1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-01-10 14:10:15 +02:00
openwrt-xburst/target/linux/coldfire/files-2.6.31/drivers/net/fec_m547x.c

1562 lines
42 KiB
C
Raw Normal View History

/*
* Copyright 2007-2009 Freescale Semiconductor, Inc. All Rights Reserved.
* Author: Kurt Mahan, kmahan@freescale.com
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/ptrace.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/slab.h>
#include <linux/interrupt.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/phy.h>
#include <linux/delay.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/spinlock.h>
#include <linux/workqueue.h>
#include <linux/bitops.h>
#include <asm/coldfire.h>
#include <asm/mcfsim.h>
#include <asm/dma.h>
#include <asm/MCD_dma.h>
#include <asm/m5485sram.h>
#include <asm/virtconvert.h>
#include <asm/irq.h>
#include "fec_m547x.h"
#ifdef CONFIG_FEC_548x_ENABLE_FEC2
#define FEC_MAX_PORTS 2
#define FEC_2
#else
#define FEC_MAX_PORTS 1
#undef FEC_2
#endif
#define VERSION "0.20"
MODULE_DESCRIPTION("DMA Fast Ethernet Controller driver ver " VERSION);
/* fec private */
struct fec_priv {
struct net_device *netdev; /* owning net device */
void *fecpriv_txbuf[FEC_TX_BUF_NUMBER]; /* tx buffer ptrs */
MCD_bufDescFec *fecpriv_txdesc; /* tx descriptor ptrs */
volatile unsigned int fecpriv_current_tx; /* current tx desc index */
volatile unsigned int fecpriv_next_tx; /* next tx desc index */
unsigned int fecpriv_current_rx; /* current rx desc index */
MCD_bufDescFec *fecpriv_rxdesc; /* rx descriptor ptrs */
struct sk_buff *askb_rx[FEC_RX_BUF_NUMBER]; /* rx SKB ptrs */
unsigned int fecpriv_initiator_rx; /* rx dma initiator */
unsigned int fecpriv_initiator_tx; /* tx dma initiator */
int fecpriv_fec_rx_channel; /* rx dma channel */
int fecpriv_fec_tx_channel; /* tx dma channel */
int fecpriv_rx_requestor; /* rx dma requestor */
int fecpriv_tx_requestor; /* tx dma requestor */
void *fecpriv_interrupt_fec_rx_handler; /* dma rx handler */
void *fecpriv_interrupt_fec_tx_handler; /* dma tx handler */
unsigned char *fecpriv_mac_addr; /* private fec mac addr */
struct net_device_stats fecpriv_stat; /* stats ptr */
spinlock_t fecpriv_lock;
int fecpriv_rxflag;
struct tasklet_struct fecpriv_tasklet_reinit;
int index; /* fec hw number */
struct phy_device *phydev;
struct mii_bus *mdio_bus;
int duplex;
int link;
int speed;
};
struct net_device *fec_dev[FEC_MAX_PORTS];
/* FEC functions */
static int __init fec_init(void);
static struct net_device_stats *fec_get_stat(struct net_device *dev);
static int fec_open(struct net_device *dev);
static int fec_close(struct net_device *nd);
static int fec_tx(struct sk_buff *skb, struct net_device *dev);
static void fec_set_multicast_list(struct net_device *nd);
static int fec_set_mac_address(struct net_device *dev, void *p);
static void fec_tx_timeout(struct net_device *dev);
static void fec_interrupt_fec_tx_handler(struct net_device *dev);
static void fec_interrupt_fec_rx_handler(struct net_device *dev);
static irqreturn_t fec_interrupt_handler(int irq, void *dev_id);
static void fec_interrupt_fec_tx_handler_fec0(void);
static void fec_interrupt_fec_rx_handler_fec0(void);
static void fec_interrupt_fec_reinit(unsigned long data);
/* default fec0 address */
unsigned char fec_mac_addr_fec0[6] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x50 };
#ifdef FEC_2
/* default fec1 address */
unsigned char fec_mac_addr_fec1[6] = { 0x00, 0x11, 0x22, 0x33, 0x44, 0x51 };
#endif
extern unsigned char uboot_enet0[];
extern unsigned char uboot_enet1[];
#ifndef MODULE
int fec_str_to_mac(char *str_mac, unsigned char* addr);
int __init fec_mac_setup0(char *s);
#endif
#ifdef FEC_2
void fec_interrupt_fec_tx_handler_fec1(void);
void fec_interrupt_fec_rx_handler_fec1(void);
#endif
#ifndef MODULE
int __init fec_mac_setup1(char *s);
#endif
module_init(fec_init);
/* module_exit(fec_cleanup); */
__setup("mac0=", fec_mac_setup0);
#ifdef FEC_2
__setup("mac1=", fec_mac_setup1);
#endif
#define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
#define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
(VAL & 0xffff))
/* ----------------------------------------------------------- */
static int coldfire_fec_mdio_read(struct mii_bus *bus,
int phy_id, int reg)
{
int ret;
struct net_device *dev = bus->priv;
#ifdef CONFIG_FEC_548x_SHARED_PHY
unsigned long base_addr = (unsigned long)FEC_BASE_ADDR_FEC0;
#else
unsigned long base_addr = (unsigned long) dev->base_addr;
#endif
int tries = 100;
/* Clear the MII interrupt bit */
FEC_EIR(base_addr) = FEC_EIR_MII;
/* Write to the MII management frame register */
FEC_MMFR(base_addr) = mk_mii_read(reg) | (phy_id << 23);
/* Wait for the reading */
while (!(FEC_EIR(base_addr) & FEC_EIR_MII)) {
udelay(10);
if (!tries) {
printk(KERN_ERR "%s timeout\n", __func__);
return -ETIMEDOUT;
}
tries--;
}
/* Clear the MII interrupt bit */
FEC_EIR(base_addr) = FEC_EIR_MII;
ret = FEC_MMFR(base_addr) & 0x0000FFFF;
return ret;
}
static int coldfire_fec_mdio_write(struct mii_bus *bus,
int phy_id, int reg, u16 data)
{
int ret;
struct net_device *dev = bus->priv;
#ifdef CONFIG_FEC_548x_SHARED_PHY
unsigned long base_addr = (unsigned long)FEC_BASE_ADDR_FEC0;
#else
unsigned long base_addr = (unsigned long) dev->base_addr;
#endif
int tries = 100;
printk(KERN_ERR "%s base_addr %x, phy_id %x, reg %x, data %x\n",
__func__, base_addr, phy_id, reg, data);
/* Clear the MII interrupt bit */
FEC_EIR(base_addr) = FEC_EIR_MII;
/* Write to the MII management frame register */
FEC_MMFR(base_addr) = mk_mii_write(reg, data) | (phy_id << 23);
/* Wait for the writing */
while (!(FEC_EIR(base_addr) & FEC_EIR_MII)) {
udelay(10);
if (!tries) {
printk(KERN_ERR "%s timeout\n", __func__);
return -ETIMEDOUT;
}
tries--;
}
/* Clear the MII interrupt bit */
FEC_EIR(base_addr) = FEC_EIR_MII;
ret = FEC_MMFR(base_addr) & 0x0000FFFF;
return ret;
}
static void fec_adjust_link(struct net_device *dev)
{
struct fec_priv *priv = netdev_priv(dev);
struct phy_device *phydev = priv->phydev;
int new_state = 0;
if (phydev->link != PHY_DOWN) {
if (phydev->duplex != priv->duplex) {
new_state = 1;
priv->duplex = phydev->duplex;
}
if (phydev->speed != priv->speed) {
new_state = 1;
priv->speed = phydev->speed;
}
if (priv->link == PHY_DOWN) {
new_state = 1;
priv->link = phydev->link;
}
} else if (priv->link) {
new_state = 1;
priv->link = PHY_DOWN;
priv->speed = 0;
priv->duplex = -1;
}
if (new_state)
phy_print_status(phydev);
}
static int coldfire_fec_init_phy(struct net_device *dev)
{
struct fec_priv *priv = netdev_priv(dev);
struct phy_device *phydev = NULL;
int i;
int startnode;
#ifdef CONFIG_FEC_548x_SHARED_PHY
if (priv->index == 0)
startnode = 0;
else if (priv->index == 1) {
struct fec_priv *priv0 = netdev_priv(fec_dev[0]);
startnode = priv0->phydev->addr + 1;
} else
startnode = 0;
#else
startnode = 0;
#endif
#ifdef FEC_DEBUG
printk(KERN_ERR "%s priv->index %x, startnode %x\n",
__func__, priv->index, startnode);
#endif
/* search for connect PHY device */
for (i = startnode; i < PHY_MAX_ADDR; i++) {
struct phy_device *const tmp_phydev =
priv->mdio_bus->phy_map[i];
if (!tmp_phydev) {
#ifdef FEC_DEBUG
printk(KERN_INFO "%s no PHY here at"
"mii_bus->phy_map[%d]\n",
__func__, i);
#endif
continue; /* no PHY here... */
}
phydev = tmp_phydev;
#ifdef FEC_DEBUG
printk(KERN_INFO "%s find PHY here at"
"mii_bus->phy_map[%d]\n",
__func__, i);
#endif
break; /* found it */
}
/* now we are supposed to have a proper phydev, to attach to... */
if (!phydev) {
printk(KERN_INFO "%s: Don't found any phy device at all\n",
dev->name);
return -ENODEV;
}
priv->link = 0;
priv->speed = 0;
priv->duplex = 0;
#ifdef FEC_DEBUG
printk(KERN_INFO "%s phydev_busid %s\n", __func__, dev_name(&phydev->dev));
#endif
phydev = phy_connect(dev, dev_name(&phydev->dev),
&fec_adjust_link, 0, PHY_INTERFACE_MODE_MII);
if (IS_ERR(phydev)) {
printk(KERN_ERR " %s phy_connect failed\n", __func__);
return PTR_ERR(phydev);
}
printk(KERN_INFO "attached phy %i to driver %s\n",
phydev->addr, phydev->drv->name);
priv->phydev = phydev;
return 0;
}
static int fec_mdio_register(struct net_device *dev,
int slot)
{
int err = 0;
struct fec_priv *fp = netdev_priv(dev);
fp->mdio_bus = mdiobus_alloc();
if (!fp->mdio_bus) {
printk(KERN_ERR "ethernet mdiobus_alloc fail\n");
return -ENOMEM;
}
if (slot == 0) {
fp->mdio_bus->name = "Coldfire FEC MII 0 Bus";
strcpy(fp->mdio_bus->id, "0");
} else if (slot == 1) {
fp->mdio_bus->name = "Coldfire FEC MII 1 Bus";
strcpy(fp->mdio_bus->id, "1");
} else {
printk(KERN_ERR "Now coldfire can not"
"support more than 2 mii bus\n");
}
fp->mdio_bus->read = &coldfire_fec_mdio_read;
fp->mdio_bus->write = &coldfire_fec_mdio_write;
fp->mdio_bus->priv = dev;
err = mdiobus_register(fp->mdio_bus);
if (err) {
mdiobus_free(fp->mdio_bus);
printk(KERN_ERR "%s: ethernet mdiobus_register fail %d\n",
dev->name, err);
return -EIO;
}
printk(KERN_INFO "mdiobus_register %s ok\n",
fp->mdio_bus->name);
return err;
}
static const struct net_device_ops fec_netdev_ops = {
.ndo_open = fec_open,
.ndo_stop = fec_close,
.ndo_start_xmit = fec_tx,
.ndo_set_multicast_list = fec_set_multicast_list,
.ndo_tx_timeout = fec_tx_timeout,
.ndo_get_stats = fec_get_stat,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_mac_address = fec_set_mac_address,
};
/*
* Initialize a FEC device
*/
int fec_enet_init(struct net_device *dev, int slot)
{
struct fec_priv *fp = netdev_priv(dev);
int i;
fp->index = slot;
fp->netdev = dev;
fec_dev[slot] = dev;
if (slot == 0) {
/* disable fec0 */
FEC_ECR(FEC_BASE_ADDR_FEC0) = FEC_ECR_DISABLE;
/* setup the interrupt handler */
dev->irq = 64 + ISC_FEC0;
if (request_irq(dev->irq, fec_interrupt_handler,
IRQF_DISABLED, "ColdFire FEC 0", dev)) {
dev->irq = 0;
printk(KERN_ERR "Cannot allocate FEC0 IRQ\n");
} else {
/* interrupt priority and level */
MCF_ICR(ISC_FEC0) = ILP_FEC0;
}
/* fec base address */
dev->base_addr = FEC_BASE_ADDR_FEC0;
/* requestor numbers */
fp->fecpriv_rx_requestor = DMA_FEC0_RX;
fp->fecpriv_tx_requestor = DMA_FEC0_TX;
/* fec0 handlers */
fp->fecpriv_interrupt_fec_rx_handler =
fec_interrupt_fec_rx_handler_fec0;
fp->fecpriv_interrupt_fec_tx_handler =
fec_interrupt_fec_tx_handler_fec0;
/* tx descriptors */
fp->fecpriv_txdesc = (void *)FEC_TX_DESC_FEC0;
/* rx descriptors */
fp->fecpriv_rxdesc = (void *)FEC_RX_DESC_FEC0;
/* mac addr
if (uboot_enet0[0] || uboot_enet0[1] || uboot_enet0[2] ||
uboot_enet0[3] || uboot_enet0[4] || uboot_enet0[5]) {
use uboot enet 0 addr
memcpy(fec_mac_addr_fec0, uboot_enet0, 6);
}*/
fec_mac_addr_fec0[0] =
(FEC_PALR(FEC_BASE_ADDR_FEC0) >> 24) & 0xFF;
fec_mac_addr_fec0[1] =
(FEC_PALR(FEC_BASE_ADDR_FEC0) >> 16) & 0xFF;
fec_mac_addr_fec0[2] =
(FEC_PALR(FEC_BASE_ADDR_FEC0) >> 8) & 0xFF;
fec_mac_addr_fec0[3] =
(FEC_PALR(FEC_BASE_ADDR_FEC0)) & 0xFF;
fec_mac_addr_fec0[4] =
(FEC_PAUR(FEC_BASE_ADDR_FEC0) >> 24) & 0xFF;
fec_mac_addr_fec0[5] =
(FEC_PAUR(FEC_BASE_ADDR_FEC0) >> 16) & 0xFF;
fp->fecpriv_mac_addr = fec_mac_addr_fec0;
} else {
/* disable fec1 */
FEC_ECR(FEC_BASE_ADDR_FEC1) = FEC_ECR_DISABLE;
#ifdef FEC_2
/* setup the interrupt handler */
dev->irq = 64 + ISC_FEC1;
if (request_irq(dev->irq, fec_interrupt_handler,
IRQF_DISABLED, "ColdFire FEC 1", dev)) {
dev->irq = 0;
printk(KERN_ERR "Cannot allocate FEC1 IRQ\n");
} else {
/* interrupt priority and level */
MCF_ICR(ISC_FEC1) = ILP_FEC1;
}
/* fec base address */
dev->base_addr = FEC_BASE_ADDR_FEC1;
/* requestor numbers */
fp->fecpriv_rx_requestor = DMA_FEC1_RX;
fp->fecpriv_tx_requestor = DMA_FEC1_TX;
/* fec1 handlers */
fp->fecpriv_interrupt_fec_rx_handler =
fec_interrupt_fec_rx_handler_fec1;
fp->fecpriv_interrupt_fec_tx_handler =
fec_interrupt_fec_tx_handler_fec1;
/* tx descriptors */
fp->fecpriv_txdesc = (void *)FEC_TX_DESC_FEC1;
/* rx descriptors */
fp->fecpriv_rxdesc = (void *)FEC_RX_DESC_FEC1;
/* mac addr
if (uboot_enet1[0] || uboot_enet1[1] || uboot_enet1[2] ||
uboot_enet1[3] || uboot_enet1[4] || uboot_enet1[5]) {
use uboot enet 1 addr
memcpy(fec_mac_addr_fec1, uboot_enet1, 6);
}*/
fec_mac_addr_fec1[0] =
(FEC_PALR(FEC_BASE_ADDR_FEC1) >> 24) & 0xFF;
fec_mac_addr_fec1[1] =
(FEC_PALR(FEC_BASE_ADDR_FEC1) >> 16) & 0xFF;
fec_mac_addr_fec1[2] =
(FEC_PALR(FEC_BASE_ADDR_FEC1) >> 8) & 0xFF;
fec_mac_addr_fec1[3] =
(FEC_PALR(FEC_BASE_ADDR_FEC1)) & 0xFF;
fec_mac_addr_fec1[4] =
(FEC_PAUR(FEC_BASE_ADDR_FEC1) >> 24) & 0xFF;
fec_mac_addr_fec1[5] =
(FEC_PAUR(FEC_BASE_ADDR_FEC1) >> 16) & 0xFF;
fp->fecpriv_mac_addr = fec_mac_addr_fec1;
#endif
}
/* clear MIB */
memset((void *) (dev->base_addr + 0x200), 0, FEC_MIB_LEN);
/* clear the statistics structure */
memset((void *) &(fp->fecpriv_stat), 0,
sizeof(struct net_device_stats));
/* grab the FEC initiators */
dma_set_initiator(fp->fecpriv_tx_requestor);
fp->fecpriv_initiator_tx = dma_get_initiator(fp->fecpriv_tx_requestor);
dma_set_initiator(fp->fecpriv_rx_requestor);
fp->fecpriv_initiator_rx = dma_get_initiator(fp->fecpriv_rx_requestor);
/* reset the DMA channels */
fp->fecpriv_fec_rx_channel = -1;
fp->fecpriv_fec_tx_channel = -1;
for (i = 0; i < FEC_RX_BUF_NUMBER; i++)
fp->askb_rx[i] = NULL;
/* initialize the pointers to the socket buffers */
for (i = 0; i < FEC_TX_BUF_NUMBER; i++)
fp->fecpriv_txbuf[i] = NULL;
ether_setup(dev);
dev->netdev_ops = &fec_netdev_ops;
dev->watchdog_timeo = FEC_TX_TIMEOUT * HZ;
memcpy(dev->dev_addr, fp->fecpriv_mac_addr, ETH_ALEN);
spin_lock_init(&fp->fecpriv_lock);
/* Initialize FEC/I2C/IRQ Pin Assignment Register*/
FEC_GPIO_PAR_FECI2CIRQ &= 0xF;
FEC_GPIO_PAR_FECI2CIRQ |= FEC_FECI2CIRQ;
return 0;
}
/*
* Module Initialization
*/
int __init fec_init(void)
{
struct net_device *dev;
int i;
int err;
struct fec_priv *fep;
DECLARE_MAC_BUF(mac);
printk(KERN_INFO "FEC ENET (DMA) Version %s\n", VERSION);
for (i = 0; i < FEC_MAX_PORTS; i++) {
dev = alloc_etherdev(sizeof(struct fec_priv));
if (!dev)
return -ENOMEM;
err = fec_enet_init(dev, i);
if (err) {
free_netdev(dev);
continue;
}
fep = netdev_priv(dev);
FEC_MSCR(dev->base_addr) = FEC_MII_SPEED;
#ifdef CONFIG_FEC_548x_SHARED_PHY
if (i == 0)
err = fec_mdio_register(dev, i);
else {
struct fec_priv *priv0 = netdev_priv(fec_dev[0]);
fep->mdio_bus = priv0->mdio_bus;
printk(KERN_INFO "FEC%d SHARED the %s ok\n",
i, fep->mdio_bus->name);
}
#else
err = fec_mdio_register(dev, i);
#endif
if (err) {
printk(KERN_ERR "%s: ethernet fec_mdio_register\n",
dev->name);
free_netdev(dev);
return -ENOMEM;
}
if (register_netdev(dev) != 0) {
free_netdev(dev);
return -EIO;
}
printk(KERN_INFO "%s: ethernet %s\n",
dev->name, print_mac(mac, dev->dev_addr));
}
return 0;
}
/*
* Stop a device
*/
void fec_stop(struct net_device *dev)
{
struct fec_priv *fp = netdev_priv(dev);
dma_remove_initiator(fp->fecpriv_initiator_tx);
dma_remove_initiator(fp->fecpriv_initiator_rx);
if (dev->irq)
free_irq(dev->irq, dev);
}
/************************************************************************
* NAME: fec_open
*
* DESCRIPTION: This function performs the initialization of
* of FEC and corresponding KS8721 transiver
*
* RETURNS: If no error occurs, this function returns zero.
*************************************************************************/
int fec_open(struct net_device *dev)
{
struct fec_priv *fp = netdev_priv(dev);
unsigned long base_addr = (unsigned long) dev->base_addr;
int fduplex;
int i;
int channel;
int error_code = -EBUSY;
fp->link = 0;
fp->duplex = 0;
fp->speed = 0;
coldfire_fec_init_phy(dev);
phy_start(fp->phydev);
/* Receive the DMA channels */
channel = dma_set_channel_fec(fp->fecpriv_rx_requestor);
if (channel == -1) {
printk(KERN_ERR "Dma channel cannot be reserved\n");
goto ERRORS;
}
fp->fecpriv_fec_rx_channel = channel;
dma_connect(channel, (int) fp->fecpriv_interrupt_fec_rx_handler);
channel = dma_set_channel_fec(fp->fecpriv_tx_requestor);
if (channel == -1) {
printk(KERN_ERR "Dma channel cannot be reserved\n");
goto ERRORS;
}
fp->fecpriv_fec_tx_channel = channel;
dma_connect(channel, (int) fp->fecpriv_interrupt_fec_tx_handler);
/* init tasklet for controller reinitialization */
tasklet_init(&fp->fecpriv_tasklet_reinit,
fec_interrupt_fec_reinit, (unsigned long) dev);
/* Reset FIFOs */
FEC_FECFRST(base_addr) |= FEC_SW_RST | FEC_RST_CTL;
FEC_FECFRST(base_addr) &= ~FEC_SW_RST;
/* Reset and disable FEC */
FEC_ECR(base_addr) = FEC_ECR_RESET;
udelay(10);
/* Clear all events */
FEC_EIR(base_addr) = FEC_EIR_CLEAR;
/* Reset FIFO status */
FEC_FECTFSR(base_addr) = FEC_FECTFSR_MSK;
FEC_FECRFSR(base_addr) = FEC_FECRFSR_MSK;
/* Set the default address */
FEC_PALR(base_addr) = (fp->fecpriv_mac_addr[0] << 24) |
(fp->fecpriv_mac_addr[1] << 16) |
(fp->fecpriv_mac_addr[2] << 8) |
fp->fecpriv_mac_addr[3];
FEC_PAUR(base_addr) = (fp->fecpriv_mac_addr[4] << 24) |
(fp->fecpriv_mac_addr[5] << 16) | 0x8808;
/* Reset the group address descriptor */
FEC_GALR(base_addr) = 0x00000000;
FEC_GAUR(base_addr) = 0x00000000;
/* Reset the individual address descriptor */
FEC_IALR(base_addr) = 0x00000000;
FEC_IAUR(base_addr) = 0x00000000;
/* Set the receive control register */
FEC_RCR(base_addr) = FEC_RCR_MAX_FRM_SIZE | FEC_RCR_MII;
/* Set the receive FIFO control register */
/*FEC_FECRFCR(base_addr) =
* FEC_FECRFCR_FRM | FEC_FECRFCR_GR | FEC_FECRFCR_MSK;*/
FEC_FECRFCR(base_addr) = FEC_FECRFCR_FRM | FEC_FECRFCR_GR
| (FEC_FECRFCR_MSK
/* disable all but ...*/
& ~FEC_FECRFCR_FAE
/* enable frame accept error*/
& ~FEC_FECRFCR_RXW
/* enable receive wait condition*/
/*& ~FEC_FECRFCR_UF*/
/* enable FIFO underflow*/
);
/* Set the receive FIFO alarm register */
FEC_FECRFAR(base_addr) = FEC_FECRFAR_ALARM;
/* Set the transmit FIFO control register */
/*FEC_FECTFCR(base_addr) =
FEC_FECTFCR_FRM | FEC_FECTFCR_GR | FEC_FECTFCR_MSK;*/
FEC_FECTFCR(base_addr) = FEC_FECTFCR_FRM | FEC_FECTFCR_GR
| (FEC_FECTFCR_MSK
/* disable all but ... */
& ~FEC_FECTFCR_FAE
/* enable frame accept error */
/* & ~FEC_FECTFCR_TXW */
/*enable transmit wait condition*/
/*& ~FEC_FECTFCR_UF*/
/*enable FIFO underflow*/
& ~FEC_FECTFCR_OF);
/* enable FIFO overflow */
/* Set the transmit FIFO alarm register */
FEC_FECTFAR(base_addr) = FEC_FECTFAR_ALARM;
/* Set the Tx FIFO watermark */
FEC_FECTFWR(base_addr) = FEC_FECTFWR_XWMRK;
/* Enable the transmitter to append the CRC */
FEC_CTCWR(base_addr) = FEC_CTCWR_TFCW_CRC;
/* Enable the ethernet interrupts */
/*FEC_EIMR(base_addr) = FEC_EIMR_MASK;*/
FEC_EIMR(base_addr) = FEC_EIMR_DISABLE
| FEC_EIR_LC
| FEC_EIR_RL
| FEC_EIR_HBERR
| FEC_EIR_XFUN
| FEC_EIR_XFERR
| FEC_EIR_RFERR;
#if 0
error_code = init_transceiver(base_addr, &fduplex);
if (error_code != 0) {
printk(KERN_ERR "Initialization of the "
"transceiver is failed\n");
goto ERRORS;
}
#else
fduplex = 1;
#endif
if (fduplex)
/* Enable the full duplex mode */
FEC_TCR(base_addr) = FEC_TCR_FDEN | FEC_TCR_HBC;
else
/* Disable reception of frames while transmitting */
FEC_RCR(base_addr) |= FEC_RCR_DRT;
/* Enable MIB */
FEC_MIBC(base_addr) = FEC_MIBC_ENABLE;
/* Enable FEC */
FEC_ECR(base_addr) |= FEC_ECR_ETHEREN;
FEC_MSCR(dev->base_addr) = FEC_MII_SPEED;
/* Initialize tx descriptors and start DMA for the transmission */
for (i = 0; i < FEC_TX_BUF_NUMBER; i++)
fp->fecpriv_txdesc[i].statCtrl = MCD_FEC_INTERRUPT;
fp->fecpriv_txdesc[i - 1].statCtrl |= MCD_FEC_WRAP;
fp->fecpriv_current_tx = fp->fecpriv_next_tx = 0;
MCD_startDma(fp->fecpriv_fec_tx_channel, (char *) fp->fecpriv_txdesc, 0,
(unsigned char *) &(FEC_FECTFDR(base_addr)), 0,
FEC_MAX_FRM_SIZE, 0, fp->fecpriv_initiator_tx,
FEC_TX_DMA_PRI, MCD_FECTX_DMA | MCD_INTERRUPT,
MCD_NO_CSUM | MCD_NO_BYTE_SWAP);
/* Initialize rx descriptors and start DMA for the reception */
for (i = 0; i < FEC_RX_BUF_NUMBER; i++) {
fp->askb_rx[i] = alloc_skb(FEC_MAXBUF_SIZE + 16, GFP_DMA);
if (!fp->askb_rx[i]) {
fp->fecpriv_rxdesc[i].dataPointer = 0;
fp->fecpriv_rxdesc[i].statCtrl = 0;
fp->fecpriv_rxdesc[i].length = 0;
} else {
skb_reserve(fp->askb_rx[i], 16);
fp->askb_rx[i]->dev = dev;
fp->fecpriv_rxdesc[i].dataPointer =
(unsigned int)virt_to_phys(fp->askb_rx[i]->tail);
fp->fecpriv_rxdesc[i].statCtrl =
MCD_FEC_BUF_READY | MCD_FEC_INTERRUPT;
fp->fecpriv_rxdesc[i].length = FEC_MAXBUF_SIZE;
}
}
fp->fecpriv_rxdesc[i - 1].statCtrl |= MCD_FEC_WRAP;
fp->fecpriv_current_rx = 0;
MCD_startDma(fp->fecpriv_fec_rx_channel, (char *) fp->fecpriv_rxdesc, 0,
(unsigned char *) &(FEC_FECRFDR(base_addr)), 0,
FEC_MAX_FRM_SIZE, 0, fp->fecpriv_initiator_rx,
FEC_RX_DMA_PRI, MCD_FECRX_DMA | MCD_INTERRUPT,
MCD_NO_CSUM | MCD_NO_BYTE_SWAP);
netif_start_queue(dev);
return 0;
ERRORS:
/* Remove the channels and return with the error code */
if (fp->fecpriv_fec_rx_channel != -1) {
dma_disconnect(fp->fecpriv_fec_rx_channel);
dma_remove_channel_by_number(fp->fecpriv_fec_rx_channel);
fp->fecpriv_fec_rx_channel = -1;
}
if (fp->fecpriv_fec_tx_channel != -1) {
dma_disconnect(fp->fecpriv_fec_tx_channel);
dma_remove_channel_by_number(fp->fecpriv_fec_tx_channel);
fp->fecpriv_fec_tx_channel = -1;
}
return error_code;
}
/************************************************************************
* NAME: fec_close
*
* DESCRIPTION: This function performs the graceful stop of the
* transmission and disables FEC
*
* RETURNS: This function always returns zero.
*************************************************************************/
int fec_close(struct net_device *dev)
{
struct fec_priv *fp = netdev_priv(dev);
unsigned long base_addr = (unsigned long) dev->base_addr;
unsigned long time;
int i;
netif_stop_queue(dev);
phy_disconnect(fp->phydev);
phy_stop(fp->phydev);
/* Perform the graceful stop */
FEC_TCR(base_addr) |= FEC_TCR_GTS;
time = jiffies;
/* Wait for the graceful stop */
while (!(FEC_EIR(base_addr) & FEC_EIR_GRA) && jiffies - time <
(FEC_GR_TIMEOUT * HZ))
schedule();
/* Disable FEC */
FEC_ECR(base_addr) = FEC_ECR_DISABLE;
/* Reset the DMA channels */
spin_lock_irq(&fp->fecpriv_lock);
MCD_killDma(fp->fecpriv_fec_tx_channel);
spin_unlock_irq(&fp->fecpriv_lock);
dma_remove_channel_by_number(fp->fecpriv_fec_tx_channel);
dma_disconnect(fp->fecpriv_fec_tx_channel);
fp->fecpriv_fec_tx_channel = -1;
for (i = 0; i < FEC_TX_BUF_NUMBER; i++) {
if (fp->fecpriv_txbuf[i]) {
kfree(fp->fecpriv_txbuf[i]);
fp->fecpriv_txbuf[i] = NULL;
}
}
spin_lock_irq(&fp->fecpriv_lock);
MCD_killDma(fp->fecpriv_fec_rx_channel);
spin_unlock_irq(&fp->fecpriv_lock);
dma_remove_channel_by_number(fp->fecpriv_fec_rx_channel);
dma_disconnect(fp->fecpriv_fec_rx_channel);
fp->fecpriv_fec_rx_channel = -1;
for (i = 0; i < FEC_RX_BUF_NUMBER; i++) {
if (fp->askb_rx[i]) {
kfree_skb(fp->askb_rx[i]);
fp->askb_rx[i] = NULL;
}
}
return 0;
}
/************************************************************************
* +NAME: fec_get_stat
*
* RETURNS: This function returns the statistical information.
*************************************************************************/
struct net_device_stats *fec_get_stat(struct net_device *dev)
{
struct fec_priv *fp = netdev_priv(dev);
unsigned long base_addr = dev->base_addr;
/* Receive the statistical information */
fp->fecpriv_stat.rx_packets = FECSTAT_RMON_R_PACKETS(base_addr);
fp->fecpriv_stat.tx_packets = FECSTAT_RMON_T_PACKETS(base_addr);
fp->fecpriv_stat.rx_bytes = FECSTAT_RMON_R_OCTETS(base_addr);
fp->fecpriv_stat.tx_bytes = FECSTAT_RMON_T_OCTETS(base_addr);
fp->fecpriv_stat.multicast = FECSTAT_RMON_R_MC_PKT(base_addr);
fp->fecpriv_stat.collisions = FECSTAT_RMON_T_COL(base_addr);
fp->fecpriv_stat.rx_length_errors =
FECSTAT_RMON_R_UNDERSIZE(base_addr) +
FECSTAT_RMON_R_OVERSIZE(base_addr) +
FECSTAT_RMON_R_FRAG(base_addr) +
FECSTAT_RMON_R_JAB(base_addr);
fp->fecpriv_stat.rx_crc_errors = FECSTAT_IEEE_R_CRC(base_addr);
fp->fecpriv_stat.rx_frame_errors = FECSTAT_IEEE_R_ALIGN(base_addr);
fp->fecpriv_stat.rx_over_errors = FECSTAT_IEEE_R_MACERR(base_addr);
fp->fecpriv_stat.tx_carrier_errors = FECSTAT_IEEE_T_CSERR(base_addr);
fp->fecpriv_stat.tx_fifo_errors = FECSTAT_IEEE_T_MACERR(base_addr);
fp->fecpriv_stat.tx_window_errors = FECSTAT_IEEE_T_LCOL(base_addr);
/* I hope that one frame doesn't have more than one error */
fp->fecpriv_stat.rx_errors = fp->fecpriv_stat.rx_length_errors +
fp->fecpriv_stat.rx_crc_errors +
fp->fecpriv_stat.rx_frame_errors +
fp->fecpriv_stat.rx_over_errors +
fp->fecpriv_stat.rx_dropped;
fp->fecpriv_stat.tx_errors = fp->fecpriv_stat.tx_carrier_errors +
fp->fecpriv_stat.tx_fifo_errors +
fp->fecpriv_stat.tx_window_errors +
fp->fecpriv_stat.tx_aborted_errors +
fp->fecpriv_stat.tx_heartbeat_errors +
fp->fecpriv_stat.tx_dropped;
return &fp->fecpriv_stat;
}
/************************************************************************
* NAME: fec_set_multicast_list
*
* DESCRIPTION: This function sets the frame filtering parameters
*************************************************************************/
void fec_set_multicast_list(struct net_device *dev)
{
struct dev_mc_list *dmi;
unsigned int crc, data;
int i, j, k;
unsigned long base_addr = (unsigned long) dev->base_addr;
if (dev->flags & IFF_PROMISC || dev->flags & IFF_ALLMULTI) {
/* Allow all incoming frames */
FEC_GALR(base_addr) = 0xFFFFFFFF;
FEC_GAUR(base_addr) = 0xFFFFFFFF;
return;
}
/* Reset the group address register */
FEC_GALR(base_addr) = 0x00000000;
FEC_GAUR(base_addr) = 0x00000000;
/* Process all addresses */
for (i = 0, dmi = dev->mc_list; i < dev->mc_count;
i++, dmi = dmi->next) {
/* Processing must be only for the group addresses */
if (!(dmi->dmi_addr[0] & 1))
continue;
/* Calculate crc value for the current address */
crc = 0xFFFFFFFF;
for (j = 0; j < dmi->dmi_addrlen; j++) {
for (k = 0, data = dmi->dmi_addr[j];
k < 8; k++, data >>= 1) {
if ((crc ^ data) & 1)
crc = (crc >> 1) ^ FEC_CRCPOL;
else
crc >>= 1;
}
}
/* Add this value */
crc >>= 26;
crc &= 0x3F;
if (crc > 31)
FEC_GAUR(base_addr) |= 0x1 << (crc - 32);
else
FEC_GALR(base_addr) |= 0x1 << crc;
}
}
/************************************************************************
* NAME: fec_set_mac_address
*
* DESCRIPTION: This function sets the MAC address
*************************************************************************/
int fec_set_mac_address(struct net_device *dev, void *p)
{
struct fec_priv *fp = netdev_priv(dev);
unsigned long base_addr = (unsigned long) dev->base_addr;
struct sockaddr *addr = p;
if (netif_running(dev))
return -EBUSY;
/* Copy a new address to the device structure */
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
/* Copy a new address to the private structure */
memcpy(fp->fecpriv_mac_addr, addr->sa_data, 6);
/* Set the address to the registers */
FEC_PALR(base_addr) = (fp->fecpriv_mac_addr[0] << 24) |
(fp->fecpriv_mac_addr[1] << 16) |
(fp->fecpriv_mac_addr[2] << 8) |
fp->fecpriv_mac_addr[3];
FEC_PAUR(base_addr) = (fp->fecpriv_mac_addr[4] << 24) |
(fp->fecpriv_mac_addr[5] << 16) |
0x8808;
return 0;
}
/************************************************************************
* NAME: fec_tx
*
* DESCRIPTION: This function starts transmission of the frame using DMA
*
* RETURNS: This function always returns zero.
*************************************************************************/
int fec_tx(struct sk_buff *skb, struct net_device *dev)
{
struct fec_priv *fp = netdev_priv(dev);
void *data, *data_aligned;
int offset;
data = kmalloc(skb->len + 15, GFP_DMA | GFP_ATOMIC);
if (!data) {
fp->fecpriv_stat.tx_dropped++;
dev_kfree_skb(skb);
return 0;
}
offset = (((unsigned long)virt_to_phys(data) + 15) & 0xFFFFFFF0) -
(unsigned long)virt_to_phys(data);
data_aligned = (void *)((unsigned long)data + offset);
memcpy(data_aligned, skb->data, skb->len);
/* flush data cache before initializing
* the descriptor and starting DMA */
spin_lock_irq(&fp->fecpriv_lock);
/* Initialize the descriptor */
fp->fecpriv_txbuf[fp->fecpriv_next_tx] = data;
fp->fecpriv_txdesc[fp->fecpriv_next_tx].dataPointer
= (unsigned int) virt_to_phys(data_aligned);
fp->fecpriv_txdesc[fp->fecpriv_next_tx].length = skb->len;
fp->fecpriv_txdesc[fp->fecpriv_next_tx].statCtrl
|= (MCD_FEC_END_FRAME | MCD_FEC_BUF_READY);
fp->fecpriv_next_tx = (fp->fecpriv_next_tx + 1) & FEC_TX_INDEX_MASK;
if (fp->fecpriv_txbuf[fp->fecpriv_current_tx]
&& fp->fecpriv_current_tx == fp->fecpriv_next_tx)
netif_stop_queue(dev);
spin_unlock_irq(&fp->fecpriv_lock);
/* Tell the DMA to continue the transmission */
MCD_continDma(fp->fecpriv_fec_tx_channel);
dev_kfree_skb(skb);
dev->trans_start = jiffies;
return 0;
}
/************************************************************************
* NAME: fec_tx_timeout
*
* DESCRIPTION: If the interrupt processing of received frames was lost
* and DMA stopped the reception, this function clears
* the transmission descriptors and starts DMA
*
*************************************************************************/
void fec_tx_timeout(struct net_device *dev)
{
int i;
struct fec_priv *fp = netdev_priv(dev);
unsigned long base_addr = (unsigned long) dev->base_addr;
spin_lock_irq(&fp->fecpriv_lock);
MCD_killDma(fp->fecpriv_fec_tx_channel);
for (i = 0; i < FEC_TX_BUF_NUMBER; i++) {
if (fp->fecpriv_txbuf[i]) {
kfree(fp->fecpriv_txbuf[i]);
fp->fecpriv_txbuf[i] = NULL;
}
fp->fecpriv_txdesc[i].statCtrl = MCD_FEC_INTERRUPT;
}
fp->fecpriv_txdesc[i - 1].statCtrl |= MCD_FEC_WRAP;
fp->fecpriv_current_tx = fp->fecpriv_next_tx = 0;
/* Reset FIFOs */
FEC_FECFRST(base_addr) |= FEC_SW_RST;
FEC_FECFRST(base_addr) &= ~FEC_SW_RST;
/* Reset and disable FEC */
/* FEC_ECR(base_addr) = FEC_ECR_RESET; */
/* Enable FEC */
FEC_ECR(base_addr) |= FEC_ECR_ETHEREN;
MCD_startDma(fp->fecpriv_fec_tx_channel, (char *) fp->fecpriv_txdesc, 0,
(unsigned char *) &(FEC_FECTFDR(base_addr)), 0,
FEC_MAX_FRM_SIZE, 0, fp->fecpriv_initiator_tx,
FEC_TX_DMA_PRI, MCD_FECTX_DMA | MCD_INTERRUPT,
MCD_NO_CSUM | MCD_NO_BYTE_SWAP);
spin_unlock_irq(&fp->fecpriv_lock);
netif_wake_queue(dev);
}
/************************************************************************
* NAME: fec_interrupt_tx_handler
*
* DESCRIPTION: This function is called when the data
* transmission from the buffer to the FEC is completed.
*
*************************************************************************/
void fec_interrupt_fec_tx_handler(struct net_device *dev)
{
struct fec_priv *fp = netdev_priv(dev);
/* Release the socket buffer */
if (fp->fecpriv_txbuf[fp->fecpriv_current_tx]) {
kfree(fp->fecpriv_txbuf[fp->fecpriv_current_tx]);
fp->fecpriv_txbuf[fp->fecpriv_current_tx] = NULL;
}
fp->fecpriv_current_tx =
(fp->fecpriv_current_tx + 1) & FEC_TX_INDEX_MASK;
if (MCD_dmaStatus(fp->fecpriv_fec_tx_channel) == MCD_DONE) {
for (; fp->fecpriv_current_tx != fp->fecpriv_next_tx;
fp->fecpriv_current_tx =
(fp->fecpriv_current_tx + 1)
& FEC_TX_INDEX_MASK) {
if (fp->fecpriv_txbuf[fp->fecpriv_current_tx]) {
kfree(fp->fecpriv_txbuf[
fp->fecpriv_current_tx]);
fp->fecpriv_txbuf[fp->fecpriv_current_tx]
= NULL;
}
}
}
if (netif_queue_stopped(dev))
netif_wake_queue(dev);
}
/************************************************************************
* NAME: fec_interrupt_rx_handler
*
* DESCRIPTION: This function is called when the data
* reception from the FEC to the reception buffer is completed.
*
*************************************************************************/
void fec_interrupt_fec_rx_handler(struct net_device *dev)
{
struct fec_priv *fp = netdev_priv(dev);
struct sk_buff *skb;
int i;
fp->fecpriv_rxflag = 1;
/* Some buffers can be missed */
if (!(fp->fecpriv_rxdesc[fp->fecpriv_current_rx].statCtrl
& MCD_FEC_END_FRAME)) {
/* Find a valid index */
for (i = 0; ((i < FEC_RX_BUF_NUMBER) &&
!(fp->fecpriv_rxdesc[
fp->fecpriv_current_rx].statCtrl
& MCD_FEC_END_FRAME)); i++,
(fp->fecpriv_current_rx =
(fp->fecpriv_current_rx + 1)
& FEC_RX_INDEX_MASK))
;
if (i == FEC_RX_BUF_NUMBER) {
/* There are no data to process */
/* Tell the DMA to continue the reception */
MCD_continDma(fp->fecpriv_fec_rx_channel);
fp->fecpriv_rxflag = 0;
return;
}
}
for (; fp->fecpriv_rxdesc[fp->fecpriv_current_rx].statCtrl
& MCD_FEC_END_FRAME;
fp->fecpriv_current_rx = (fp->fecpriv_current_rx + 1)
& FEC_RX_INDEX_MASK) {
if ((fp->fecpriv_rxdesc[fp->fecpriv_current_rx].length
<= FEC_MAXBUF_SIZE) &&
(fp->fecpriv_rxdesc[fp->fecpriv_current_rx].length
> 4)) {
/* --tym-- */
skb = fp->askb_rx[fp->fecpriv_current_rx];
if (!skb)
fp->fecpriv_stat.rx_dropped++;
else {
/*
* flush data cache before initializing
* the descriptor and starting DMA
*/
skb_put(skb,
(fp->fecpriv_rxdesc[
fp->fecpriv_current_rx].length - 4));
skb->protocol = eth_type_trans(skb, dev);
netif_rx(skb);
}
fp->fecpriv_rxdesc[fp->fecpriv_current_rx].statCtrl &=
~MCD_FEC_END_FRAME;
/* allocate new skbuff */
fp->askb_rx[fp->fecpriv_current_rx] =
alloc_skb(FEC_MAXBUF_SIZE + 16,
/*GFP_ATOMIC |*/ GFP_DMA);
if (!fp->askb_rx[fp->fecpriv_current_rx]) {
fp->fecpriv_rxdesc[
fp->fecpriv_current_rx].dataPointer
= 0;
fp->fecpriv_rxdesc[
fp->fecpriv_current_rx].length = 0;
fp->fecpriv_stat.rx_dropped++;
} else {
skb_reserve(
fp->askb_rx[fp->fecpriv_current_rx], 16);
fp->askb_rx[fp->fecpriv_current_rx]->dev = dev;
/*
* flush data cache before initializing
* the descriptor and starting DMA
*/
fp->fecpriv_rxdesc[
fp->fecpriv_current_rx].dataPointer =
(unsigned int) virt_to_phys(
fp->askb_rx[
fp->fecpriv_current_rx]->tail);
fp->fecpriv_rxdesc[
fp->fecpriv_current_rx].length =
FEC_MAXBUF_SIZE;
fp->fecpriv_rxdesc[
fp->fecpriv_current_rx].statCtrl |=
MCD_FEC_BUF_READY;
/*
* flush data cache before initializing
* the descriptor and starting DMA
*/
}
}
}
/* Tell the DMA to continue the reception */
MCD_continDma(fp->fecpriv_fec_rx_channel);
fp->fecpriv_rxflag = 0;
}
/************************************************************************
* NAME: fec_interrupt_handler
*
* DESCRIPTION: This function is called when some special errors occur
*
*************************************************************************/
irqreturn_t fec_interrupt_handler(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *)dev_id;
struct fec_priv *fp = netdev_priv(dev);
unsigned long base_addr = (unsigned long) dev->base_addr;
unsigned long events;
/* Read and clear the events */
events = FEC_EIR(base_addr) & FEC_EIMR(base_addr);
if (events & FEC_EIR_HBERR) {
fp->fecpriv_stat.tx_heartbeat_errors++;
FEC_EIR(base_addr) = FEC_EIR_HBERR;
}
/* receive/transmit FIFO error */
if (((events & FEC_EIR_RFERR) != 0)
|| ((events & FEC_EIR_XFERR) != 0)) {
/* kill DMA receive channel */
MCD_killDma(fp->fecpriv_fec_rx_channel);
/* kill running transmission by DMA */
MCD_killDma(fp->fecpriv_fec_tx_channel);
/* Reset FIFOs */
FEC_FECFRST(base_addr) |= FEC_SW_RST;
FEC_FECFRST(base_addr) &= ~FEC_SW_RST;
/* reset receive FIFO status register */
FEC_FECRFSR(base_addr) = FEC_FECRFSR_FAE |
FEC_FECRFSR_RXW |
FEC_FECRFSR_UF;
/* reset transmit FIFO status register */
FEC_FECTFSR(base_addr) = FEC_FECTFSR_FAE |
FEC_FECTFSR_TXW |
FEC_FECTFSR_UF |
FEC_FECTFSR_OF;
/* reset RFERR and XFERR event */
FEC_EIR(base_addr) = FEC_EIR_RFERR | FEC_EIR_XFERR;
/* stop queue */
netif_stop_queue(dev);
/* execute reinitialization as tasklet */
tasklet_schedule(&fp->fecpriv_tasklet_reinit);
fp->fecpriv_stat.rx_dropped++;
}
/* transmit FIFO underrun */
if ((events & FEC_EIR_XFUN) != 0) {
/* reset XFUN event */
FEC_EIR(base_addr) = FEC_EIR_XFUN;
fp->fecpriv_stat.tx_aborted_errors++;
}
/* late collision */
if ((events & FEC_EIR_LC) != 0) {
/* reset LC event */
FEC_EIR(base_addr) = FEC_EIR_LC;
fp->fecpriv_stat.tx_aborted_errors++;
}
/* collision retry limit */
if ((events & FEC_EIR_RL) != 0) {
/* reset RL event */
FEC_EIR(base_addr) = FEC_EIR_RL;
fp->fecpriv_stat.tx_aborted_errors++;
}
return 0;
}
/************************************************************************
* NAME: fec_interrupt_reinit
*
* DESCRIPTION: This function is called from interrupt handler
* when controller must be reinitialized.
*
*************************************************************************/
void fec_interrupt_fec_reinit(unsigned long data)
{
int i;
struct net_device *dev = (struct net_device *)data;
struct fec_priv *fp = netdev_priv(dev);
unsigned long base_addr = (unsigned long) dev->base_addr;
/* Initialize reception descriptors and start DMA for the reception */
for (i = 0; i < FEC_RX_BUF_NUMBER; i++) {
if (!fp->askb_rx[i]) {
fp->askb_rx[i] = alloc_skb(FEC_MAXBUF_SIZE + 16,
GFP_ATOMIC | GFP_DMA);
if (!fp->askb_rx[i]) {
fp->fecpriv_rxdesc[i].dataPointer = 0;
fp->fecpriv_rxdesc[i].statCtrl = 0;
fp->fecpriv_rxdesc[i].length = 0;
continue;
}
fp->askb_rx[i]->dev = dev;
skb_reserve(fp->askb_rx[i], 16);
}
fp->fecpriv_rxdesc[i].dataPointer =
(unsigned int) virt_to_phys(fp->askb_rx[i]->tail);
fp->fecpriv_rxdesc[i].statCtrl =
MCD_FEC_BUF_READY | MCD_FEC_INTERRUPT;
fp->fecpriv_rxdesc[i].length = FEC_MAXBUF_SIZE;
}
fp->fecpriv_rxdesc[i - 1].statCtrl |= MCD_FEC_WRAP;
fp->fecpriv_current_rx = 0;
/* restart frame transmission */
for (i = 0; i < FEC_TX_BUF_NUMBER; i++) {
if (fp->fecpriv_txbuf[i]) {
kfree(fp->fecpriv_txbuf[i]);
fp->fecpriv_txbuf[i] = NULL;
fp->fecpriv_stat.tx_dropped++;
}
fp->fecpriv_txdesc[i].statCtrl = MCD_FEC_INTERRUPT;
}
fp->fecpriv_txdesc[i - 1].statCtrl |= MCD_FEC_WRAP;
fp->fecpriv_current_tx = fp->fecpriv_next_tx = 0;
/* flush entire data cache before restarting the DMA */
/* restart DMA from beginning */
MCD_startDma(fp->fecpriv_fec_rx_channel,
(char *) fp->fecpriv_rxdesc, 0,
(unsigned char *) &(FEC_FECRFDR(base_addr)), 0,
FEC_MAX_FRM_SIZE, 0, fp->fecpriv_initiator_rx,
FEC_RX_DMA_PRI, MCD_FECRX_DMA | MCD_INTERRUPT,
MCD_NO_CSUM | MCD_NO_BYTE_SWAP);
MCD_startDma(fp->fecpriv_fec_tx_channel, (char *) fp->fecpriv_txdesc, 0,
(unsigned char *) &(FEC_FECTFDR(base_addr)), 0,
FEC_MAX_FRM_SIZE, 0, fp->fecpriv_initiator_tx,
FEC_TX_DMA_PRI, MCD_FECTX_DMA | MCD_INTERRUPT,
MCD_NO_CSUM | MCD_NO_BYTE_SWAP);
/* Enable FEC */
FEC_ECR(base_addr) |= FEC_ECR_ETHEREN;
netif_wake_queue(dev);
}
/************************************************************************
* NAME: fec_interrupt_tx_handler_fec0
*
* DESCRIPTION: This is the DMA interrupt handler using for FEC0
* transmission.
*
*************************************************************************/
void fec_interrupt_fec_tx_handler_fec0(void)
{
fec_interrupt_fec_tx_handler(fec_dev[0]);
}
#ifdef FEC_2
/************************************************************************
* NAME: fec_interrupt_tx_handler_fec1
*
* DESCRIPTION: This is the DMA interrupt handler using for the FEC1
* transmission.
*
*************************************************************************/
void fec_interrupt_fec_tx_handler_fec1(void)
{
fec_interrupt_fec_tx_handler(fec_dev[1]);
}
#endif
/************************************************************************
* NAME: fec_interrupt_rx_handler_fec0
*
* DESCRIPTION: This is the DMA interrupt handler using for the FEC0
* reception.
*
*************************************************************************/
void fec_interrupt_fec_rx_handler_fec0(void)
{
fec_interrupt_fec_rx_handler(fec_dev[0]);
}
#ifdef FEC_2
/************************************************************************
* NAME: fec_interrupt_rx_handler_fec1
*
* DESCRIPTION: This is the DMA interrupt handler using for the FEC1
* reception.
*
*************************************************************************/
void fec_interrupt_fec_rx_handler_fec1(void)
{
fec_interrupt_fec_rx_handler(fec_dev[1]);
}
#endif
#ifndef MODULE
/************************************************************************
* NAME: fec_mac_setup0
*
* DESCRIPTION: This function sets the MAC address of FEC0 from command line
*
*************************************************************************/
int __init fec_mac_setup0(char *s)
{
if (!s || !*s)
return 1;
if (fec_str_to_mac(s, fec_mac_addr_fec0))
printk(KERN_ERR "The MAC address of FEC0 "
"cannot be set from command line");
return 1;
}
#ifdef FEC_2
/************************************************************************
* NAME: fec_mac_setup1
*
* DESCRIPTION: This function sets the MAC address of FEC1 from command line
*
*************************************************************************/
int __init fec_mac_setup1(char *s)
{
if (!s || !*s)
return 1;
if (fec_str_to_mac(s, fec_mac_addr_fec1))
printk(KERN_ERR "The MAC address of FEC1 "
"cannot be set from command line\n");
return 1;
}
#endif
/************************************************************************
* NAME: fec_str_to_mac
*
* DESCRIPTION: This function interprets the character string into MAC addr
*
*************************************************************************/
int fec_str_to_mac(char *str_mac, unsigned char* addr)
{
unsigned long val;
char c;
unsigned long octet[6], *octetptr = octet;
int i;
again:
val = 0;
while ((c = *str_mac) != '\0') {
if ((c >= '0') && (c <= '9')) {
val = (val * 16) + (c - '0');
str_mac++;
continue;
} else if (((c >= 'a') && (c <= 'f'))
|| ((c >= 'A') && (c <= 'F'))) {
val = (val << 4) +
(c + 10 -
(((c >= 'a') && (c <= 'f')) ? 'a' : 'A'));
str_mac++;
continue;
}
break;
}
if (*str_mac == ':') {
*octetptr++ = val, str_mac++;
if (octetptr >= octet + 6)
return 1;
goto again;
}
/* Check for trailing characters */
if (*str_mac && !(*str_mac == ' '))
return 1;
*octetptr++ = val;
if ((octetptr - octet) == 6) {
for (i = 0; i <= 6; i++)
addr[i] = octet[i];
} else
return 1;
return 0;
}
#endif