--[[ $Id: x09.lua 9533 2009-02-16 22:18:37Z smekal $ Contour plot demo. Copyright (C) 2008 Werner Smekal This file is part of PLplot. PLplot is free software you can redistribute it and/or modify it under the terms of the GNU General Library Public License as published by the Free Software Foundation either version 2 of the License, or (at your option) any later version. PLplot is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with PLplot if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA --]] -- initialise Lua bindings for PLplot examples. dofile("plplot_examples.lua") XPTS = 35 -- Data points in x YPTS = 46 -- Data points in y XSPA = 2/(XPTS-1) YSPA = 2/(YPTS-1) -- polar plot data PERIMETERPTS = 100 RPTS = 40 THETAPTS = 40 -- potential plot data PPERIMETERPTS = 100 PRPTS = 40 PTHETAPTS = 64 PNLEVEL = 20 clevel = { -1, -0.8, -0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6, 0.8, 1} -- Transformation function tr = { XSPA, 0, -1, 0, YSPA, -1 } function mypltr(x, y) tx = tr[1] * x + tr[2] * y + tr[3] ty = tr[4] * x + tr[5] * y + tr[6] return tx, ty end --polar contour plot example. function polar() px = {} py = {} lev = {} pl.env(-1, 1, -1, 1, 0, -2) pl.col0(1) --Perimeter for i=1, PERIMETERPTS do t = (2*math.pi/(PERIMETERPTS-1))*(i-1) px[i] = math.cos(t) py[i] = math.sin(t) end pl.line(px, py) --create data to be contoured. cgrid2["xg"] = {} cgrid2["yg"] = {} cgrid2["nx"] = RPTS cgrid2["ny"] = THETAPTS z = {} for i = 1, RPTS do r = (i-1)/(RPTS-1) cgrid2["xg"][i] = {} cgrid2["yg"][i] = {} z[i] = {} for j = 1, THETAPTS do theta = (2*math.pi/(THETAPTS-1))*(j-1) cgrid2["xg"][i][j] = r*math.cos(theta) cgrid2["yg"][i][j] = r*math.sin(theta) z[i][j] = r end end for i = 1, 10 do lev[i] = 0.05 + 0.10*(i-1) end pl.col0(2) pl.cont(z, 1, RPTS, 1, THETAPTS, lev, "pltr2", cgrid2) pl.col0(1) pl.lab("", "", "Polar Contour Plot") end ---------------------------------------------------------------------------- -- f2mnmx -- -- Returns min & max of input 2d array. ---------------------------------------------------------------------------- function f2mnmx(f, nx, ny) fmax = f[1][1] fmin = fmax for i=1, nx do for j=1, ny do fmax = math.max(fmax, f[i][j]) fmin = math.min(fmin, f[i][j]) end end return fmin, fmax end --shielded potential contour plot example. function potential() clevelneg = {} clevelpos = {} px = {} py = {} --create data to be contoured. cgrid2["xg"] = {} cgrid2["yg"] = {} cgrid2["nx"] = PRPTS cgrid2["ny"] = PTHETAPTS z = {} for i = 1, PRPTS do r = 0.5 + (i-1) cgrid2["xg"][i] = {} cgrid2["yg"][i] = {} for j = 1, PTHETAPTS do theta = 2*math.pi/(PTHETAPTS-1)*(j-0.5) cgrid2["xg"][i][j] = r*math.cos(theta) cgrid2["yg"][i][j] = r*math.sin(theta) end end rmax = PRPTS-0.5 xmin, xmax = f2mnmx(cgrid2["xg"], PRPTS, PTHETAPTS) ymin, ymax = f2mnmx(cgrid2["yg"], PRPTS, PTHETAPTS) x0 = (xmin + xmax)/2 y0 = (ymin + ymax)/2 -- Expanded limits peps = 0.05 xpmin = xmin - math.abs(xmin)*peps xpmax = xmax + math.abs(xmax)*peps ypmin = ymin - math.abs(ymin)*peps ypmax = ymax + math.abs(ymax)*peps -- Potential inside a conducting cylinder (or sphere) by method of images. -- Charge 1 is placed at (d1, d1), with image charge at (d2, d2). -- Charge 2 is placed at (d1, -d1), with image charge at (d2, -d2). -- Also put in smoothing term at small distances. eps = 2 q1 = 1 d1 = rmax/4 q1i = - q1*rmax/d1 d1i = rmax^2/d1 q2 = -1 d2 = rmax/4 q2i = - q2*rmax/d2 d2i = rmax^2/d2 for i = 1, PRPTS do z[i] = {} for j = 1, PTHETAPTS do div1 = math.sqrt((cgrid2.xg[i][j]-d1)^2 + (cgrid2.yg[i][j]-d1)^2 + eps^2) div1i = math.sqrt((cgrid2.xg[i][j]-d1i)^2 + (cgrid2.yg[i][j]-d1i)^2 + eps^2) div2 = math.sqrt((cgrid2.xg[i][j]-d2)^2 + (cgrid2.yg[i][j]+d2)^2 + eps^2) div2i = math.sqrt((cgrid2.xg[i][j]-d2i)^2 + (cgrid2.yg[i][j]+d2i)^2 + eps^2) z[i][j] = q1/div1 + q1i/div1i + q2/div2 + q2i/div2i end end zmin, zmax = f2mnmx(z, PRPTS, PTHETAPTS) -- Positive and negative contour levels. dz = (zmax-zmin)/PNLEVEL nlevelneg = 1 nlevelpos = 1 for i = 1, PNLEVEL do clevel = zmin + (i-0.5)*dz if clevel <= 0 then clevelneg[nlevelneg] = clevel nlevelneg = nlevelneg + 1 else clevelpos[nlevelpos] = clevel nlevelpos = nlevelpos + 1 end end -- Colours! ncollin = 11 ncolbox = 1 ncollab = 2 -- Finally start plotting this page! pl.adv(0) pl.col0(ncolbox) pl.vpas(0.1, 0.9, 0.1, 0.9, 1) pl.wind(xpmin, xpmax, ypmin, ypmax) pl.box("", 0, 0, "", 0, 0) pl.col0(ncollin) if nlevelneg>1 then -- Negative contours pl.lsty(2) pl.cont(z, 1, PRPTS, 1, PTHETAPTS, clevelneg, "pltr2", cgrid2) end if nlevelpos>1 then -- Positive contours pl.lsty(1) pl.cont(z, 1, PRPTS, 1, PTHETAPTS, clevelpos, "pltr2", cgrid2) end -- Draw outer boundary for i = 1, PPERIMETERPTS do t = (2*math.pi/(PPERIMETERPTS-1))*(i-1) px[i] = x0 + rmax*math.cos(t) py[i] = y0 + rmax*math.sin(t) end pl.col0(ncolbox) pl.line(px, py) pl.col0(ncollab) pl.lab("", "", "Shielded potential of charges in a conducting sphere") end ---------------------------------------------------------------------------- -- main -- -- Does several contour plots using different coordinate mappings. ---------------------------------------------------------------------------- mark = { 1500 } space = { 1500 } -- Parse and process command line arguments pl.parseopts(arg, pl.PL_PARSE_FULL) -- Initialize plplot pl.init() -- Set up function arrays z = {} w = {} for i = 1, XPTS do xx = (i-1 - math.floor(XPTS/2)) / math.floor(XPTS/2) z[i] = {} w[i] = {} for j = 1, YPTS do yy = (j-1 - math.floor(YPTS/2)) / math.floor(YPTS/2) - 1 z[i][j] = xx^2 - yy^2 w[i][j] = 2 * xx * yy end end -- Set up grids cgrid1 = {} cgrid1["xg"] = {} cgrid1["yg"] = {} cgrid1["nx"] = XPTS cgrid1["ny"] = YPTS cgrid2 = {} cgrid2["xg"] = {} cgrid2["yg"] = {} cgrid2["nx"] = XPTS cgrid2["ny"] = YPTS for i = 1, XPTS do cgrid2["xg"][i] = {} cgrid2["yg"][i] = {} for j = 1, YPTS do xx, yy = mypltr(i-1, j-1) argx = xx * math.pi/2 argy = yy * math.pi/2 distort = 0.4 cgrid1["xg"][i] = xx + distort * math.cos(argx) cgrid1["yg"][j] = yy - distort * math.cos(argy) cgrid2["xg"][i][j] = xx + distort * math.cos(argx) * math.cos(argy) cgrid2["yg"][i][j] = yy - distort * math.cos(argx) * math.cos(argy) end end -- Plot using identity transform pl.setcontlabelformat(4, 3) pl.setcontlabelparam(0.006, 0.3, 0.1, 1) pl.env(-1, 1, -1, 1, 0, 0) pl.col0(2) pl.cont(z, 1, XPTS, 1, YPTS, clevel, "mypltr") pl.styl(mark, space) pl.col0(3) pl.cont(w, 1, XPTS, 1, YPTS, clevel, "mypltr") pl.styl({}, {}) pl.col0(1) pl.lab("X Coordinate", "Y Coordinate", "Streamlines of flow") pl.setcontlabelparam(0.006, 0.3, 0.1, 0) -- Plot using 1d coordinate transform pl.env(-1, 1, -1, 1, 0, 0) pl.col0(2) pl.cont(z, 1, XPTS, 1, YPTS, clevel, "pltr1", cgrid1) pl.styl(mark, space) pl.col0(3) pl.cont(w, 1, XPTS, 1, YPTS, clevel, "pltr1", cgrid1) pl.styl({}, {}) pl.col0(1) pl.lab("X Coordinate", "Y Coordinate", "Streamlines of flow") -- Plot using 2d coordinate transform pl.env(-1, 1, -1, 1, 0, 0) pl.col0(2) pl.cont(z, 1, XPTS, 1, YPTS, clevel, "pltr2", cgrid2) pl.styl(mark, space) pl.col0(3) pl.cont(w, 1, XPTS, 1, YPTS, clevel, "pltr2", cgrid2) pl.styl({}, {}) pl.col0(1) pl.lab("X Coordinate", "Y Coordinate", "Streamlines of flow") pl.setcontlabelparam(0.006, 0.3, 0.1, 0) polar() pl.setcontlabelparam(0.006, 0.3, 0.1, 0) potential() -- Clean up pl.plend()