--[[ $Id: x16.lua 10304 2009-08-20 09:05:43Z andrewross $ plshade demo, using color fill. Copyright (C) 2008 Werner Smekal This file is part of PLplot. PLplot is free software you can redistribute it and/or modify it under the terms of the GNU General Library Public License as published by the Free Software Foundation either version 2 of the License, or (at your option) any later version. PLplot is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with PLplot if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA --]] -- initialise Lua bindings for PLplot examples. dofile("plplot_examples.lua") -- Fundamental settings. See notes[] for more info. ns = 20 -- Default number of shade levels nx = 35 -- Default number of data points in x ny = 46 -- Default number of data points in y exclude = 0 -- By default do not plot a page illustrating -- exclusion. API is probably going to change -- anyway, and cannot be reproduced by any -- front end other than the C one. -- polar plot data PERIMETERPTS = 100 -- Transformation function tr = {} function mypltr(x, y) tx = tr[1] * x + tr[2] * y + tr[3] ty = tr[4] * x + tr[5] * y + tr[6] return tx, ty end ---------------------------------------------------------------------------- -- f2mnmx -- -- Returns min & max of input 2d array. ---------------------------------------------------------------------------- function f2mnmx(f, nx, ny) fmax = f[1][1] fmin = fmax for i = 1, nx do for j = 1, ny do fmax = math.max(fmax, f[i][j]) fmin = math.min(fmin, f[i][j]) end end return fmin, fmax end function zdefined(x, y) z = math.sqrt(x^2 + y^2) return z<0.4 or z>0.6 end ---------------------------------------------------------------------------- -- main -- -- Does several shade plots using different coordinate mappings. ---------------------------------------------------------------------------- px = {} py = {} fill_width = 2 cont_color = 0 cont_width = 0 -- Parse and process command line arguments pl.parseopts(arg, pl.PL_PARSE_FULL) -- Load colour palettes pl.spal0("cmap0_black_on_white.pal"); pl.spal1("cmap1_gray.pal",1); -- Reduce colors in cmap 0 so that cmap 1 is useful on a 16-color display pl.scmap0n(3) -- Initialize plplot pl.init() -- Set up transformation function tr = { 2/(nx-1), 0, -1, 0, 2/(ny-1), -1 } -- Allocate data structures clevel = {} shedge = {} z = {} w = {} -- Set up data array for i = 1, nx do x = (i-1 - math.floor(nx/2))/math.floor(nx/2) z[i] = {} w[i] = {} for j = 1, ny do y = (j-1 - math.floor(ny/2))/math.floor(ny/2)-1 z[i][j] = -math.sin(7*x) * math.cos(7*y) + x^2 - y^2 w[i][j] = -math.cos(7*x) * math.sin(7*y) + 2*x*y end end zmin, zmax = f2mnmx(z, nx, ny) for i = 1, ns do clevel[i] = zmin + (zmax-zmin)*(i-0.5)/ns end for i = 1, ns+1 do shedge[i] = zmin + (zmax-zmin)*(i-1)/ns end -- Set up coordinate grids cgrid1 = {} cgrid1["xg"] = {} cgrid1["yg"] = {} cgrid1["nx"] = nx cgrid1["ny"] = ny cgrid2 = {} cgrid2["xg"] = {} cgrid2["yg"] = {} cgrid2["nx"] = nx cgrid2["ny"] = ny for i = 1, nx do cgrid2["xg"][i] = {} cgrid2["yg"][i] = {} for j = 1, ny do x, y = mypltr(i-1, j-1) argx = x*math.pi/2 argy = y*math.pi/2 distort = 0.4 cgrid1["xg"][i] = x + distort * math.cos(argx) cgrid1["yg"][j] = y - distort * math.cos(argy) cgrid2["xg"][i][j] = x + distort * math.cos(argx) * math.cos(argy) cgrid2["yg"][i][j] = y - distort * math.cos(argx) * math.cos(argy) end end -- Plot using identity transform pl.adv(0) pl.vpor(0.1, 0.9, 0.1, 0.9) pl.wind(-1, 1, -1, 1) pl.psty(0) pl.shades(z, -1, 1, -1, 1, shedge, fill_width, cont_color, cont_width, 1) pl.col0(1) pl.box("bcnst", 0, 0, "bcnstv", 0, 0) pl.col0(2) --pl.cont(w, 1, nx, 1, ny, clevel, mypltr, {}) pl.lab("distance", "altitude", "Bogon density") -- Plot using 1d coordinate transform -- Load colour palettes pl.spal0("cmap0_black_on_white.pal"); pl.spal1("cmap1_blue_yellow.pal",1); -- Reduce colors in cmap 0 so that cmap 1 is useful on a 16-color display pl.scmap0n(3); pl.adv(0) pl.vpor(0.1, 0.9, 0.1, 0.9) pl.wind(-1, 1, -1, 1) pl.psty(0) pl.shades(z, -1, 1, -1, 1, shedge, fill_width, cont_color, cont_width, 1, "pltr1", cgrid1) pl.col0(1) pl.box("bcnst", 0, 0, "bcnstv", 0, 0) pl.col0(2) pl.lab("distance", "altitude", "Bogon density") -- Plot using 2d coordinate transform -- Load colour palettes pl.spal0("cmap0_black_on_white.pal"); pl.spal1("cmap1_blue_red.pal",1); -- Reduce colors in cmap 0 so that cmap 1 is useful on a 16-color display pl.scmap0n(3); pl.adv(0) pl.vpor(0.1, 0.9, 0.1, 0.9) pl.wind(-1, 1, -1, 1) pl.psty(0) pl.shades(z, -1, 1, -1, 1, shedge, fill_width, cont_color, cont_width, 0, "pltr2", cgrid2) pl.col0(1) pl.box("bcnst", 0, 0, "bcnstv", 0, 0) pl.col0(2) pl.cont(w, 1, nx, 1, ny, clevel, "pltr2", cgrid2) pl.lab("distance", "altitude", "Bogon density, with streamlines") -- Plot using 2d coordinate transform -- Load colour palettes pl.spal0(""); pl.spal1("",1); -- Reduce colors in cmap 0 so that cmap 1 is useful on a 16-color display pl.scmap0n(3); pl.adv(0) pl.vpor(0.1, 0.9, 0.1, 0.9) pl.wind(-1, 1, -1, 1) pl.psty(0) pl.shades(z, -1, 1, -1, 1, shedge, fill_width, 2, 3, 0, "pltr2", cgrid2) pl.col0(1) pl.box("bcnst", 0, 0, "bcnstv", 0, 0) pl.col0(2) pl.lab("distance", "altitude", "Bogon density") -- Note this exclusion API will probably change. -- Plot using 2d coordinate transform and exclusion if exclude~=0 then -- Load colour palettes pl.spal0("cmap0_black_on_white.pal"); pl.spal1("cmap1_gray.pal",1); -- Reduce colors in cmap 0 so that cmap 1 is useful on a 16-color display pl.scmap0n(3); pl.adv(0) pl.vpor(0.1, 0.9, 0.1, 0.9) pl.wind(-1, 1, -1, 1) plpsty(0) pl.shades(z, zdefined, -1, 1, -1, 1, shedge, fill_width, cont_color, cont_width, 0, "pltr2", cgrid2) pl.col0(1) pl.box("bcnst", 0, 0, "bcnstv", 0, 0) pl.lab("distance", "altitude", "Bogon density with exclusion") end -- Example with polar coordinates. -- Load colour palettes pl.spal0("cmap0_black_on_white.pal"); pl.spal1("cmap1_gray.pal",1); -- Reduce colors in cmap 0 so that cmap 1 is useful on a 16-color display pl.scmap0n(3); pl.adv(0) pl.vpor(.1, .9, .1, .9) pl.wind(-1, 1, -1, 1) pl.psty(0) -- Build new coordinate matrices. for i = 1, nx do r = (i-1)/(nx-1) for j = 1, ny do t = 2*math.pi/(ny-1)*(j-1) cgrid2["xg"][i][j] = r*math.cos(t) cgrid2["yg"][i][j] = r*math.sin(t) z[i][j] = math.exp(-r^2)*math.cos(5*math.pi*r)*math.cos(5*t) end end -- Need a new shedge to go along with the new data set. zmin, zmax = f2mnmx(z, nx, ny) for i = 1, ns+1 do shedge[i] = zmin + (zmax-zmin)*(i-1)/ns end -- Now we can shade the interior region. pl.shades(z, -1, 1, -1, 1, shedge, fill_width, cont_color, cont_width, 0, "pltr2", cgrid2) -- Now we can draw the perimeter. (If do before, shade stuff may overlap.) for i = 1, PERIMETERPTS do t = 2*math.pi/(PERIMETERPTS-1)*(i-1) px[i] = math.cos(t) py[i] = math.sin(t) end pl.col0(1) pl.line(px, py) -- And label the plot. pl.col0(2) pl.lab( "", "", "Tokamak Bogon Instability" ) pl.plend()