instance and is encoded with an ASCII based encoding
other than utf-8 (e.g. latin-1) then an appropriate ``encoding`` name
must be specified. Encodings that are not ASCII based (such as UCS-2)
are not allowed and should be decoded to ``unicode`` first.
``object_hook`` is an optional function that will be called with the
result of any object literal decode (a ``dict``). The return value of
``object_hook`` will be used instead of the ``dict``. This feature
can be used to implement custom decoders (e.g. JSON-RPC class hinting).
``parse_float``, if specified, will be called with the string
of every JSON float to be decoded. By default this is equivalent to
float(num_str). This can be used to use another datatype or parser
for JSON floats (e.g. decimal.Decimal).
``parse_int``, if specified, will be called with the string
of every JSON int to be decoded. By default this is equivalent to
int(num_str). This can be used to use another datatype or parser
for JSON integers (e.g. float).
``parse_constant``, if specified, will be called with one of the
following strings: -Infinity, Infinity, NaN, null, true, false.
This can be used to raise an exception if invalid JSON numbers
are encountered.
To use a custom ``JSONDecoder`` subclass, specify it with the ``cls``
kwarg.
"""
if (cls is None and encoding is None and object_hook is None and
parse_int is None and parse_float is None and
parse_constant is None and not kw):
return _default_decoder.decode(s)
if cls is None:
cls = JSONDecoder
if object_hook is not None:
kw['object_hook'] = object_hook
if parse_float is not None:
kw['parse_float'] = parse_float
if parse_int is not None:
kw['parse_int'] = parse_int
if parse_constant is not None:
kw['parse_constant'] = parse_constant
return cls(encoding=encoding, **kw).decode(s)

Binary file not shown.

View File

@ -0,0 +1,339 @@
"""Implementation of JSONDecoder
"""
import re
import sys
from json.scanner import Scanner, pattern
try:
from _json import scanstring as c_scanstring
except ImportError:
c_scanstring = None
__all__ = ['JSONDecoder']
FLAGS = re.VERBOSE | re.MULTILINE | re.DOTALL
NaN, PosInf, NegInf = float('nan'), float('inf'), float('-inf')
def linecol(doc, pos):
lineno = doc.count('\n', 0, pos) + 1
if lineno == 1:
colno = pos
else:
colno = pos - doc.rindex('\n', 0, pos)
return lineno, colno
def errmsg(msg, doc, pos, end=None):
lineno, colno = linecol(doc, pos)
if end is None:
fmt = '{0}: line {1} column {2} (char {3})'
return fmt.format(msg, lineno, colno, pos)
endlineno, endcolno = linecol(doc, end)
fmt = '{0}: line {1} column {2} - line {3} column {4} (char {5} - {6})'
return fmt.format(msg, lineno, colno, endlineno, endcolno, pos, end)
_CONSTANTS = {
'-Infinity': NegInf,
'Infinity': PosInf,
'NaN': NaN,
'true': True,
'false': False,
'null': None,
}
def JSONConstant(match, context, c=_CONSTANTS):
s = match.group(0)
fn = getattr(context, 'parse_constant', None)
if fn is None:
rval = c[s]
else:
rval = fn(s)
return rval, None
pattern('(-?Infinity|NaN|true|false|null)')(JSONConstant)
def JSONNumber(match, context):
match = JSONNumber.regex.match(match.string, *match.span())
integer, frac, exp = match.groups()
if frac or exp:
fn = getattr(context, 'parse_float', None) or float
res = fn(integer + (frac or '') + (exp or ''))
else:
fn = getattr(context, 'parse_int', None) or int
res = fn(integer)
return res, None
pattern(r'(-?(?:0|[1-9]\d*))(\.\d+)?([eE][-+]?\d+)?')(JSONNumber)
STRINGCHUNK = re.compile(r'(.*?)(["\\\x00-\x1f])', FLAGS)
BACKSLASH = {
'"': u'"', '\\': u'\\', '/': u'/',
'b': u'\b', 'f': u'\f', 'n': u'\n', 'r': u'\r', 't': u'\t',
}
DEFAULT_ENCODING = "utf-8"
def py_scanstring(s, end, encoding=None, strict=True, _b=BACKSLASH, _m=STRINGCHUNK.match):
if encoding is None:
encoding = DEFAULT_ENCODING
chunks = []
_append = chunks.append
begin = end - 1
while 1:
chunk = _m(s, end)
if chunk is None:
raise ValueError(
errmsg("Unterminated string starting at", s, begin))
end = chunk.end()
content, terminator = chunk.groups()
if content:
if not isinstance(content, unicode):
content = unicode(content, encoding)
_append(content)
if terminator == '"':
break
elif terminator != '\\':
if strict:
msg = "Invalid control character {0!r} at".format(terminator)
raise ValueError(errmsg(msg, s, end))
else:
_append(terminator)
continue
try:
esc = s[end]
except IndexError:
raise ValueError(
errmsg("Unterminated string starting at", s, begin))
if esc != 'u':
try:
m = _b[esc]
except KeyError:
msg = "Invalid \\escape: {0!r}".format(esc)
raise ValueError(errmsg(msg, s, end))
end += 1
else:
esc = s[end + 1:end + 5]
next_end = end + 5
msg = "Invalid \\uXXXX escape"
try:
if len(esc) != 4:
raise ValueError
uni = int(esc, 16)
if 0xd800 <= uni <= 0xdbff and sys.maxunicode > 65535:
msg = "Invalid \\uXXXX\\uXXXX surrogate pair"
if not s[end + 5:end + 7] == '\\u':
raise ValueError
esc2 = s[end + 7:end + 11]
if len(esc2) != 4:
raise ValueError
uni2 = int(esc2, 16)
uni = 0x10000 + (((uni - 0xd800) << 10) | (uni2 - 0xdc00))
next_end += 6
m = unichr(uni)
except ValueError:
raise ValueError(errmsg(msg, s, end))
end = next_end
_append(m)
return u''.join(chunks), end
# Use speedup
if c_scanstring is not None:
scanstring = c_scanstring
else:
scanstring = py_scanstring
def JSONString(match, context):
encoding = getattr(context, 'encoding', None)
strict = getattr(context, 'strict', True)
return scanstring(match.string, match.end(), encoding, strict)
pattern(r'"')(JSONString)
WHITESPACE = re.compile(r'\s*', FLAGS)
def JSONObject(match, context, _w=WHITESPACE.match):
pairs = {}
s = match.string
end = _w(s, match.end()).end()
nextchar = s[end:end + 1]
# Trivial empty object
if nextchar == '}':
return pairs, end + 1
if nextchar != '"':
raise ValueError(errmsg("Expecting property name", s, end))
end += 1
encoding = getattr(context, 'encoding', None)
strict = getattr(context, 'strict', True)
iterscan = JSONScanner.iterscan
while True:
key, end = scanstring(s, end, encoding, strict)
end = _w(s, end).end()
if s[end:end + 1] != ':':
raise ValueError(errmsg("Expecting : delimiter", s, end))
end = _w(s, end + 1).end()
try:
value, end = iterscan(s, idx=end, context=context).next()
except StopIteration:
raise ValueError(errmsg("Expecting object", s, end))
pairs[key] = value
end = _w(s, end).end()
nextchar = s[end:end + 1]
end += 1
if nextchar == '}':
break
if nextchar != ',':
raise ValueError(errmsg("Expecting , delimiter", s, end - 1))
end = _w(s, end).end()
nextchar = s[end:end + 1]
end += 1
if nextchar != '"':
raise ValueError(errmsg("Expecting property name", s, end - 1))
object_hook = getattr(context, 'object_hook', None)
if object_hook is not None:
pairs = object_hook(pairs)
return pairs, end
pattern(r'{')(JSONObject)
def JSONArray(match, context, _w=WHITESPACE.match):
values = []
s = match.string
end = _w(s, match.end()).end()
# Look-ahead for trivial empty array
nextchar = s[end:end + 1]
if nextchar == ']':
return values, end + 1
iterscan = JSONScanner.iterscan
while True:
try:
value, end = iterscan(s, idx=end, context=context).next()
except StopIteration:
raise ValueError(errmsg("Expecting object", s, end))
values.append(value)
end = _w(s, end).end()
nextchar = s[end:end + 1]
end += 1
if nextchar == ']':
break
if nextchar != ',':
raise ValueError(errmsg("Expecting , delimiter", s, end))
end = _w(s, end).end()
return values, end
pattern(r'\[')(JSONArray)
ANYTHING = [
JSONObject,
JSONArray,
JSONString,
JSONConstant,
JSONNumber,
]
JSONScanner = Scanner(ANYTHING)
class JSONDecoder(object):
"""Simple JSON <http://json.org> decoder
Performs the following translations in decoding by default:
+---------------+-------------------+
| JSON | Python |
+===============+===================+
| object | dict |
+---------------+-------------------+
| array | list |
+---------------+-------------------+
| string | unicode |
+---------------+-------------------+
| number (int) | int, long |
+---------------+-------------------+
| number (real) | float |
+---------------+-------------------+
| true | True |
+---------------+-------------------+
| false | False |
+---------------+-------------------+
| null | None |
+---------------+-------------------+
It also understands ``NaN``, ``Infinity``, and ``-Infinity`` as
their corresponding ``float`` values, which is outside the JSON spec.
"""
_scanner = Scanner(ANYTHING)
__all__ = ['__init__', 'decode', 'raw_decode']
def __init__(self, encoding=None, object_hook=None, parse_float=None,
parse_int=None, parse_constant=None, strict=True):
"""``encoding`` determines the encoding used to interpret any ``str``
objects decoded by this instance (utf-8 by default). It has no
effect when decoding ``unicode`` objects.
Note that currently only encodings that are a superset of ASCII work,
strings of other encodings should be passed in as ``unicode``.
``object_hook``, if specified, will be called with the result of
every JSON object decoded and its return value will be used in
place of the given ``dict``. This can be used to provide custom
deserializations (e.g. to support JSON-RPC class hinting).
``parse_float``, if specified, will be called with the string
of every JSON float to be decoded. By default this is equivalent to
float(num_str). This can be used to use another datatype or parser
for JSON floats (e.g. decimal.Decimal).
``parse_int``, if specified, will be called with the string
of every JSON int to be decoded. By default this is equivalent to
int(num_str). This can be used to use another datatype or parser
for JSON integers (e.g. float).
``parse_constant``, if specified, will be called with one of the
following strings: -Infinity, Infinity, NaN, null, true, false.
This can be used to raise an exception if invalid JSON numbers
are encountered.
"""
self.encoding = encoding
self.object_hook = object_hook
self.parse_float = parse_float
self.parse_int = parse_int
self.parse_constant = parse_constant
self.strict = strict
def decode(self, s, _w=WHITESPACE.match):
"""
Return the Python representation of ``s`` (a ``str`` or ``unicode``
instance containing a JSON document)
"""
obj, end = self.raw_decode(s, idx=_w(s, 0).end())
end = _w(s, end).end()
if end != len(s):
raise ValueError(errmsg("Extra data", s, end, len(s)))
return obj
def raw_decode(self, s, **kw):
"""Decode a JSON document from ``s`` (a ``str`` or ``unicode`` beginning
with a JSON document) and return a 2-tuple of the Python
representation and the index in ``s`` where the document ended.
This can be used to decode a JSON document from a string that may
have extraneous data at the end.
"""
kw.setdefault('context', self)
try:
obj, end = self._scanner.iterscan(s, **kw).next()
except StopIteration:
raise ValueError("No JSON object could be decoded")
return obj, end

Binary file not shown.

View File

@ -0,0 +1,384 @@
"""Implementation of JSONEncoder
"""
import re
import math
try:
from _json import encode_basestring_ascii as c_encode_basestring_ascii
except ImportError:
c_encode_basestring_ascii = None
__all__ = ['JSONEncoder']
ESCAPE = re.compile(r'[\x00-\x1f\\"\b\f\n\r\t]')
ESCAPE_ASCII = re.compile(r'([\\"]|[^\ -~])')
HAS_UTF8 = re.compile(r'[\x80-\xff]')
ESCAPE_DCT = {
'\\': '\\\\',
'"': '\\"',
'\b': '\\b',
'\f': '\\f',
'\n': '\\n',
'\r': '\\r',
'\t': '\\t',
}
for i in range(0x20):
ESCAPE_DCT.setdefault(chr(i), '\\u{0:04x}'.format(i))
FLOAT_REPR = repr
def floatstr(o, allow_nan=True):
# Check for specials. Note that this type of test is processor- and/or
# platform-specific, so do tests which don't depend on the internals.
if math.isnan(o):
text = 'NaN'
elif math.isinf(o):
if math.copysign(1., o) == 1.:
text = 'Infinity'
else:
text = '-Infinity'
else:
return FLOAT_REPR(o)
if not allow_nan:
msg = "Out of range float values are not JSON compliant: " + repr(o)
raise ValueError(msg)
return text
def encode_basestring(s):
"""Return a JSON representation of a Python string
"""
def replace(match):
return ESCAPE_DCT[match.group(0)]
return '"' + ESCAPE.sub(replace, s) + '"'
def py_encode_basestring_ascii(s):
if isinstance(s, str) and HAS_UTF8.search(s) is not None:
s = s.decode('utf-8')
def replace(match):
s = match.group(0)
try:
return ESCAPE_DCT[s]
except KeyError:
n = ord(s)
if n < 0x10000:
return '\\u{0:04x}'.format(n)
else:
# surrogate pair
n -= 0x10000
s1 = 0xd800 | ((n >> 10) & 0x3ff)
s2 = 0xdc00 | (n & 0x3ff)
return '\\u{0:04x}\\u{1:04x}'.format(s1, s2)
return '"' + str(ESCAPE_ASCII.sub(replace, s)) + '"'
if c_encode_basestring_ascii is not None:
encode_basestring_ascii = c_encode_basestring_ascii
else:
encode_basestring_ascii = py_encode_basestring_ascii
class JSONEncoder(object):
"""Extensible JSON <http://json.org> encoder for Python data structures.
Supports the following objects and types by default:
+-------------------+---------------+
| Python | JSON |
+===================+===============+
| dict | object |
+-------------------+---------------+
| list, tuple | array |
+-------------------+---------------+
| str, unicode | string |
+-------------------+---------------+
| int, long, float | number |
+-------------------+---------------+
| True | true |
+-------------------+---------------+
| False | false |
+-------------------+---------------+
| None | null |
+-------------------+---------------+
To extend this to recognize other objects, subclass and implement a
``.default()`` method with another method that returns a serializable
object for ``o`` if possible, otherwise it should call the superclass
implementation (to raise ``TypeError``).
"""
__all__ = ['__init__', 'default', 'encode', 'iterencode']
item_separator = ', '
key_separator = ': '
def __init__(self, skipkeys=False, ensure_ascii=True,
check_circular=True, allow_nan=True, sort_keys=False,
indent=None, separators=None, encoding='utf-8', default=None):
"""Constructor for JSONEncoder, with sensible defaults.
If skipkeys is False, then it is a TypeError to attempt
encoding of keys that are not str, int, long, float or None. If
skipkeys is True, such items are simply skipped.
If ensure_ascii is True, the output is guaranteed to be str
objects with all incoming unicode characters escaped. If
ensure_ascii is false, the output will be unicode object.
If check_circular is True, then lists, dicts, and custom encoded
objects will be checked for circular references during encoding to
prevent an infinite recursion (which would cause an OverflowError).
Otherwise, no such check takes place.
If allow_nan is True, then NaN, Infinity, and -Infinity will be
encoded as such. This behavior is not JSON specification compliant,
but is consistent with most JavaScript based encoders and decoders.
Otherwise, it will be a ValueError to encode such floats.
If sort_keys is True, then the output of dictionaries will be
sorted by key; this is useful for regression tests to ensure
that JSON serializations can be compared on a day-to-day basis.
If indent is a non-negative integer, then JSON array
elements and object members will be pretty-printed with that
indent level. An indent level of 0 will only insert newlines.
None is the most compact representation.
If specified, separators should be a (item_separator, key_separator)
tuple. The default is (', ', ': '). To get the most compact JSON
representation you should specify (',', ':') to eliminate whitespace.
If specified, default is a function that gets called for objects
that can't otherwise be serialized. It should return a JSON encodable
version of the object or raise a ``TypeError``.
If encoding is not None, then all input strings will be
transformed into unicode using that encoding prior to JSON-encoding.
The default is UTF-8.
"""
self.skipkeys = skipkeys
self.ensure_ascii = ensure_ascii
self.check_circular = check_circular
self.allow_nan = allow_nan
self.sort_keys = sort_keys
self.indent = indent
self.current_indent_level = 0
if separators is not None:
self.item_separator, self.key_separator = separators
if default is not None:
self.default = default
self.encoding = encoding
def _newline_indent(self):
return '\n' + (' ' * (self.indent * self.current_indent_level))
def _iterencode_list(self, lst, markers=None):
if not lst:
yield '[]'
return
if markers is not None:
markerid = id(lst)
if markerid in markers:
raise ValueError("Circular reference detected")
markers[markerid] = lst
yield '['
if self.indent is not None:
self.current_indent_level += 1
newline_indent = self._newline_indent()
separator = self.item_separator + newline_indent
yield newline_indent
else:
newline_indent = None
separator = self.item_separator
first = True
for value in lst:
if first:
first = False
else:
yield separator
for chunk in self._iterencode(value, markers):
yield chunk
if newline_indent is not None:
self.current_indent_level -= 1
yield self._newline_indent()
yield ']'
if markers is not None:
del markers[markerid]
def _iterencode_dict(self, dct, markers=None):
if not dct:
yield '{}'
return
if markers is not None:
markerid = id(dct)
if markerid in markers:
raise ValueError("Circular reference detected")
markers[markerid] = dct
yield '{'
key_separator = self.key_separator
if self.indent is not None:
self.current_indent_level += 1
newline_indent = self._newline_indent()
item_separator = self.item_separator + newline_indent
yield newline_indent
else:
newline_indent = None
item_separator = self.item_separator
first = True
if self.ensure_ascii:
encoder = encode_basestring_ascii
else:
encoder = encode_basestring
allow_nan = self.allow_nan
if self.sort_keys:
keys = dct.keys()
keys.sort()
items = [(k, dct[k]) for k in keys]
else:
items = dct.iteritems()
_encoding = self.encoding
_do_decode = (_encoding is not None
and not (_encoding == 'utf-8'))
for key, value in items:
if isinstance(key, str):
if _do_decode:
key = key.decode(_encoding)
elif isinstance(key, basestring):
pass
# JavaScript is weakly typed for these, so it makes sense to
# also allow them. Many encoders seem to do something like this.
elif isinstance(key, float):
key = floatstr(key, allow_nan)
elif isinstance(key, (int, long)):
key = str(key)
elif key is True:
key = 'true'
elif key is False:
key = 'false'
elif key is None:
key = 'null'
elif self.skipkeys:
continue
else:
raise TypeError("key {0!r} is not a string".format(key))
if first:
first = False
else:
yield item_separator
yield encoder(key)
yield key_separator
for chunk in self._iterencode(value, markers):
yield chunk
if newline_indent is not None:
self.current_indent_level -= 1
yield self._newline_indent()
yield '}'
if markers is not None:
del markers[markerid]
def _iterencode(self, o, markers=None):
if isinstance(o, basestring):
if self.ensure_ascii:
encoder = encode_basestring_ascii
else:
encoder = encode_basestring
_encoding = self.encoding
if (_encoding is not None and isinstance(o, str)
and not (_encoding == 'utf-8')):
o = o.decode(_encoding)
yield encoder(o)
elif o is None:
yield 'null'
elif o is True:
yield 'true'
elif o is False:
yield 'false'
elif isinstance(o, (int, long)):
yield str(o)
elif isinstance(o, float):
yield floatstr(o, self.allow_nan)
elif isinstance(o, (list, tuple)):
for chunk in self._iterencode_list(o, markers):
yield chunk
elif isinstance(o, dict):
for chunk in self._iterencode_dict(o, markers):
yield chunk
else:
if markers is not None:
markerid = id(o)
if markerid in markers:
raise ValueError("Circular reference detected")
markers[markerid] = o
for chunk in self._iterencode_default(o, markers):
yield chunk
if markers is not None:
del markers[markerid]
def _iterencode_default(self, o, markers=None):
newobj = self.default(o)
return self._iterencode(newobj, markers)
def default(self, o):
"""Implement this method in a subclass such that it returns a serializable
object for ``o``, or calls the base implementation (to raise a
``TypeError``).
For example, to support arbitrary iterators, you could implement
default like this::
def default(self, o):
try:
iterable = iter(o)
except TypeError:
pass
else:
return list(iterable)
return JSONEncoder.default(self, o)
"""
raise TypeError(repr(o) + " is not JSON serializable")
def encode(self, o):
"""Return a JSON string representation of a Python data structure.
>>> JSONEncoder().encode({"foo": ["bar", "baz"]})
'{"foo": ["bar", "baz"]}'
"""
# This is for extremely simple cases and benchmarks.
if isinstance(o, basestring):
if isinstance(o, str):
_encoding = self.encoding
if (_encoding is not None
and not (_encoding == 'utf-8')):
o = o.decode(_encoding)
if self.ensure_ascii:
return encode_basestring_ascii(o)
else:
return encode_basestring(o)
# This doesn't pass the iterator directly to ''.join() because the
# exceptions aren't as detailed. The list call should be roughly
# equivalent to the PySequence_Fast that ''.join() would do.
chunks = list(self.iterencode(o))
return ''.join(chunks)
def iterencode(self, o):
"""Encode the given object and yield each string representation as
available.
For example::
for chunk in JSONEncoder().iterencode(bigobject):
mysocket.write(chunk)
"""
if self.check_circular:
markers = {}
else:
markers = None
return self._iterencode(o, markers)

Binary file not shown.

View File

@ -0,0 +1,69 @@
"""Iterator based sre token scanner
"""
import re
import sre_parse
import sre_compile
import sre_constants
from re import VERBOSE, MULTILINE, DOTALL
from sre_constants import BRANCH, SUBPATTERN
__all__ = ['Scanner', 'pattern']
FLAGS = (VERBOSE | MULTILINE | DOTALL)
class Scanner(object):
def __init__(self, lexicon, flags=FLAGS):
self.actions = [None]
# Combine phrases into a compound pattern
s = sre_parse.Pattern()
s.flags = flags
p = []
for idx, token in enumerate(lexicon):
phrase = token.pattern
try:
subpattern = sre_parse.SubPattern(s,
[(SUBPATTERN, (idx + 1, sre_parse.parse(phrase, flags)))])
except sre_constants.error:
raise
p.append(subpattern)
self.actions.append(token)
s.groups = len(p) + 1 # NOTE(guido): Added to make SRE validation work
p = sre_parse.SubPattern(s, [(BRANCH, (None, p))])
self.scanner = sre_compile.compile(p)
def iterscan(self, string, idx=0, context=None):
"""Yield match, end_idx for each match
"""
match = self.scanner.scanner(string, idx).match
actions = self.actions
lastend = idx
end = len(string)
while True:
m = match()
if m is None:
break
matchbegin, matchend = m.span()
if lastend == matchend:
break
action = actions[m.lastindex]
if action is not None:
rval, next_pos = action(m, context)
if next_pos is not None and next_pos != matchend:
# "fast forward" the scanner
matchend = next_pos
match = self.scanner.scanner(string, matchend).match
yield rval, matchend
lastend = matchend
def pattern(pattern, flags=FLAGS):
def decorator(fn):
fn.pattern = pattern
fn.regex = re.compile(pattern, flags)
return fn
return decorator

Binary file not shown.

View File

@ -0,0 +1,37 @@
r"""Command-line tool to validate and pretty-print JSON
Usage::
$ echo '{"json":"obj"}' | python -mjson.tool
{
"json": "obj"
}
$ echo '{ 1.2:3.4}' | python -mjson.tool
Expecting property name: line 1 column 2 (char 2)
"""
import sys
import json
def main():
if len(sys.argv) == 1:
infile = sys.stdin
outfile = sys.stdout
elif len(sys.argv) == 2:
infile = open(sys.argv[1], 'rb')
outfile = sys.stdout
elif len(sys.argv) == 3:
infile = open(sys.argv[1], 'rb')
outfile = open(sys.argv[2], 'wb')
else:
raise SystemExit("{0} [infile [outfile]]".format(sys.argv[0]))
try:
obj = json.load(infile)
except ValueError, e:
raise SystemExit(e)
json.dump(obj, outfile, sort_keys=True, indent=4)
outfile.write('\n')
if __name__ == '__main__':
main()

View File

@ -0,0 +1,26 @@
"""
Copyright (c) 2007 Jan-Klaas Kollhof
This file is part of jsonrpc.
jsonrpc is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This software is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this software; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
"""
from jsonrpc.json import loads, dumps, JSONEncodeException, JSONDecodeException
from jsonrpc.proxy import ServiceProxy, JSONRPCException
from jsonrpc.serviceHandler import ServiceMethod, ServiceHandler, ServiceMethodNotFound, ServiceException
from jsonrpc.cgiwrapper import handleCGI
from jsonrpc.modpywrapper import handler

View File

@ -0,0 +1,20 @@
"""
Copyright (c) 2007 Jan-Klaas Kollhof
This file is part of jsonrpc.
jsonrpc is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This software is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this software; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
"""

View File

@ -0,0 +1,55 @@
"""
Copyright (c) 2007 Jan-Klaas Kollhof
This file is part of jsonrpc.
jsonrpc is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This software is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this software; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
"""
import unittest
import jsonrpc
from types import *
class Service(object):
@jsonrpc.ServiceMethod
def echo(self, arg):
return arg
class TestCGIWrapper(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_runCGIHandler(self):
from StringIO import StringIO
json=u'{"method":"echo","params":["foobar"], "id":""}'
fin=StringIO(json)
fout=StringIO()
env = {"CONTENT_LENGTH":len(json)}
jsonrpc.handleCGI(service=Service(), fin=fin, fout=fout, env=env)
data = StringIO(fout.getvalue())
data.readline()
data.readline()
data = data.read()
self.assertEquals(jsonrpc.loads(data), {"result":"foobar", "error":None, "id":""})

View File

@ -0,0 +1,184 @@
"""
Copyright (c) 2007 Jan-Klaas Kollhof
This file is part of jsonrpc.
jsonrpc is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This software is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this software; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
"""
import unittest
import jsonrpc
from types import *
class TestDumps(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def assertJSON(self, json, expectedJSON):
self.assert_(type(json) is UnicodeType)
self.assertEqual(json, expectedJSON)
def test_Number(self):
json = jsonrpc.dumps(1)
self.assertJSON(json, u'1')
json = jsonrpc.dumps(0xffffffffffffffffffffffff)
self.assertJSON(json, u'79228162514264337593543950335')
def test_None(self):
json = jsonrpc.dumps(None)
self.assertJSON(json, u'null')
def test_Boolean(self):
json = jsonrpc.dumps(False)
self.assertJSON(json, u'false')
json = jsonrpc.dumps(True)
self.assertJSON(json, u'true')
def test_Float(self):
json = jsonrpc.dumps(1.2345)
self.assertJSON(json, u'1.2345')
json =jsonrpc.dumps(1.2345e67)
self.assertJSON(json, u'1.2345e+67')
json =jsonrpc.dumps(1.2345e-67)
self.assertJSON(json, u'1.2345e-67')
def test_String(self):
json = jsonrpc.dumps('foobar')
self.assertJSON(json, u'"foobar"')
json = jsonrpc.dumps('foobar')
self.assertJSON(json, u'"foobar"')
def test_StringEscapedChars(self):
json = jsonrpc.dumps('\n \f \t \b \r \\ " /')
self.assertJSON(json, u'"\\n \\f \\t \\b \\r \\\\ \\" \\/"')
def test_StringEscapedUnicodeChars(self):
json = jsonrpc.dumps(u'\0 \x19 \x20\u0130')
self.assertJSON(json, u'"\\u0000 \\u0019 \u0130"')
def test_Array(self):
json = jsonrpc.dumps([1, 2.3e45, 'foobar'])
self.assertJSON(json, u'[1,2.3e+45,"foobar"]')
def test_Dictionary(self):
json = jsonrpc.dumps({'foobar':'spam', 'a':[1,2,3]})
self.assertJSON(json, u'{"a":[1,2,3],"foobar":"spam"}')
def test_FailOther(self):
self.failUnlessRaises(jsonrpc.JSONEncodeException, lambda:jsonrpc.dumps(self))
class TestLoads(unittest.TestCase):
def setUp(self):
pass
def tearDown(self):
pass
def test_String(self):
json = jsonrpc.dumps("foobar")
obj = jsonrpc.loads(json)
self.assertEquals(obj, u"foobar")
def test_StringEscapedChars(self):
json = '"\\n \\t \\r \\b \\f \\\\ \\/ /"'
obj = jsonrpc.loads(json)
self.assertEquals(obj, u'\n \t \r \b \f \\ / /')
def test_StringEscapedUnicodeChars(self):
json = jsonrpc.dumps(u'\u0000 \u0019')
obj = jsonrpc.loads(json)
self.assertEquals(obj, u'\0 \x19')
def test_Array(self):
json = jsonrpc.dumps(['1', ['2','3']])
obj = jsonrpc.loads(json)
self.assertEquals(obj, ['1', ['2','3']])
def test_Dictionary(self):
json = jsonrpc.dumps({'foobar':'spam', 'nested':{'a':'b'}})
obj = jsonrpc.loads(json)
self.assertEquals(obj, {'foobar':'spam', 'nested':{'a':'b'}})
def test_Int(self):
json = jsonrpc.dumps(1234)
obj = jsonrpc.loads(json)
self.assertEquals(obj, 1234)
def test_NegativeInt(self):
json = jsonrpc.dumps(-1234)
obj = jsonrpc.loads(json)
self.assertEquals(obj, -1234)
def test_NumberAtEndOfArray(self):
json = jsonrpc.dumps([-1234])
obj = jsonrpc.loads(json)
self.assertEquals(obj, [-1234])
def test_StrAtEndOfArray(self):
json = jsonrpc.dumps(['foobar'])
obj = jsonrpc.loads(json)
self.assertEquals(obj, ['foobar'])
def test_Float(self):
json = jsonrpc.dumps(1234.567)
obj = jsonrpc.loads(json)
self.assertEquals(obj, 1234.567)
def test_Exponential(self):
json = jsonrpc.dumps(1234.567e89)
obj = jsonrpc.loads(json)
self.assertEquals(obj, 1234.567e89)
def test_True(self):
json = jsonrpc.dumps(True)
obj = jsonrpc.loads(json)
self.assertEquals(obj, True)
def test_False(self):
json = jsonrpc.dumps(False)
obj = jsonrpc.loads(json)
self.assertEquals(obj, False)
def test_None(self):
json = jsonrpc.dumps(None)
obj = jsonrpc.loads(json)
self.assertEquals(obj, None)
def test_NestedDictAllTypes(self):
json = jsonrpc.dumps({'s':'foobar', 'int':1234, 'float':1234.567, 'exp':1234.56e78,
'negInt':-1234, 'None':None,'True':True, 'False':False,
'list':[1,2,4,{}], 'dict':{'a':'b'}})
obj = jsonrpc.loads(json)
self.assertEquals(obj, {'s':'foobar', 'int':1234, 'float':1234.567, 'exp':1234.56e78,
'negInt':-1234, 'None':None,'True':True, 'False':False,
'list':[1,2,4,{}], 'dict':{'a':'b'}})

View File

@ -0,0 +1,98 @@
"""
Copyright (c) 2007 Jan-Klaas Kollhof
This file is part of jsonrpc.
jsonrpc is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This software is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this software; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
"""
import unittest
import jsonrpc
from types import *
class Service(object):
@jsonrpc.ServiceMethod
def echo(self, arg):
return arg
class ApacheRequestMockup(object):
def __init__(self, filename, fin, fout):
self.fin=fin
self.fout = fout
self.filename = filename
def write(self,data):
self.fout.write(data)
def flush(self):
pass
def read(self):
return self.fin.read()
class ModPyMockup(object):
def __init__(self):
self.apache=ApacheModuleMockup()
class ApacheModuleMockup(object):
def __getattr__(self, name):
return name
def import_module(self, moduleName, log=1):
return Service()
class TestModPyWrapper(unittest.TestCase):
def setUp(self):
import sys
sys.modules['mod_python'] =ModPyMockup()
def tearDown(self):
pass
def test_runHandler(self):
from StringIO import StringIO
json=u'{"method":"echo","params":["foobar"], "id":""}'
fin=StringIO(json)
fout=StringIO()
req = ApacheRequestMockup(__file__ , fin, fout)
jsonrpc.handler(req)
data = fout.getvalue()
self.assertEquals(jsonrpc.loads(data), {"result":"foobar", "error":None, "id":""})
def test_ServiceImplementationNotFound(self):
from StringIO import StringIO
json=u'{"method":"echo","params":["foobar"], "id":""}'
fin=StringIO(json)
fout=StringIO()
req = ApacheRequestMockup("foobar" , fin, fout)
rslt = jsonrpc.handler(req)
self.assertEquals(rslt, "OK")
data = fout.getvalue()
self.assertEquals(jsonrpc.loads(data), {u'id': '', u'result': None, u'error': {u'message': '', u'name': u'ServiceImplementaionNotFound'}} )

View File

@ -0,0 +1,61 @@
"""
Copyright (c) 2007 Jan-Klaas Kollhof
This file is part of jsonrpc.
jsonrpc is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This software is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this software; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
"""
import unittest
import jsonrpc
import urllib
from StringIO import StringIO
class TestProxy(unittest.TestCase):
def urlopen(self, url, data):
self.postdata = data
return StringIO(self.respdata)
def setUp(self):
self.postdata=""
self.urllib_openurl = urllib.urlopen
urllib.urlopen = self.urlopen
def tearDown(self):
urllib.urlopen = self.urllib_openurl
def test_ProvidesProxyMethod(self):
s = jsonrpc.ServiceProxy("http://localhost/")
self.assert_(callable(s.echo))
def test_MethodCallCallsService(self):
s = jsonrpc.ServiceProxy("http://localhost/")
self.respdata='{"result":"foobar","error":null,"id":""}'
echo = s.echo("foobar")
self.assertEquals(self.postdata, jsonrpc.dumps({"method":"echo", 'params':['foobar'], 'id':'jsonrpc'}))
self.assertEquals(echo, 'foobar')
self.respdata='{"result":null,"error":"MethodNotFound","id":""}'
try:
s.echo("foobar")
except jsonrpc.JSONRPCException,e:
self.assertEquals(e.error, "MethodNotFound")

View File

@ -0,0 +1,153 @@
"""
Copyright (c) 2007 Jan-Klaas Kollhof
This file is part of jsonrpc.
jsonrpc is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This software is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this software; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
"""
import unittest
import jsonrpc
from types import *
class Service(object):
@jsonrpc.ServiceMethod
def echo(self, arg):
return arg
def not_a_serviceMethod(self):
pass
@jsonrpc.ServiceMethod
def raiseError(self):
raise Exception("foobar")
class Handler(jsonrpc.ServiceHandler):
def __init__(self, service):
self.service=service
def translateRequest(self, data):
self._requestTranslated=True
return jsonrpc.ServiceHandler.translateRequest(self, data)
def findServiceEndpoint(self, name):
self._foundServiceEndpoint=True
return jsonrpc.ServiceHandler.findServiceEndpoint(self, name)
def invokeServiceEndpoint(self, meth, params):
self._invokedEndpoint=True
return jsonrpc.ServiceHandler.invokeServiceEndpoint(self, meth, params)
def translateResult(self, result, error, id_):
self._resultTranslated=True
return jsonrpc.ServiceHandler.translateResult(self, result, error, id_)
class TestServiceHandler(unittest.TestCase):
def setUp(self):
self.service = Service()
def tearDown(self):
pass
def test_RequestProcessing(self):
handler = Handler(self.service)
json=jsonrpc.dumps({"method":"echo", 'params':['foobar'], 'id':''})
result = handler.handleRequest(json)
self.assert_(handler._requestTranslated)
self.assert_(handler._foundServiceEndpoint)
self.assert_(handler._invokedEndpoint)
self.assert_(handler._resultTranslated)
def test_translateRequest(self):
handler = Handler(self.service)
json=jsonrpc.dumps({"method":"echo", 'params':['foobar'], 'id':''})
req = handler.translateRequest(json)
self.assertEquals(req['method'], "echo")
self.assertEquals(req['params'],['foobar'])
self.assertEquals(req['id'],'')
def test_findServiceEndpoint(self):
handler = Handler(self.service)
self.assertRaises(jsonrpc.ServiceMethodNotFound, handler.findServiceEndpoint, "notfound")
self.assertRaises(jsonrpc.ServiceMethodNotFound, handler.findServiceEndpoint, "not_a_serviceMethod")
meth = handler.findServiceEndpoint("echo")
self.assertEquals(self.service.echo, meth)
def test_invokeEndpoint(self):
handler = Handler(self.service)
meth = handler.findServiceEndpoint("echo")
rslt = handler.invokeServiceEndpoint(meth, ['spam'])
self.assertEquals(rslt, 'spam')
def test_translateResults(self):
handler=Handler(self.service)
data=handler.translateResult("foobar", None, "spam")
self.assertEquals(jsonrpc.loads(data), {"result":"foobar","id":"spam","error":None})
def test_translateError(self):
handler=Handler(self.service)
exc = Exception()
data=handler.translateResult(None, exc, "id")
self.assertEquals(jsonrpc.loads(data), {"result":None,"id":"id","error":{"name":"Exception", "message":""}})
def test_translateUnencodableResults(self):
handler=Handler(self.service)
data=handler.translateResult(self, None, "spam")
self.assertEquals(jsonrpc.loads(data), {"result":None,"id":"spam","error":{"name":"JSONEncodeException", "message":"Result Object Not Serializable"}})
def test_handleRequestEcho(self):
handler=Handler(self.service)
json=jsonrpc.dumps({"method":"echo", 'params':['foobar'], 'id':''})
result = handler.handleRequest(json)
self.assertEquals(jsonrpc.loads(result), jsonrpc.loads('{"result":"foobar", "error":null, "id":""}'))
def test_handleRequestMethodNotFound(self):
handler=Handler(self.service)
json=jsonrpc.dumps({"method":"not_found", 'params':['foobar'], 'id':''})
result = handler.handleRequest(json)
self.assertEquals(jsonrpc.loads(result), {"result":None, "error":{"name":"ServiceMethodNotFound", "message":""}, "id":""})
def test_handleRequestMethodNotAllowed(self):
handler=Handler(self.service)
json=jsonrpc.dumps({"method":"not_a_ServiceMethod", 'params':['foobar'], 'id':''})
result = handler.handleRequest(json)
self.assertEquals(jsonrpc.loads(result), {"result":None, "error":{"name":"ServiceMethodNotFound", "message":""}, "id":""})
def test_handleRequestMethodRaiseError(self):
handler=Handler(self.service)
json=jsonrpc.dumps({"method":"raiseError", 'params':[], 'id':''})
result = handler.handleRequest(json)
self.assertEquals(jsonrpc.loads(result), {"result":None, "error":{"name":"Exception", "message":"foobar"}, "id":""})
def test_handleBadRequestData(self):
handler=Handler(self.service)
json = "This is not a JSON-RPC request"
result = handler.handleRequest(json)
self.assertEquals(jsonrpc.loads(result), {"result":None, "error":{"name":"ServiceRequestNotTranslatable", "message":json}, "id":""})
def test_handleBadRequestObject(self):
handler=Handler(self.service)
json = "{}"
result = handler.handleRequest(json)
self.assertEquals(jsonrpc.loads(result), {"result":None, "error":{"name":"BadServiceRequest", "message":json}, "id":""})

View File

@ -0,0 +1,45 @@
import sys, os
from jsonrpc import ServiceHandler
class CGIServiceHandler(ServiceHandler):
def __init__(self, service):
if service == None:
import __main__ as service
ServiceHandler.__init__(self, service)
def handleRequest(self, fin=None, fout=None, env=None):
if fin==None:
fin = sys.stdin
if fout==None:
fout = sys.stdout
if env == None:
env = os.environ
try:
contLen=int(env['CONTENT_LENGTH'])
data = fin.read(contLen)
except Exception, e:
data = ""
resultData = ServiceHandler.handleRequest(self, data)
response = "Content-Type: text/plain\n"
response += "Content-Length: %d\n\n" % len(resultData)
response += resultData
#on windows all \n are converted to \r\n if stdout is a terminal and is not set to binary mode :(
#this will then cause an incorrect Content-length.
#I have only experienced this problem with apache on Win so far.
if sys.platform == "win32":
try:
import msvcrt
msvcrt.setmode(fout.fileno(), os.O_BINARY)
except:
pass
#put out the response
fout.write(response)
fout.flush()
def handleCGI(service=None, fin=None, fout=None, env=None):
CGIServiceHandler(service).handleRequest(fin, fout, env)

View File

@ -0,0 +1,230 @@
"""
Copyright (c) 2007 Jan-Klaas Kollhof
This file is part of jsonrpc.
jsonrpc is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This software is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this software; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
"""
from types import *
import re
CharReplacements ={
'\t': '\\t',
'\b': '\\b',
'\f': '\\f',
'\n': '\\n',
'\r': '\\r',
'\\': '\\\\',
'/': '\\/',
'"': '\\"'}
EscapeCharToChar = {
't': '\t',
'b': '\b',
'f': '\f',
'n': '\n',
'r': '\r',
'\\': '\\',
'/': '/',
'"' : '"'}
StringEscapeRE= re.compile(r'[\x00-\x19\\"/\b\f\n\r\t]')
Digits = ['0', '1', '2','3','4','5','6','7','8','9']
class JSONEncodeException(Exception):
def __init__(self, obj):
Exception.__init__(self)
self.obj = obj
def __str__(self):
return "Object not encodeable: %s" % self.obj
class JSONDecodeException(Exception):
def __init__(self, message):
Exception.__init__(self)
self.message = message
def __str__(self):
return self.message
def escapeChar(match):
c=match.group(0)
try:
replacement = CharReplacements[c]
return replacement
except KeyError:
d = ord(c)
if d < 32:
return '\\u%04x' % d
else:
return c
def dumps(obj):
return unicode("".join([part for part in dumpParts (obj)]))
def dumpParts (obj):
objType = type(obj)
if obj == None:
yield u'null'
elif objType is BooleanType:
if obj:
yield u'true'
else:
yield u'false'
elif objType is DictionaryType:
yield u'{'
isFirst=True
for (key, value) in obj.items():
if isFirst:
isFirst=False
else:
yield u","
yield u'"' + StringEscapeRE.sub(escapeChar, key) +u'":'
for part in dumpParts (value):
yield part
yield u'}'
elif objType in StringTypes:
yield u'"' + StringEscapeRE.sub(escapeChar, obj) +u'"'
elif objType in [TupleType, ListType, GeneratorType]:
yield u'['
isFirst=True
for item in obj:
if isFirst:
isFirst=False
else:
yield u","
for part in dumpParts (item):
yield part
yield u']'
elif objType in [IntType, LongType, FloatType]:
yield unicode(obj)
else:
raise JSONEncodeException(obj)
def loads(s):
stack = []
chars = iter(s)
value = None
currCharIsNext=False
try:
while(1):
skip = False
if not currCharIsNext:
c = chars.next()
while(c in [' ', '\t', '\r','\n']):
c = chars.next()
currCharIsNext=False
if c=='"':
value = ''
try:
c=chars.next()
while c != '"':
if c == '\\':
c=chars.next()
try:
value+=EscapeCharToChar[c]
except KeyError:
if c == 'u':
hexCode = chars.next() + chars.next() + chars.next() + chars.next()
value += unichr(int(hexCode,16))
else:
raise JSONDecodeException("Bad Escape Sequence Found")
else:
value+=c
c=chars.next()
except StopIteration:
raise JSONDecodeException("Expected end of String")
elif c == '{':
stack.append({})
skip=True
elif c =='}':
value = stack.pop()
elif c == '[':
stack.append([])
skip=True
elif c == ']':
value = stack.pop()
elif c in [',',':']:
skip=True
elif c in Digits or c == '-':
digits=[c]
c = chars.next()
numConv = int
try:
while c in Digits:
digits.append(c)
c = chars.next()
if c == ".":
numConv=float
digits.append(c)
c = chars.next()
while c in Digits:
digits.append(c)
c = chars.next()
if c.upper() == 'E':
digits.append(c)
c = chars.next()
if c in ['+','-']:
digits.append(c)
c = chars.next()
while c in Digits:
digits.append(c)
c = chars.next()
else:
raise JSONDecodeException("Expected + or -")
except StopIteration:
pass
value = numConv("".join(digits))
currCharIsNext=True
elif c in ['t','f','n']:
kw = c+ chars.next() + chars.next() + chars.next()
if kw == 'null':
value = None
elif kw == 'true':
value = True
elif kw == 'fals' and chars.next() == 'e':
value = False
else:
raise JSONDecodeException('Expected Null, False or True')
else:
raise JSONDecodeException('Expected []{}," or Number, Null, False or True')
if not skip:
if len(stack):
top = stack[-1]
if type(top) is ListType:
top.append(value)
elif type(top) is DictionaryType:
stack.append(value)
elif type(top) in StringTypes:
key = stack.pop()
stack[-1][key] = value
else:
raise JSONDecodeException("Expected dictionary key, or start of a value")
else:
return value
except StopIteration:
raise JSONDecodeException("Unexpected end of JSON source")

Binary file not shown.

View File

@ -0,0 +1,52 @@
import sys, os
from jsonrpc import ServiceHandler, ServiceException
class ServiceImplementaionNotFound(ServiceException):
pass
class ModPyServiceHandler(ServiceHandler):
def __init__(self, req):
self.req = req
ServiceHandler.__init__(self, None)
def findServiceEndpoint(self, name):
req = self.req
(modulePath, fileName) = os.path.split(req.filename)
(moduleName, ext) = os.path.splitext(fileName)
if not os.path.exists(os.path.join(modulePath, moduleName + ".py")):
raise ServiceImplementaionNotFound()
else:
if not modulePath in sys.path:
sys.path.insert(0, modulePath)
from mod_python import apache
module = apache.import_module(moduleName, log=1)
if hasattr(module, "service"):
self.service = module.service
elif hasattr(module, "Service"):
self.service = module.Service()
else:
self.service = module
return ServiceHandler.findServiceEndpoint(self, name)
def handleRequest(self, data):
self.req.content_type = "text/plain"
data = self.req.read()
resultData = ServiceHandler.handleRequest(self, data)
self.req.write(resultData)
self.req.flush()
def handler(req):
from mod_python import apache
ModPyServiceHandler(req).handleRequest(req)
return apache.OK

View File

@ -0,0 +1,49 @@
"""
Copyright (c) 2007 Jan-Klaas Kollhof
This file is part of jsonrpc.
jsonrpc is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This software is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this software; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
"""
import urllib
from jsonrpc.json import dumps, loads
class JSONRPCException(Exception):
def __init__(self, rpcError):
Exception.__init__(self)
self.error = rpcError
class ServiceProxy(object):
def __init__(self, serviceURL, serviceName=None):
self.__serviceURL = serviceURL
self.__serviceName = serviceName
def __getattr__(self, name):
if self.__serviceName != None:
name = "%s.%s" % (self.__serviceName, name)
return ServiceProxy(self.__serviceURL, name)
def __call__(self, *args):
postdata = dumps({"method": self.__serviceName, 'params': args, 'id':'jsonrpc'})
respdata = urllib.urlopen(self.__serviceURL, postdata).read()
resp = loads(respdata)
if resp['error'] != None:
raise JSONRPCException(resp['error'])
else:
return resp['result']

Binary file not shown.

View File

@ -0,0 +1,113 @@
"""
Copyright (c) 2007 Jan-Klaas Kollhof
This file is part of jsonrpc.
jsonrpc is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This software is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this software; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
"""
from jsonrpc import loads, dumps, JSONEncodeException
def ServiceMethod(fn):
fn.IsServiceMethod = True
return fn
class ServiceException(Exception):
pass
class ServiceRequestNotTranslatable(ServiceException):
pass
class BadServiceRequest(ServiceException):
pass
class ServiceMethodNotFound(ServiceException):
def __init__(self, name):
self.methodName=name
class ServiceHandler(object):
def __init__(self, service):
self.service=service
def handleRequest(self, json):
err=None
result = None
id_=''
try:
req = self.translateRequest(json)
except ServiceRequestNotTranslatable, e:
err = e
req={'id':id_}
if err==None:
try:
id_ = req['id']
methName = req['method']
args = req['params']
except:
err = BadServiceRequest(json)
if err == None:
try:
meth = self.findServiceEndpoint(methName)
except Exception, e:
err = e
if err == None:
try:
result = self.invokeServiceEndpoint(meth, args)
except Exception, e:
err = e
resultdata = self.translateResult(result, err, id_)
return resultdata
def translateRequest(self, data):
try:
req = loads(data)
except:
raise ServiceRequestNotTranslatable(data)
return req
def findServiceEndpoint(self, name):
try:
meth = getattr(self.service, name)
if getattr(meth, "IsServiceMethod"):
return meth
else:
raise ServiceMethodNotFound(name)
except AttributeError:
raise ServiceMethodNotFound(name)
def invokeServiceEndpoint(self, meth, args):
return meth(*args)
def translateResult(self, rslt, err, id_):
if err != None:
err = {"name": err.__class__.__name__, "message":err.message}
rslt = None
try:
data = dumps({"result":rslt,"id":id_,"error":err})
except JSONEncodeException, e:
err = {"name": "JSONEncodeException", "message":"Result Object Not Serializable"}
data = dumps({"result":None, "id":id_,"error":err})
return data

View File

@ -0,0 +1,93 @@
#! /usr/bin/env python
"""Keywords (from "graminit.c")
This file is automatically generated; please don't muck it up!
To update the symbols in this file, 'cd' to the top directory of
the python source tree after building the interpreter and run:
python Lib/keyword.py
"""
__all__ = ["iskeyword", "kwlist"]
kwlist = [
#--start keywords--
'and',
'as',
'assert',
'break',
'class',
'continue',
'def',
'del',
'elif',
'else',
'except',
'exec',
'finally',
'for',
'from',
'global',
'if',
'import',
'in',
'is',
'lambda',
'not',
'or',
'pass',
'print',
'raise',
'return',
'try',
'while',
'with',
'yield',
#--end keywords--
]
iskeyword = frozenset(kwlist).__contains__
def main():
import sys, re
args = sys.argv[1:]
iptfile = args and args[0] or "Python/graminit.c"
if len(args) > 1: optfile = args[1]
else: optfile = "Lib/keyword.py"
# scan the source file for keywords
fp = open(iptfile)
strprog = re.compile('"([^"]+)"')
lines = []
for line in fp:
if '{1, "' in line:
match = strprog.search(line)
if match:
lines.append(" '" + match.group(1) + "',\n")
fp.close()
lines.sort()
# load the output skeleton from the target
fp = open(optfile)
format = fp.readlines()
fp.close()
# insert the lines of keywords
try:
start = format.index("#--start keywords--\n") + 1
end = format.index("#--end keywords--\n")
format[start:end] = lines
except ValueError:
sys.stderr.write("target does not contain format markers\n")
sys.exit(1)
# write the output file
fp = open(optfile, 'w')
fp.write(''.join(format))
fp.close()
if __name__ == "__main__":
main()

Binary file not shown.

View File

@ -0,0 +1,128 @@
"""Record of phased-in incompatible language changes.
Each line is of the form:
FeatureName = "_Feature(" OptionalRelease "," MandatoryRelease ","
CompilerFlag ")"
where, normally, OptionalRelease < MandatoryRelease, and both are 5-tuples
of the same form as sys.version_info:
(PY_MAJOR_VERSION, # the 2 in 2.1.0a3; an int
PY_MINOR_VERSION, # the 1; an int
PY_MICRO_VERSION, # the 0; an int
PY_RELEASE_LEVEL, # "alpha", "beta", "candidate" or "final"; string
PY_RELEASE_SERIAL # the 3; an int
)
OptionalRelease records the first release in which
from __future__ import FeatureName
was accepted.
In the case of MandatoryReleases that have not yet occurred,
MandatoryRelease predicts the release in which the feature will become part
of the language.
Else MandatoryRelease records when the feature became part of the language;
in releases at or after that, modules no longer need
from __future__ import FeatureName
to use the feature in question, but may continue to use such imports.
MandatoryRelease may also be None, meaning that a planned feature got
dropped.
Instances of class _Feature have two corresponding methods,
.getOptionalRelease() and .getMandatoryRelease().
CompilerFlag is the (bitfield) flag that should be passed in the fourth
argument to the builtin function compile() to enable the feature in
dynamically compiled code. This flag is stored in the .compiler_flag
attribute on _Future instances. These values must match the appropriate
#defines of CO_xxx flags in Include/compile.h.
No feature line is ever to be deleted from this file.
"""
all_feature_names = [
"nested_scopes",
"generators",
"division",
"absolute_import",
"with_statement",
"print_function",
"unicode_literals",
]
__all__ = ["all_feature_names"] + all_feature_names
# The CO_xxx symbols are defined here under the same names used by
# compile.h, so that an editor search will find them here. However,
# they're not exported in __all__, because they don't really belong to
# this module.
CO_NESTED = 0x0010 # nested_scopes
CO_GENERATOR_ALLOWED = 0 # generators (obsolete, was 0x1000)
CO_FUTURE_DIVISION = 0x2000 # division
CO_FUTURE_ABSOLUTE_IMPORT = 0x4000 # perform absolute imports by default
CO_FUTURE_WITH_STATEMENT = 0x8000 # with statement
CO_FUTURE_PRINT_FUNCTION = 0x10000 # print function
CO_FUTURE_UNICODE_LITERALS = 0x20000 # unicode string literals
class _Feature:
def __init__(self, optionalRelease, mandatoryRelease, compiler_flag):
self.optional = optionalRelease
self.mandatory = mandatoryRelease
self.compiler_flag = compiler_flag
def getOptionalRelease(self):
"""Return first release in which this feature was recognized.
This is a 5-tuple, of the same form as sys.version_info.
"""
return self.optional
def getMandatoryRelease(self):
"""Return release in which this feature will become mandatory.
This is a 5-tuple, of the same form as sys.version_info, or, if
the feature was dropped, is None.
"""
return self.mandatory
def __repr__(self):
return "_Feature" + repr((self.optional,
self.mandatory,
self.compiler_flag))
nested_scopes = _Feature((2, 1, 0, "beta", 1),
(2, 2, 0, "alpha", 0),
CO_NESTED)
generators = _Feature((2, 2, 0, "alpha", 1),
(2, 3, 0, "final", 0),
CO_GENERATOR_ALLOWED)
division = _Feature((2, 2, 0, "alpha", 2),
(3, 0, 0, "alpha", 0),
CO_FUTURE_DIVISION)
absolute_import = _Feature((2, 5, 0, "alpha", 1),
(2, 7, 0, "alpha", 0),
CO_FUTURE_ABSOLUTE_IMPORT)
with_statement = _Feature((2, 5, 0, "alpha", 1),
(2, 6, 0, "alpha", 0),
CO_FUTURE_WITH_STATEMENT)
print_function = _Feature((2, 6, 0, "alpha", 2),
(3, 0, 0, "alpha", 0),
CO_FUTURE_PRINT_FUNCTION)
unicode_literals = _Feature((2, 6, 0, "alpha", 2),
(3, 0, 0, "alpha", 0),
CO_FUTURE_UNICODE_LITERALS)

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

Binary file not shown.

View File

@ -0,0 +1,898 @@
"""Random variable generators.
integers
--------
uniform within range
sequences
---------
pick random element
pick random sample
generate random permutation
distributions on the real line:
------------------------------
uniform
triangular
normal (Gaussian)
lognormal
negative exponential
gamma
beta
pareto
Weibull
distributions on the circle (angles 0 to 2pi)
---------------------------------------------
circular uniform
von Mises
General notes on the underlying Mersenne Twister core generator:
* The period is 2**19937-1.
* It is one of the most extensively tested generators in existence.
* Without a direct way to compute N steps forward, the semantics of
jumpahead(n) are weakened to simply jump to another distant state and rely
on the large period to avoid overlapping sequences.
* The random() method is implemented in C, executes in a single Python step,
and is, therefore, threadsafe.
"""
from __future__ import division
from warnings import warn as _warn
from types import MethodType as _MethodType, BuiltinMethodType as _BuiltinMethodType
from math import log as _log, exp as _exp, pi as _pi, e as _e, ceil as _ceil
from math import sqrt as _sqrt, acos as _acos, cos as _cos, sin as _sin
from os import urandom as _urandom
from binascii import hexlify as _hexlify
__all__ = ["Random","seed","random","uniform","randint","choice","sample",
"randrange","shuffle","normalvariate","lognormvariate",
"expovariate","vonmisesvariate","gammavariate","triangular",
"gauss","betavariate","paretovariate","weibullvariate",
"getstate","setstate","jumpahead", "WichmannHill", "getrandbits",
"SystemRandom"]
NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
TWOPI = 2.0*_pi
LOG4 = _log(4.0)
SG_MAGICCONST = 1.0 + _log(4.5)
BPF = 53 # Number of bits in a float
RECIP_BPF = 2**-BPF
# Translated by Guido van Rossum from C source provided by
# Adrian Baddeley. Adapted by Raymond Hettinger for use with
# the Mersenne Twister and os.urandom() core generators.
import _random
class Random(_random.Random):
"""Random number generator base class used by bound module functions.
Used to instantiate instances of Random to get generators that don't
share state. Especially useful for multi-threaded programs, creating
a different instance of Random for each thread, and using the jumpahead()
method to ensure that the generated sequences seen by each thread don't
overlap.
Class Random can also be subclassed if you want to use a different basic
generator of your own devising: in that case, override the following
methods: random(), seed(), getstate(), setstate() and jumpahead().
Optionally, implement a getrandbits() method so that randrange() can cover
arbitrarily large ranges.
"""
VERSION = 3 # used by getstate/setstate
def __init__(self, x=None):
"""Initialize an instance.
Optional argument x controls seeding, as for Random.seed().
"""
self.seed(x)
self.gauss_next = None
def seed(self, a=None):
"""Initialize internal state from hashable object.
None or no argument seeds from current time or from an operating
system specific randomness source if available.
If a is not None or an int or long, hash(a) is used instead.
"""
if a is None:
try:
a = long(_hexlify(_urandom(16)), 16)
except NotImplementedError:
import time
a = long(time.time() * 256) # use fractional seconds
super(Random, self).seed(a)
self.gauss_next = None
def getstate(self):
"""Return internal state; can be passed to setstate() later."""
return self.VERSION, super(Random, self).getstate(), self.gauss_next
def setstate(self, state):
"""Restore internal state from object returned by getstate()."""
version = state[0]
if version == 3:
version, internalstate, self.gauss_next = state
super(Random, self).setstate(internalstate)
elif version == 2:
version, internalstate, self.gauss_next = state
# In version 2, the state was saved as signed ints, which causes
# inconsistencies between 32/64-bit systems. The state is
# really unsigned 32-bit ints, so we convert negative ints from
# version 2 to positive longs for version 3.
try:
internalstate = tuple( long(x) % (2**32) for x in internalstate )
except ValueError, e:
raise TypeError, e
super(Random, self).setstate(internalstate)
else:
raise ValueError("state with version %s passed to "
"Random.setstate() of version %s" %
(version, self.VERSION))
## ---- Methods below this point do not need to be overridden when
## ---- subclassing for the purpose of using a different core generator.
## -------------------- pickle support -------------------
def __getstate__(self): # for pickle
return self.getstate()
def __setstate__(self, state): # for pickle
self.setstate(state)
def __reduce__(self):
return self.__class__, (), self.getstate()
## -------------------- integer methods -------------------
def randrange(self, start, stop=None, step=1, int=int, default=None,
maxwidth=1L<<BPF):
"""Choose a random item from range(start, stop[, step]).
This fixes the problem with randint() which includes the
endpoint; in Python this is usually not what you want.
Do not supply the 'int', 'default', and 'maxwidth' arguments.
"""
# This code is a bit messy to make it fast for the
# common case while still doing adequate error checking.
istart = int(start)
if istart != start:
raise ValueError, "non-integer arg 1 for randrange()"
if stop is default:
if istart > 0:
if istart >= maxwidth:
return self._randbelow(istart)
return int(self.random() * istart)
raise ValueError, "empty range for randrange()"
# stop argument supplied.
istop = int(stop)
if istop != stop:
raise ValueError, "non-integer stop for randrange()"
width = istop - istart
if step == 1 and width > 0:
# Note that
# int(istart + self.random()*width)
# instead would be incorrect. For example, consider istart
# = -2 and istop = 0. Then the guts would be in
# -2.0 to 0.0 exclusive on both ends (ignoring that random()
# might return 0.0), and because int() truncates toward 0, the
# final result would be -1 or 0 (instead of -2 or -1).
# istart + int(self.random()*width)
# would also be incorrect, for a subtler reason: the RHS
# can return a long, and then randrange() would also return
# a long, but we're supposed to return an int (for backward
# compatibility).
if width >= maxwidth:
return int(istart + self._randbelow(width))
return int(istart + int(self.random()*width))
if step == 1:
raise ValueError, "empty range for randrange() (%d,%d, %d)" % (istart, istop, width)
# Non-unit step argument supplied.
istep = int(step)
if istep != step:
raise ValueError, "non-integer step for randrange()"
if istep > 0:
n = (width + istep - 1) // istep
elif istep < 0:
n = (width + istep + 1) // istep
else:
raise ValueError, "zero step for randrange()"
if n <= 0:
raise ValueError, "empty range for randrange()"
if n >= maxwidth:
return istart + istep*self._randbelow(n)
return istart + istep*int(self.random() * n)
def randint(self, a, b):
"""Return random integer in range [a, b], including both end points.
"""
return self.randrange(a, b+1)
def _randbelow(self, n, _log=_log, int=int, _maxwidth=1L<<BPF,
_Method=_MethodType, _BuiltinMethod=_BuiltinMethodType):
"""Return a random int in the range [0,n)
Handles the case where n has more bits than returned
by a single call to the underlying generator.
"""
try:
getrandbits = self.getrandbits
except AttributeError:
pass
else:
# Only call self.getrandbits if the original random() builtin method
# has not been overridden or if a new getrandbits() was supplied.
# This assures that the two methods correspond.
if type(self.random) is _BuiltinMethod or type(getrandbits) is _Method:
k = int(1.00001 + _log(n-1, 2.0)) # 2**k > n-1 > 2**(k-2)
r = getrandbits(k)
while r >= n:
r = getrandbits(k)
return r
if n >= _maxwidth:
_warn("Underlying random() generator does not supply \n"
"enough bits to choose from a population range this large")
return int(self.random() * n)
## -------------------- sequence methods -------------------
def choice(self, seq):
"""Choose a random element from a non-empty sequence."""
return seq[int(self.random() * len(seq))] # raises IndexError if seq is empty
def shuffle(self, x, random=None, int=int):
"""x, random=random.random -> shuffle list x in place; return None.
Optional arg random is a 0-argument function returning a random
float in [0.0, 1.0); by default, the standard random.random.
"""
if random is None:
random = self.random
for i in reversed(xrange(1, len(x))):
# pick an element in x[:i+1] with which to exchange x[i]
j = int(random() * (i+1))
x[i], x[j] = x[j], x[i]
def sample(self, population, k):
"""Chooses k unique random elements from a population sequence.
Returns a new list containing elements from the population while
leaving the original population unchanged. The resulting list is
in selection order so that all sub-slices will also be valid random
samples. This allows raffle winners (the sample) to be partitioned
into grand prize and second place winners (the subslices).
Members of the population need not be hashable or unique. If the
population contains repeats, then each occurrence is a possible
selection in the sample.
To choose a sample in a range of integers, use xrange as an argument.
This is especially fast and space efficient for sampling from a
large population: sample(xrange(10000000), 60)
"""
# XXX Although the documentation says `population` is "a sequence",
# XXX attempts are made to cater to any iterable with a __len__
# XXX method. This has had mixed success. Examples from both
# XXX sides: sets work fine, and should become officially supported;
# XXX dicts are much harder, and have failed in various subtle
# XXX ways across attempts. Support for mapping types should probably
# XXX be dropped (and users should pass mapping.keys() or .values()
# XXX explicitly).
# Sampling without replacement entails tracking either potential
# selections (the pool) in a list or previous selections in a set.
# When the number of selections is small compared to the
# population, then tracking selections is efficient, requiring
# only a small set and an occasional reselection. For
# a larger number of selections, the pool tracking method is
# preferred since the list takes less space than the
# set and it doesn't suffer from frequent reselections.
n = len(population)
if not 0 <= k <= n:
raise ValueError, "sample larger than population"
random = self.random
_int = int
result = [None] * k
setsize = 21 # size of a small set minus size of an empty list
if k > 5:
setsize += 4 ** _ceil(_log(k * 3, 4)) # table size for big sets
if n <= setsize or hasattr(population, "keys"):
# An n-length list is smaller than a k-length set, or this is a
# mapping type so the other algorithm wouldn't work.
pool = list(population)
for i in xrange(k): # invariant: non-selected at [0,n-i)
j = _int(random() * (n-i))
result[i] = pool[j]
pool[j] = pool[n-i-1] # move non-selected item into vacancy
else:
try:
selected = set()
selected_add = selected.add
for i in xrange(k):
j = _int(random() * n)
while j in selected:
j = _int(random() * n)
selected_add(j)
result[i] = population[j]
except (TypeError, KeyError): # handle (at least) sets
if isinstance(population, list):
raise
return self.sample(tuple(population), k)
return result
## -------------------- real-valued distributions -------------------
## -------------------- uniform distribution -------------------
def uniform(self, a, b):
"Get a random number in the range [a, b) or [a, b] depending on rounding."
return a + (b-a) * self.random()
## -------------------- triangular --------------------
def triangular(self, low=0.0, high=1.0, mode=None):
"""Triangular distribution.
Continuous distribution bounded by given lower and upper limits,
and having a given mode value in-between.
http://en.wikipedia.org/wiki/Triangular_distribution
"""
u = self.random()
c = 0.5 if mode is None else (mode - low) / (high - low)
if u > c:
u = 1.0 - u
c = 1.0 - c
low, high = high, low
return low + (high - low) * (u * c) ** 0.5
## -------------------- normal distribution --------------------
def normalvariate(self, mu, sigma):
"""Normal distribution.
mu is the mean, and sigma is the standard deviation.
"""
# mu = mean, sigma = standard deviation
# Uses Kinderman and Monahan method. Reference: Kinderman,
# A.J. and Monahan, J.F., "Computer generation of random
# variables using the ratio of uniform deviates", ACM Trans
# Math Software, 3, (1977), pp257-260.
random = self.random
while 1:
u1 = random()
u2 = 1.0 - random()
z = NV_MAGICCONST*(u1-0.5)/u2
zz = z*z/4.0
if zz <= -_log(u2):
break
return mu + z*sigma
## -------------------- lognormal distribution --------------------
def lognormvariate(self, mu, sigma):
"""Log normal distribution.
If you take the natural logarithm of this distribution, you'll get a
normal distribution with mean mu and standard deviation sigma.
mu can have any value, and sigma must be greater than zero.
"""
return _exp(self.normalvariate(mu, sigma))
## -------------------- exponential distribution --------------------
def expovariate(self, lambd):
"""Exponential distribution.
lambd is 1.0 divided by the desired mean. It should be
nonzero. (The parameter would be called "lambda", but that is
a reserved word in Python.) Returned values range from 0 to
positive infinity if lambd is positive, and from negative
infinity to 0 if lambd is negative.
"""
# lambd: rate lambd = 1/mean
# ('lambda' is a Python reserved word)
random = self.random
u = random()
while u <= 1e-7:
u = random()
return -_log(u)/lambd
## -------------------- von Mises distribution --------------------
def vonmisesvariate(self, mu, kappa):
"""Circular data distribution.
mu is the mean angle, expressed in radians between 0 and 2*pi, and
kappa is the concentration parameter, which must be greater than or
equal to zero. If kappa is equal to zero, this distribution reduces
to a uniform random angle over the range 0 to 2*pi.
"""
# mu: mean angle (in radians between 0 and 2*pi)
# kappa: concentration parameter kappa (>= 0)
# if kappa = 0 generate uniform random angle
# Based upon an algorithm published in: Fisher, N.I.,
# "Statistical Analysis of Circular Data", Cambridge
# University Press, 1993.
# Thanks to Magnus Kessler for a correction to the
# implementation of step 4.
random = self.random
if kappa <= 1e-6:
return TWOPI * random()
a = 1.0 + _sqrt(1.0 + 4.0 * kappa * kappa)
b = (a - _sqrt(2.0 * a))/(2.0 * kappa)
r = (1.0 + b * b)/(2.0 * b)
while 1:
u1 = random()
z = _cos(_pi * u1)
f = (1.0 + r * z)/(r + z)
c = kappa * (r - f)
u2 = random()
if u2 < c * (2.0 - c) or u2 <= c * _exp(1.0 - c):
break
u3 = random()
if u3 > 0.5:
theta = (mu % TWOPI) + _acos(f)
else:
theta = (mu % TWOPI) - _acos(f)
return theta
## -------------------- gamma distribution --------------------
def gammavariate(self, alpha, beta):
"""Gamma distribution. Not the gamma function!
Conditions on the parameters are alpha > 0 and beta > 0.
"""
# alpha > 0, beta > 0, mean is alpha*beta, variance is alpha*beta**2
# Warning: a few older sources define the gamma distribution in terms
# of alpha > -1.0
if alpha <= 0.0 or beta <= 0.0:
raise ValueError, 'gammavariate: alpha and beta must be > 0.0'
random = self.random
if alpha > 1.0:
# Uses R.C.H. Cheng, "The generation of Gamma
# variables with non-integral shape parameters",
# Applied Statistics, (1977), 26, No. 1, p71-74
ainv = _sqrt(2.0 * alpha - 1.0)
bbb = alpha - LOG4
ccc = alpha + ainv
while 1:
u1 = random()
if not 1e-7 < u1 < .9999999:
continue
u2 = 1.0 - random()
v = _log(u1/(1.0-u1))/ainv
x = alpha*_exp(v)
z = u1*u1*u2
r = bbb+ccc*v-x
if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= _log(z):
return x * beta
elif alpha == 1.0:
# expovariate(1)
u = random()
while u <= 1e-7:
u = random()
return -_log(u) * beta
else: # alpha is between 0 and 1 (exclusive)
# Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
while 1:
u = random()
b = (_e + alpha)/_e
p = b*u
if p <= 1.0:
x = p ** (1.0/alpha)
else:
x = -_log((b-p)/alpha)
u1 = random()
if p > 1.0:
if u1 <= x ** (alpha - 1.0):
break
elif u1 <= _exp(-x):
break
return x * beta
## -------------------- Gauss (faster alternative) --------------------
def gauss(self, mu, sigma):
"""Gaussian distribution.
mu is the mean, and sigma is the standard deviation. This is
slightly faster than the normalvariate() function.
Not thread-safe without a lock around calls.
"""
# When x and y are two variables from [0, 1), uniformly
# distributed, then
#
# cos(2*pi*x)*sqrt(-2*log(1-y))
# sin(2*pi*x)*sqrt(-2*log(1-y))
#
# are two *independent* variables with normal distribution
# (mu = 0, sigma = 1).
# (Lambert Meertens)
# (corrected version; bug discovered by Mike Miller, fixed by LM)
# Multithreading note: When two threads call this function
# simultaneously, it is possible that they will receive the
# same return value. The window is very small though. To
# avoid this, you have to use a lock around all calls. (I
# didn't want to slow this down in the serial case by using a
# lock here.)
random = self.random
z = self.gauss_next
self.gauss_next = None
if z is None:
x2pi = random() * TWOPI
g2rad = _sqrt(-2.0 * _log(1.0 - random()))
z = _cos(x2pi) * g2rad
self.gauss_next = _sin(x2pi) * g2rad
return mu + z*sigma
## -------------------- beta --------------------
## See
## http://sourceforge.net/bugs/?func=detailbug&bug_id=130030&group_id=5470
## for Ivan Frohne's insightful analysis of why the original implementation:
##
## def betavariate(self, alpha, beta):
## # Discrete Event Simulation in C, pp 87-88.
##
## y = self.expovariate(alpha)
## z = self.expovariate(1.0/beta)
## return z/(y+z)
##
## was dead wrong, and how it probably got that way.
def betavariate(self, alpha, beta):
"""Beta distribution.
Conditions on the parameters are alpha > 0 and beta > 0.
Returned values range between 0 and 1.
"""
# This version due to Janne Sinkkonen, and matches all the std
# texts (e.g., Knuth Vol 2 Ed 3 pg 134 "the beta distribution").
y = self.gammavariate(alpha, 1.)
if y == 0:
return 0.0
else:
return y / (y + self.gammavariate(beta, 1.))
## -------------------- Pareto --------------------
def paretovariate(self, alpha):
"""Pareto distribution. alpha is the shape parameter."""
# Jain, pg. 495
u = 1.0 - self.random()
return 1.0 / pow(u, 1.0/alpha)
## -------------------- Weibull --------------------
def weibullvariate(self, alpha, beta):
"""Weibull distribution.
alpha is the scale parameter and beta is the shape parameter.
"""
# Jain, pg. 499; bug fix courtesy Bill Arms
u = 1.0 - self.random()
return alpha * pow(-_log(u), 1.0/beta)
## -------------------- Wichmann-Hill -------------------
class WichmannHill(Random):
VERSION = 1 # used by getstate/setstate
def seed(self, a=None):
"""Initialize internal state from hashable object.
None or no argument seeds from current time or from an operating
system specific randomness source if available.
If a is not None or an int or long, hash(a) is used instead.
If a is an int or long, a is used directly. Distinct values between
0 and 27814431486575L inclusive are guaranteed to yield distinct
internal states (this guarantee is specific to the default
Wichmann-Hill generator).
"""
if a is None:
try:
a = long(_hexlify(_urandom(16)), 16)
except NotImplementedError:
import time
a = long(time.time() * 256) # use fractional seconds
if not isinstance(a, (int, long)):
a = hash(a)
a, x = divmod(a, 30268)
a, y = divmod(a, 30306)
a, z = divmod(a, 30322)
self._seed = int(x)+1, int(y)+1, int(z)+1
self.gauss_next = None
def random(self):
"""Get the next random number in the range [0.0, 1.0)."""
# Wichman-Hill random number generator.
#
# Wichmann, B. A. & Hill, I. D. (1982)
# Algorithm AS 183:
# An efficient and portable pseudo-random number generator
# Applied Statistics 31 (1982) 188-190
#
# see also:
# Correction to Algorithm AS 183
# Applied Statistics 33 (1984) 123
#
# McLeod, A. I. (1985)
# A remark on Algorithm AS 183
# Applied Statistics 34 (1985),198-200
# This part is thread-unsafe:
# BEGIN CRITICAL SECTION
x, y, z = self._seed
x = (171 * x) % 30269
y = (172 * y) % 30307
z = (170 * z) % 30323
self._seed = x, y, z
# END CRITICAL SECTION
# Note: on a platform using IEEE-754 double arithmetic, this can
# never return 0.0 (asserted by Tim; proof too long for a comment).
return (x/30269.0 + y/30307.0 + z/30323.0) % 1.0
def getstate(self):
"""Return internal state; can be passed to setstate() later."""
return self.VERSION, self._seed, self.gauss_next
def setstate(self, state):
"""Restore internal state from object returned by getstate()."""
version = state[0]
if version == 1:
version, self._seed, self.gauss_next = state
else:
raise ValueError("state with version %s passed to "
"Random.setstate() of version %s" %
(version, self.VERSION))
def jumpahead(self, n):
"""Act as if n calls to random() were made, but quickly.
n is an int, greater than or equal to 0.
Example use: If you have 2 threads and know that each will
consume no more than a million random numbers, create two Random
objects r1 and r2, then do
r2.setstate(r1.getstate())
r2.jumpahead(1000000)
Then r1 and r2 will use guaranteed-disjoint segments of the full
period.
"""
if not n >= 0:
raise ValueError("n must be >= 0")
x, y, z = self._seed
x = int(x * pow(171, n, 30269)) % 30269
y = int(y * pow(172, n, 30307)) % 30307
z = int(z * pow(170, n, 30323)) % 30323
self._seed = x, y, z
def __whseed(self, x=0, y=0, z=0):
"""Set the Wichmann-Hill seed from (x, y, z).
These must be integers in the range [0, 256).
"""
if not type(x) == type(y) == type(z) == int:
raise TypeError('seeds must be integers')
if not (0 <= x < 256 and 0 <= y < 256 and 0 <= z < 256):
raise ValueError('seeds must be in range(0, 256)')
if 0 == x == y == z:
# Initialize from current time
import time
t = long(time.time() * 256)
t = int((t&0xffffff) ^ (t>>24))
t, x = divmod(t, 256)
t, y = divmod(t, 256)
t, z = divmod(t, 256)
# Zero is a poor seed, so substitute 1
self._seed = (x or 1, y or 1, z or 1)
self.gauss_next = None
def whseed(self, a=None):
"""Seed from hashable object's hash code.
None or no argument seeds from current time. It is not guaranteed
that objects with distinct hash codes lead to distinct internal
states.
This is obsolete, provided for compatibility with the seed routine
used prior to Python 2.1. Use the .seed() method instead.
"""
if a is None:
self.__whseed()
return
a = hash(a)
a, x = divmod(a, 256)
a, y = divmod(a, 256)
a, z = divmod(a, 256)
x = (x + a) % 256 or 1
y = (y + a) % 256 or 1
z = (z + a) % 256 or 1
self.__whseed(x, y, z)
## --------------- Operating System Random Source ------------------
class SystemRandom(Random):
"""Alternate random number generator using sources provided
by the operating system (such as /dev/urandom on Unix or
CryptGenRandom on Windows).
Not available on all systems (see os.urandom() for details).
"""
def random(self):
"""Get the next random number in the range [0.0, 1.0)."""
return (long(_hexlify(_urandom(7)), 16) >> 3) * RECIP_BPF
def getrandbits(self, k):
"""getrandbits(k) -> x. Generates a long int with k random bits."""
if k <= 0:
raise ValueError('number of bits must be greater than zero')
if k != int(k):
raise TypeError('number of bits should be an integer')
bytes = (k + 7) // 8 # bits / 8 and rounded up
x = long(_hexlify(_urandom(bytes)), 16)
return x >> (bytes * 8 - k) # trim excess bits
def _stub(self, *args, **kwds):
"Stub method. Not used for a system random number generator."
return None
seed = jumpahead = _stub
def _notimplemented(self, *args, **kwds):
"Method should not be called for a system random number generator."
raise NotImplementedError('System entropy source does not have state.')
getstate = setstate = _notimplemented
## -------------------- test program --------------------
def _test_generator(n, func, args):
import time
print n, 'times', func.__name__
total = 0.0
sqsum = 0.0
smallest = 1e10
largest = -1e10
t0 = time.time()
for i in range(n):
x = func(*args)
total += x
sqsum = sqsum + x*x
smallest = min(x, smallest)
largest = max(x, largest)
t1 = time.time()
print round(t1-t0, 3), 'sec,',
avg = total/n
stddev = _sqrt(sqsum/n - avg*avg)
print 'avg %g, stddev %g, min %g, max %g' % \
(avg, stddev, smallest, largest)
def _test(N=2000):
_test_generator(N, random, ())
_test_generator(N, normalvariate, (0.0, 1.0))
_test_generator(N, lognormvariate, (0.0, 1.0))
_test_generator(N, vonmisesvariate, (0.0, 1.0))
_test_generator(N, gammavariate, (0.01, 1.0))
_test_generator(N, gammavariate, (0.1, 1.0))
_test_generator(N, gammavariate, (0.1, 2.0))
_test_generator(N, gammavariate, (0.5, 1.0))
_test_generator(N, gammavariate, (0.9, 1.0))
_test_generator(N, gammavariate, (1.0, 1.0))
_test_generator(N, gammavariate, (2.0, 1.0))
_test_generator(N, gammavariate, (20.0, 1.0))
_test_generator(N, gammavariate, (200.0, 1.0))
_test_generator(N, gauss, (0.0, 1.0))
_test_generator(N, betavariate, (3.0, 3.0))
_test_generator(N, triangular, (0.0, 1.0, 1.0/3.0))
# Create one instance, seeded from current time, and export its methods
# as module-level functions. The functions share state across all uses
#(both in the user's code and in the Python libraries), but that's fine
# for most programs and is easier for the casual user than making them
# instantiate their own Random() instance.
_inst = Random()
seed = _inst.seed
random = _inst.random
uniform = _inst.uniform
triangular = _inst.triangular
randint = _inst.randint
choice = _inst.choice
randrange = _inst.randrange
sample = _inst.sample
shuffle = _inst.shuffle
normalvariate = _inst.normalvariate
lognormvariate = _inst.lognormvariate
expovariate = _inst.expovariate
vonmisesvariate = _inst.vonmisesvariate
gammavariate = _inst.gammavariate
gauss = _inst.gauss
betavariate = _inst.betavariate
paretovariate = _inst.paretovariate
weibullvariate = _inst.weibullvariate
getstate = _inst.getstate
setstate = _inst.setstate
jumpahead = _inst.jumpahead
getrandbits = _inst.getrandbits
if __name__ == '__main__':
_test()

Binary file not shown.

View File

@ -0,0 +1,603 @@
"""Temporary files.
This module provides generic, low- and high-level interfaces for
creating temporary files and directories. The interfaces listed
as "safe" just below can be used without fear of race conditions.
Those listed as "unsafe" cannot, and are provided for backward
compatibility only.
This module also provides some data items to the user:
TMP_MAX - maximum number of names that will be tried before
giving up.
template - the default prefix for all temporary names.
You may change this to control the default prefix.
tempdir - If this is set to a string before the first use of
any routine from this module, it will be considered as
another candidate location to store temporary files.
"""
__all__ = [
"NamedTemporaryFile", "TemporaryFile", # high level safe interfaces
"SpooledTemporaryFile",
"mkstemp", "mkdtemp", # low level safe interfaces
"mktemp", # deprecated unsafe interface
"TMP_MAX", "gettempprefix", # constants
"tempdir", "gettempdir"
]
# Imports.
import os as _os
import errno as _errno
from random import Random as _Random
try:
from cStringIO import StringIO as _StringIO
except ImportError:
from StringIO import StringIO as _StringIO
try:
import fcntl as _fcntl
except ImportError:
def _set_cloexec(fd):
pass
else:
def _set_cloexec(fd):
try:
flags = _fcntl.fcntl(fd, _fcntl.F_GETFD, 0)
except IOError:
pass
else:
# flags read successfully, modify
flags |= _fcntl.FD_CLOEXEC
_fcntl.fcntl(fd, _fcntl.F_SETFD, flags)
try:
import thread as _thread
except ImportError:
import dummy_thread as _thread
_allocate_lock = _thread.allocate_lock
_text_openflags = _os.O_RDWR | _os.O_CREAT | _os.O_EXCL
if hasattr(_os, 'O_NOINHERIT'):
_text_openflags |= _os.O_NOINHERIT
if hasattr(_os, 'O_NOFOLLOW'):
_text_openflags |= _os.O_NOFOLLOW
_bin_openflags = _text_openflags
if hasattr(_os, 'O_BINARY'):
_bin_openflags |= _os.O_BINARY
if hasattr(_os, 'TMP_MAX'):
TMP_MAX = _os.TMP_MAX
else:
TMP_MAX = 10000
template = "tmp"
# Internal routines.
_once_lock = _allocate_lock()
if hasattr(_os, "lstat"):
_stat = _os.lstat
elif hasattr(_os, "stat"):
_stat = _os.stat
else:
# Fallback. All we need is something that raises os.error if the
# file doesn't exist.
def _stat(fn):
try:
f = open(fn)
except IOError:
raise _os.error
f.close()
def _exists(fn):
try:
_stat(fn)
except _os.error:
return False
else:
return True
class _RandomNameSequence:
"""An instance of _RandomNameSequence generates an endless
sequence of unpredictable strings which can safely be incorporated
into file names. Each string is six characters long. Multiple
threads can safely use the same instance at the same time.
_RandomNameSequence is an iterator."""
characters = ("abcdefghijklmnopqrstuvwxyz" +
"ABCDEFGHIJKLMNOPQRSTUVWXYZ" +
"0123456789_")
def __init__(self):
self.mutex = _allocate_lock()
self.rng = _Random()
self.normcase = _os.path.normcase
def __iter__(self):
return self
def next(self):
m = self.mutex
c = self.characters
choose = self.rng.choice
m.acquire()
try:
letters = [choose(c) for dummy in "123456"]
finally:
m.release()
return self.normcase(''.join(letters))
def _candidate_tempdir_list():
"""Generate a list of candidate temporary directories which
_get_default_tempdir will try."""
dirlist = []
# First, try the environment.
for envname in 'TMPDIR', 'TEMP', 'TMP':
dirname = _os.getenv(envname)
if dirname: dirlist.append(dirname)
# Failing that, try OS-specific locations.
if _os.name == 'riscos':
dirname = _os.getenv('Wimp$ScrapDir')
if dirname: dirlist.append(dirname)
elif _os.name == 'nt':
dirlist.extend([ r'c:\temp', r'c:\tmp', r'\temp', r'\tmp' ])
else:
dirlist.extend([ '/tmp', '/var/tmp', '/usr/tmp' ])
# As a last resort, the current directory.
try:
dirlist.append(_os.getcwd())
except (AttributeError, _os.error):
dirlist.append(_os.curdir)
return dirlist
def _get_default_tempdir():
"""Calculate the default directory to use for temporary files.
This routine should be called exactly once.
We determine whether or not a candidate temp dir is usable by
trying to create and write to a file in that directory. If this
is successful, the test file is deleted. To prevent denial of
service, the name of the test file must be randomized."""
namer = _RandomNameSequence()
dirlist = _candidate_tempdir_list()
flags = _text_openflags
for dir in dirlist:
if dir != _os.curdir:
dir = _os.path.normcase(_os.path.abspath(dir))
# Try only a few names per directory.
for seq in xrange(100):
name = namer.next()
filename = _os.path.join(dir, name)
try:
fd = _os.open(filename, flags, 0600)
fp = _os.fdopen(fd, 'w')
fp.write('blat')
fp.close()
_os.unlink(filename)
del fp, fd
return dir
except (OSError, IOError), e:
if e[0] != _errno.EEXIST:
break # no point trying more names in this directory
pass
raise IOError, (_errno.ENOENT,
("No usable temporary directory found in %s" % dirlist))
_name_sequence = None
def _get_candidate_names():
"""Common setup sequence for all user-callable interfaces."""
global _name_sequence
if _name_sequence is None:
_once_lock.acquire()
try:
if _name_sequence is None:
_name_sequence = _RandomNameSequence()
finally:
_once_lock.release()
return _name_sequence
def _mkstemp_inner(dir, pre, suf, flags):
"""Code common to mkstemp, TemporaryFile, and NamedTemporaryFile."""
names = _get_candidate_names()
for seq in xrange(TMP_MAX):
name = names.next()
file = _os.path.join(dir, pre + name + suf)
try:
fd = _os.open(file, flags, 0600)
_set_cloexec(fd)
return (fd, _os.path.abspath(file))
except OSError, e:
if e.errno == _errno.EEXIST:
continue # try again
raise
raise IOError, (_errno.EEXIST, "No usable temporary file name found")
# User visible interfaces.
def gettempprefix():
"""Accessor for tempdir.template."""
return template
tempdir = None
def gettempdir():
"""Accessor for tempfile.tempdir."""
global tempdir
if tempdir is None:
_once_lock.acquire()
try:
if tempdir is None:
tempdir = _get_default_tempdir()
finally:
_once_lock.release()
return tempdir
def mkstemp(suffix="", prefix=template, dir=None, text=False):
"""User-callable function to create and return a unique temporary
file. The return value is a pair (fd, name) where fd is the
file descriptor returned by os.open, and name is the filename.
If 'suffix' is specified, the file name will end with that suffix,
otherwise there will be no suffix.
If 'prefix' is specified, the file name will begin with that prefix,
otherwise a default prefix is used.
If 'dir' is specified, the file will be created in that directory,
otherwise a default directory is used.
If 'text' is specified and true, the file is opened in text
mode. Else (the default) the file is opened in binary mode. On
some operating systems, this makes no difference.
The file is readable and writable only by the creating user ID.
If the operating system uses permission bits to indicate whether a
file is executable, the file is executable by no one. The file
descriptor is not inherited by children of this process.
Caller is responsible for deleting the file when done with it.
"""
if dir is None:
dir = gettempdir()
if text:
flags = _text_openflags
else:
flags = _bin_openflags
return _mkstemp_inner(dir, prefix, suffix, flags)
def mkdtemp(suffix="", prefix=template, dir=None):
"""User-callable function to create and return a unique temporary
directory. The return value is the pathname of the directory.
Arguments are as for mkstemp, except that the 'text' argument is
not accepted.
The directory is readable, writable, and searchable only by the
creating user.
Caller is responsible for deleting the directory when done with it.
"""
if dir is None:
dir = gettempdir()
names = _get_candidate_names()
for seq in xrange(TMP_MAX):
name = names.next()
file = _os.path.join(dir, prefix + name + suffix)
try:
_os.mkdir(file, 0700)
return file
except OSError, e:
if e.errno == _errno.EEXIST:
continue # try again
raise
raise IOError, (_errno.EEXIST, "No usable temporary directory name found")
def mktemp(suffix="", prefix=template, dir=None):
"""User-callable function to return a unique temporary file name. The
file is not created.
Arguments are as for mkstemp, except that the 'text' argument is
not accepted.
This function is unsafe and should not be used. The file name
refers to a file that did not exist at some point, but by the time
you get around to creating it, someone else may have beaten you to
the punch.
"""
## from warnings import warn as _warn
## _warn("mktemp is a potential security risk to your program",
## RuntimeWarning, stacklevel=2)
if dir is None:
dir = gettempdir()
names = _get_candidate_names()
for seq in xrange(TMP_MAX):
name = names.next()
file = _os.path.join(dir, prefix + name + suffix)
if not _exists(file):
return file
raise IOError, (_errno.EEXIST, "No usable temporary filename found")
class _TemporaryFileWrapper:
"""Temporary file wrapper
This class provides a wrapper around files opened for
temporary use. In particular, it seeks to automatically
remove the file when it is no longer needed.
"""
def __init__(self, file, name, delete=True):
self.file = file
self.name = name
self.close_called = False
self.delete = delete
def __getattr__(self, name):
# Attribute lookups are delegated to the underlying file
# and cached for non-numeric results
# (i.e. methods are cached, closed and friends are not)
file = self.__dict__['file']
a = getattr(file, name)
if not issubclass(type(a), type(0)):
setattr(self, name, a)
return a
# The underlying __enter__ method returns the wrong object
# (self.file) so override it to return the wrapper
def __enter__(self):
self.file.__enter__()
return self
# NT provides delete-on-close as a primitive, so we don't need
# the wrapper to do anything special. We still use it so that
# file.name is useful (i.e. not "(fdopen)") with NamedTemporaryFile.
if _os.name != 'nt':
# Cache the unlinker so we don't get spurious errors at
# shutdown when the module-level "os" is None'd out. Note
# that this must be referenced as self.unlink, because the
# name TemporaryFileWrapper may also get None'd out before
# __del__ is called.
unlink = _os.unlink
def close(self):
if not self.close_called:
self.close_called = True
self.file.close()
if self.delete:
self.unlink(self.name)
def __del__(self):
self.close()
# Need to trap __exit__ as well to ensure the file gets
# deleted when used in a with statement
def __exit__(self, exc, value, tb):
result = self.file.__exit__(exc, value, tb)
self.close()
return result
def NamedTemporaryFile(mode='w+b', bufsize=-1, suffix="",
prefix=template, dir=None, delete=True):
"""Create and return a temporary file.
Arguments:
'prefix', 'suffix', 'dir' -- as for mkstemp.
'mode' -- the mode argument to os.fdopen (default "w+b").
'bufsize' -- the buffer size argument to os.fdopen (default -1).
'delete' -- whether the file is deleted on close (default True).
The file is created as mkstemp() would do it.
Returns an object with a file-like interface; the name of the file
is accessible as file.name. The file will be automatically deleted
when it is closed unless the 'delete' argument is set to False.
"""
if dir is None:
dir = gettempdir()
if 'b' in mode:
flags = _bin_openflags
else:
flags = _text_openflags
# Setting O_TEMPORARY in the flags causes the OS to delete
# the file when it is closed. This is only supported by Windows.
if _os.name == 'nt' and delete:
flags |= _os.O_TEMPORARY
(fd, name) = _mkstemp_inner(dir, prefix, suffix, flags)
file = _os.fdopen(fd, mode, bufsize)
return _TemporaryFileWrapper(file, name, delete)
if _os.name != 'posix' or _os.sys.platform == 'cygwin':
# On non-POSIX and Cygwin systems, assume that we cannot unlink a file
# while it is open.
TemporaryFile = NamedTemporaryFile
else:
def TemporaryFile(mode='w+b', bufsize=-1, suffix="",
prefix=template, dir=None):
"""Create and return a temporary file.
Arguments:
'prefix', 'suffix', 'dir' -- as for mkstemp.
'mode' -- the mode argument to os.fdopen (default "w+b").
'bufsize' -- the buffer size argument to os.fdopen (default -1).
The file is created as mkstemp() would do it.
Returns an object with a file-like interface. The file has no
name, and will cease to exist when it is closed.
"""
if dir is None:
dir = gettempdir()
if 'b' in mode:
flags = _bin_openflags
else:
flags = _text_openflags
(fd, name) = _mkstemp_inner(dir, prefix, suffix, flags)
try:
_os.unlink(name)
return _os.fdopen(fd, mode, bufsize)
except:
_os.close(fd)
raise
class SpooledTemporaryFile:
"""Temporary file wrapper, specialized to switch from
StringIO to a real file when it exceeds a certain size or
when a fileno is needed.
"""
_rolled = False
def __init__(self, max_size=0, mode='w+b', bufsize=-1,
suffix="", prefix=template, dir=None):
self._file = _StringIO()
self._max_size = max_size
self._rolled = False
self._TemporaryFileArgs = (mode, bufsize, suffix, prefix, dir)
def _check(self, file):
if self._rolled: return
max_size = self._max_size
if max_size and file.tell() > max_size:
self.rollover()
def rollover(self):
if self._rolled: return
file = self._file
newfile = self._file = TemporaryFile(*self._TemporaryFileArgs)
del self._TemporaryFileArgs
newfile.write(file.getvalue())
newfile.seek(file.tell(), 0)
self._rolled = True
# The method caching trick from NamedTemporaryFile
# won't work here, because _file may change from a
# _StringIO instance to a real file. So we list
# all the methods directly.
# Context management protocol
def __enter__(self):
if self._file.closed:
raise ValueError("Cannot enter context with closed file")
return self
def __exit__(self, exc, value, tb):
self._file.close()
# file protocol
def __iter__(self):
return self._file.__iter__()
def close(self):
self._file.close()
@property
def closed(self):
return self._file.closed
@property
def encoding(self):
return self._file.encoding
def fileno(self):
self.rollover()
return self._file.fileno()
def flush(self):
self._file.flush()
def isatty(self):
return self._file.isatty()
@property
def mode(self):
return self._file.mode
@property
def name(self):
return self._file.name
@property
def newlines(self):
return self._file.newlines
def next(self):
return self._file.next
def read(self, *args):
return self._file.read(*args)
def readline(self, *args):
return self._file.readline(*args)
def readlines(self, *args):
return self._file.readlines(*args)
def seek(self, *args):
self._file.seek(*args)
@property
def softspace(self):
return self._file.softspace
def tell(self):
return self._file.tell()
def truncate(self):
self._file.truncate()
def write(self, s):
file = self._file
rv = file.write(s)
self._check(file)
return rv
def writelines(self, iterable):
file = self._file
rv = file.writelines(iterable)
self._check(file)
return rv
def xreadlines(self, *args):
return self._file.xreadlines(*args)

Some files were not shown because too many files have changed in this diff Show More