--[[ $Id: x27.lua 9526 2009-02-13 22:06:13Z smekal $ Drawing "spirograph" curves - epitrochoids, cycolids, roulettes Copyright (C) 2009 Werner Smekal This file is part of PLplot. PLplot is free software you can redistribute it and/or modify it under the terms of the GNU General Library Public License as published by the Free Software Foundation either version 2 of the License, or (at your option) any later version. PLplot is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with PLplot if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA --]] -- initialise Lua bindings for PLplot examples. dofile("plplot_examples.lua") function cycloid() -- TODO end function spiro( params ) NPNT = 20000 xcoord = {} ycoord = {} -- Fill the coordinates windings = params[4] steps = math.floor(NPNT/windings) dphi = 8*math.acos(-1)/steps xmin = 0 -- This initialisation is safe! xmax = 0 ymin = 0 ymax = 0 for i = 1, windings*steps+1 do phi = (i-1) * dphi phiw = (params[1]-params[2])/params[2]*phi xcoord[i] = (params[1]-params[2])*math.cos(phi) + params[3]*math.cos(phiw) ycoord[i] = (params[1]-params[2])*math.sin(phi) - params[3]*math.sin(phiw) if xmin>xcoord[i] then xmin = xcoord[i] end if xmax<xcoord[i] then xmax = xcoord[i] end if ymin>ycoord[i] then ymin = ycoord[i] end if ymax<ycoord[i] then ymax = ycoord[i] end end if (xmax-xmin)>(ymax-ymin) then scale = xmax - xmin else scale = ymax - ymin end xmin = -0.65*scale xmax = 0.65*scale ymin = -0.65*scale ymax = 0.65*scale pl.wind(xmin, xmax, ymin, ymax) pl.col0(1) pl.line(xcoord, ycoord) end ---------------------------------------------------------------------------- -- main -- -- Generates two kinds of plots: -- - construction of a cycloid (animated) -- - series of epitrochoids and hypotrochoids ---------------------------------------------------------------------------- -- R, r, p, N params = { { 21, 7, 7, 3 }, -- Deltoid { 21, 7, 10, 3 }, { 21, -7, 10, 3 }, { 20, 3, 7, 20 }, { 20, 3, 10, 20 }, { 20, -3, 10, 20 }, { 20, 13, 7, 20 }, { 20, 13, 20, 20 }, { 20,-13, 20, 20 } } -- plplot initialization -- Parse and process command line arguments pl.parseopts(arg, pl.PL_PARSE_FULL) -- Initialize plplot pl.init() -- Illustrate the construction of a cycloid cycloid() -- Loop over the various curves -- First an overview, then all curves one by one pl.ssub(3, 3) -- Three by three window for i = 1, 9 do pl.adv(0) pl.vpor(0, 1, 0, 1) spiro(params[i]) end pl.adv(0) pl.ssub(1, 1) -- One window per curve for i = 1, 9 do pl.adv(0) pl.vpor(0, 1, 0, 1) spiro(params[i]) end -- Don't forget to call plend() to finish off! pl.plend()