1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2025-01-01 14:03:19 +02:00
openwrt-xburst/target/linux/ubicom32/files/drivers/mtd/devices/ubi32-m25p80.c

1067 lines
27 KiB
C
Raw Normal View History

/*
* drivers/mtd/devices/ubi32-m25p80.c
* NOR flash driver, Ubicom processor internal SPI flash interface.
*
* This code instantiates the serial flash that contains the
* original bootcode. The serial flash start at address 0x60000000
* in both Ubicom32V3 and Ubicom32V4 ISAs.
*
* This piece of flash is made to appear as a Memory Technology
* Device (MTD) with this driver to allow Read/Write/Erase operations.
*
* (C) Copyright 2009, Ubicom, Inc.
*
* This file is part of the Ubicom32 Linux Kernel Port.
*
* The Ubicom32 Linux Kernel Port is free software: you can redistribute
* it and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 2 of the
* License, or (at your option) any later version.
*
* The Ubicom32 Linux Kernel Port is distributed in the hope that it
* will be useful, but WITHOUT ANY WARRANTY; without even the implied
* warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
* the GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Ubicom32 Linux Kernel Port. If not,
* see <http://www.gnu.org/licenses/>.
*
* Ubicom32 implementation derived from (with many thanks):
* arch/m68knommu
* arch/blackfin
* arch/parisc
*/
#include <linux/types.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/mtd/mtd.h>
#include <linux/mtd/partitions.h>
#include <linux/mtd/physmap.h>
#include <linux/spi/spi.h>
#include <linux/spi/flash.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/mutex.h>
#include <asm/ip5000.h>
#include <asm/devtree.h>
#define UBICOM32_FLASH_BASE 0x60000000
#define UBICOM32_FLASH_MAX_SIZE 0x01000000
#define UBICOM32_FLASH_START 0x00000000
#define UBICOM32_KERNEL_OFFSET 0x00010000 /* The kernel starts after Ubicom
* .protect section. */
static struct mtd_partition ubicom32_flash_partitions[] = {
{
.name = "Bootloader", /* Protected Section
* Partition */
.size = 0x10000,
.offset = UBICOM32_FLASH_START,
// .mask_flags = MTD_WRITEABLE /* Mark Read-only */
},
{
.name = "Kernel", /* Kernel Partition. */
.size = 0, /* this will be set up during
* probe stage. At that time we
* will know end of linux image
* in flash. */
.offset = MTDPART_OFS_APPEND, /* Starts right after Protected
* section. */
// .mask_flags = MTD_WRITEABLE /* Mark Read-only */
},
{
.name = "Rest", /* Rest of the flash. */
.size = 0x200000, /* Use up what remains in the
* flash. */
.offset = MTDPART_OFS_NXTBLK, /* Starts right after Protected
* section. */
}
};
static struct flash_platform_data ubicom32_flash_data = {
.name = "ubicom32_boot_flash",
.parts = ubicom32_flash_partitions,
.nr_parts = ARRAY_SIZE(ubicom32_flash_partitions),
};
static struct resource ubicom32_flash_resource[] = {
{
.start = UBICOM32_FLASH_BASE,
.end = UBICOM32_FLASH_BASE +
UBICOM32_FLASH_MAX_SIZE - 1,
.flags = IORESOURCE_MEM,
},
};
static struct platform_device ubicom32_flash_device = {
.name = "ubicom32flashdriver",
.id = 0, /* Bus number */
.num_resources = ARRAY_SIZE(ubicom32_flash_resource),
.resource = ubicom32_flash_resource,
.dev = {
.platform_data = &ubicom32_flash_data,
},
};
static struct platform_device *ubicom32_flash_devices[] = {
&ubicom32_flash_device,
};
static int __init ubicom32_flash_init(void)
{
printk(KERN_INFO "%s(): registering device resources\n",
__FUNCTION__);
platform_add_devices(ubicom32_flash_devices,
ARRAY_SIZE(ubicom32_flash_devices));
return 0;
}
arch_initcall(ubicom32_flash_init);
/*
* MTD SPI driver for ST M25Pxx (and similar) serial flash chips through
* Ubicom32 SPI controller.
*
* Author: Mike Lavender, mike@steroidmicros.com
*
* Copyright (c) 2005, Intec Automation Inc.
*
* Some parts are based on lart.c by Abraham Van Der Merwe
*
* Cleaned up and generalized based on mtd_dataflash.c
*
* This code is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#define FLASH_PAGESIZE 256
/* Flash opcodes. */
#define OPCODE_WREN 0x06 /* Write enable */
#define OPCODE_RDSR 0x05 /* Read status register */
#define OPCODE_READ 0x03 /* Read data bytes (low frequency) */
#define OPCODE_FAST_READ 0x0b /* Read data bytes (high frequency) */
#define OPCODE_PP 0x02 /* Page program (up to 256 bytes) */
#define OPCODE_BE_4K 0x20 /* Erase 4KiB block */
#define OPCODE_BE_32K 0x52 /* Erase 32KiB block */
#define OPCODE_SE 0xd8 /* Sector erase (usually 64KiB) */
#define OPCODE_RDID 0x9f /* Read JEDEC ID */
/* Status Register bits. */
#define SR_WIP 1 /* Write in progress */
#define SR_WEL 2 /* Write enable latch */
/* meaning of other SR_* bits may differ between vendors */
#define SR_BP0 4 /* Block protect 0 */
#define SR_BP1 8 /* Block protect 1 */
#define SR_BP2 0x10 /* Block protect 2 */
#define SR_SRWD 0x80 /* SR write protect */
/* Define max times to check status register before we give up. */
#define MAX_READY_WAIT_COUNT 100000
#ifdef CONFIG_MTD_PARTITIONS
#define mtd_has_partitions() (1)
#else
#define mtd_has_partitions() (0)
#endif
/*
* Ubicom32 FLASH Command Set
*/
#define FLASH_FC_INST_CMD 0x00 /* for SPI command only transaction */
#define FLASH_FC_INST_WR 0x01 /* for SPI write transaction */
#define FLASH_FC_INST_RD 0x02 /* for SPI read transaction */
#define ALIGN_DOWN(v, a) ((v) & ~((a) - 1))
#define ALIGN_UP(v, a) (((v) + ((a) - 1)) & ~((a) - 1))
#define FLASH_COMMAND_KICK_OFF(io) \
asm volatile( \
" bset "D(IO_INT_CLR)"(%0), #0, #%%bit("D(IO_XFL_INT_DONE)") \n\t" \
" jmpt.t .+4 \n\t" \
" bset "D(IO_INT_SET)"(%0), #0, #%%bit("D(IO_XFL_INT_START)") \n\t" \
: \
: "a" (io) \
: "memory", "cc" \
);
#define FLASH_COMMAND_WAIT_FOR_COMPLETION(io) \
asm volatile( \
" btst "D(IO_INT_STATUS)"(%0), #%%bit("D(IO_XFL_INT_DONE)") \n\t" \
" jmpeq.f .-4 \n\t" \
: \
: "a" (io) \
: "memory", "cc" \
);
#define FLASH_COMMAND_EXEC(io) \
FLASH_COMMAND_KICK_OFF(io) \
FLASH_COMMAND_WAIT_FOR_COMPLETION(io)
#define OSC1_FREQ 12000000
#define TEN_MICRO_SECONDS (OSC1_FREQ * 10 / 1000000)
/*
* We will have to eventually replace this null definition with the real thing.
*/
#define WATCHDOG_RESET()
#define EXTFLASH_WRITE_FIFO_SIZE 32
#define EXTFLASH_WRITE_BLOCK_SIZE EXTFLASH_WRITE_FIFO_SIZE /* limit the size to
* FIFO capacity, so
* the thread can be
* suspended. */
#define JFFS2_FILESYSTEM_SIZE 0x100000
/****************************************************************************/
struct m25p {
struct platform_device *plt_dev;
struct mutex lock;
struct mtd_info mtd;
unsigned partitioned:1;
u8 erase_opcode;
u8 command[4];
};
static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
{
return container_of(mtd, struct m25p, mtd);
}
/****************************************************************************/
/*
* Internal helper functions
*/
/*
* Read the status register, returning its value in the location
* Return the status register value.
* Returns negative if error occurred.
*/
static int read_sr(struct m25p *flash)
{
struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA;
io->ctl1 &= ~IO_XFL_CTL1_MASK;
io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) |
IO_XFL_CTL1_FC_DATA(1);
io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_RDSR);
FLASH_COMMAND_EXEC(io);
return io->status1 & 0xff;
}
/*
* mem_flash_io_read_u32()
*/
static u32 mem_flash_io_read_u32(u32 addr)
{
struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA;
io->ctl1 &= ~IO_XFL_CTL1_MASK;
io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) |
IO_XFL_CTL1_FC_DATA(4) | IO_XFL_CTL1_FC_DUMMY(1) |
IO_XFL_CTL1_FC_ADDR;
io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_FAST_READ) |
IO_XFL_CTL2_FC_ADDR(addr);
FLASH_COMMAND_EXEC(io);
return io->status1;
}
/*
* mem_flash_read_u8()
*/
static u8 mem_flash_read_u8(u32 addr)
{
u32 tmp_addr = ALIGN_DOWN(addr, 4);
u32 tmp_data = mem_flash_io_read_u32(tmp_addr);
u8 *ptr = (u8 *)&tmp_data;
return ptr[addr & 0x3];
}
/*
* mem_flash_read()
* No need to lock as read is implemented with ireads (same as normal flash
* execution).
*/
static void mem_flash_read(u32 addr, void *dst, size_t length)
{
/*
* Range check
*/
/*
* Fix source alignment.
*/
while (addr & 0x03) {
if (length == 0) {
return;
}
*((u8 *)dst) = mem_flash_read_u8(addr++);
dst++;
length--;
}
while (length >= 4) {
u32 tmp_data = mem_flash_io_read_u32(addr);
addr += 4;
length -= 4;
/*
* Send the data to the destination.
*/
memcpy((void *)dst, (void *)&tmp_data, 4);
dst += 4;
}
while (length--) {
*((u8 *)dst) = mem_flash_read_u8(addr++);
dst++;
}
}
/*
* mem_flash_wait_until_complete()
*/
static void mem_flash_wait_until_complete(void)
{
struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA;
do {
/*
* Put a delay here to deal with flash programming problem.
*/
u32 mptval = UBICOM32_IO_TIMER->mptval + TEN_MICRO_SECONDS;
while (UBICOM32_IO_TIMER->mptval < mptval)
;
io->ctl1 &= ~IO_XFL_CTL1_MASK;
io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) |
IO_XFL_CTL1_FC_DATA(1);
io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_RDSR);
FLASH_COMMAND_EXEC(io);
} while (io->status1 & SR_WIP);
}
/*
* mem_flash_write_next()
*/
static size_t mem_flash_write_next(u32 addr, u8 *buf, size_t length)
{
struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA;
u32 data_start = addr;
u32 data_end = addr + length;
size_t count;
u32 i, j;
/*
* Top limit address.
*/
u32 block_start = ALIGN_DOWN(data_start, 4);
u32 block_end = block_start + EXTFLASH_WRITE_BLOCK_SIZE;
union {
u8 byte[EXTFLASH_WRITE_BLOCK_SIZE];
u32 word[EXTFLASH_WRITE_BLOCK_SIZE / 4];
} write_buf;
u32 *flash_addr = (u32 *)block_start;
/*
* The write block must be limited by FLASH internal buffer.
*/
u32 block_end_align = ALIGN_DOWN(block_end, 256);
bool write_needed;
block_end = (block_end_align > block_start)
? block_end_align : block_end;
data_end = (data_end <= block_end) ? data_end : block_end;
block_end = ALIGN_UP(data_end, 4);
count = data_end - data_start;
/*
* Transfer data to a buffer.
*/
for (i = 0; i < (block_end - block_start) / 4; i++) {
/*
* The FLASH read can hold D-cache for a long time.
* Use I/O operation to read FLASH to avoid starving other
* threads, especially HRT. (Do this for application only)
*/
write_buf.word[i] = mem_flash_io_read_u32(
(u32)(&flash_addr[i]));
}
write_needed = false;
for (i = 0, j = (data_start - block_start);
i < (data_end - data_start); i++, j++) {
write_needed = write_needed || (write_buf.byte[j] != buf[i]);
write_buf.byte[j] &= buf[i];
}
/*
* If the data in FLASH is identical to what to be written. Then skip
* it.
*/
if (write_needed) {
/*
* Write to flash.
*/
void *tmp __attribute__((unused));
s32 extra_words;
asm volatile(
" move.4 %0, %2 \n\t"
" bset "D(IO_INT_SET)"(%1), #0, #%%bit("D(IO_PORTX_INT_FIFO_TX_RESET)") \n\t"
" pipe_flush 0 \n\t"
" .rept "D(EXTFLASH_WRITE_FIFO_SIZE / 4)" \n\t"
" move.4 "D(IO_TX_FIFO)"(%1), (%0)4++ \n\t"
" .endr \n\t"
: "=&a" (tmp)
: "a" (io), "r" (&write_buf.word[0])
: "memory", "cc"
);
/* Lock FLASH for write access. */
io->ctl0 |= IO_XFL_CTL0_MCB_LOCK;
/* Command: WREN */
io->ctl1 &= ~IO_XFL_CTL1_MASK;
io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD);
io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_WREN);
FLASH_COMMAND_EXEC(io);
/* Command: BYTE PROGRAM */
io->ctl1 &= ~IO_XFL_CTL1_MASK;
io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_WR) |
IO_XFL_CTL1_FC_DATA(block_end - block_start) |
IO_XFL_CTL1_FC_ADDR;
io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_PP) |
IO_XFL_CTL2_FC_ADDR(block_start);
FLASH_COMMAND_KICK_OFF(io);
extra_words = (s32)(block_end - block_start -
EXTFLASH_WRITE_FIFO_SIZE) / 4;
if (extra_words > 0) {
asm volatile(
" move.4 %0, %3 \n\t"
"1: cmpi "D(IO_FIFO_LEVEL)"(%1), #4 \n\t"
" jmpgt.s.t 1b \n\t"
" move.4 "D(IO_TX_FIFO)"(%1), (%0)4++ \n\t"
" add.4 %2, #-1, %2 \n\t"
" jmpgt.t 1b \n\t"
: "=&a" (tmp)
: "a" (io), "d" (extra_words),
"r" (&write_buf.word[EXTFLASH_WRITE_FIFO_SIZE / 4])
: "memory", "cc"
);
}
FLASH_COMMAND_WAIT_FOR_COMPLETION(io);
mem_flash_wait_until_complete();
/* Unlock FLASH for cache access. */
io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK;
}
/*
* Complete.
*/
return count;
}
/*
* mem_flash_write()
*/
static void mem_flash_write(u32 addr, const void *src, size_t length)
{
/*
* Write data
*/
u8_t *ptr = (u8_t *)src;
while (length) {
size_t count = mem_flash_write_next(addr, ptr, length);
addr += count;
ptr += count;
length -= count;
}
}
/*
* Service routine to read status register until ready, or timeout occurs.
* Returns non-zero if error.
*/
static int wait_till_ready(struct m25p *flash)
{
int count;
int sr;
/* one chip guarantees max 5 msec wait here after page writes,
* but potentially three seconds (!) after page erase.
*/
for (count = 0; count < MAX_READY_WAIT_COUNT; count++) {
u32 mptval;
sr = read_sr(flash);
if (sr < 0)
break;
else if (!(sr & SR_WIP))
return 0;
/*
* Put a 10us delay here to deal with flash programming problem.
*/
mptval = UBICOM32_IO_TIMER->mptval + TEN_MICRO_SECONDS;
while ((s32)(mptval - UBICOM32_IO_TIMER->mptval) > 0) {
WATCHDOG_RESET();
}
/* REVISIT sometimes sleeping would be best */
}
return 1;
}
/*
* mem_flash_erase_page()
*/
static void mem_flash_erase_page(u32 addr)
{
struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA;
/* Lock FLASH for write access. */
io->ctl0 |= IO_XFL_CTL0_MCB_LOCK;
/* Command: WREN */
io->ctl1 &= ~IO_XFL_CTL1_MASK;
io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD);
io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_WREN);
FLASH_COMMAND_EXEC(io);
/* Command: ERASE */
io->ctl1 &= ~IO_XFL_CTL1_MASK;
io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_CMD) |
IO_XFL_CTL1_FC_ADDR;
io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_SE) |
IO_XFL_CTL2_FC_ADDR(addr);
FLASH_COMMAND_EXEC(io);
mem_flash_wait_until_complete();
/* Unlock FLASH for cache access. */
io->ctl0 &= ~IO_XFL_CTL0_MCB_LOCK;
}
/*
* mem_flash_erase()
*/
static u32 mem_flash_erase(u32 addr, u32 length)
{
/*
* Calculate the endaddress to be the first address of the page
* just beyond this erase section of pages.
*/
u32 endaddr = addr + length;
/*
* Erase.
*/
while (addr < endaddr) {
u32 test_addr = addr;
mem_flash_erase_page(addr);
/*
* Test how much was erased as actual flash page at this address
* may be smaller than the expected page size.
*/
while (test_addr < endaddr) {
/*
* The FLASH read can hold D-cache for a long time. Use
* I/O operation to read FLASH to avoid starving other
* threads, especially HRT. (Do this for application
* only)
*/
if (mem_flash_io_read_u32(test_addr) != 0xFFFFFFFF) {
break;
}
test_addr += 4;
}
if (test_addr == addr) {
printk("erase failed at address 0x%x, skipping",
test_addr);
test_addr += 4;
return 1;
}
addr = test_addr;
}
return 0;
}
/****************************************************************************/
/*
* MTD implementation
*/
/*
* Erase an address range on the flash chip. The address range may extend
* one or more erase sectors. Return an error is there is a problem erasing.
*/
static int ubicom32_flash_driver_erase(struct mtd_info *mtd,
struct erase_info *instr)
{
struct m25p *flash = mtd_to_m25p(mtd);
u32 addr, len;
DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %lld\n",
dev_name(&flash->plt_dev->dev), __FUNCTION__, "at",
(u32)instr->addr, instr->len);
/* sanity checks */
if (instr->addr + instr->len > flash->mtd.size)
return -EINVAL;
if ((instr->addr % mtd->erasesize) != 0
|| (instr->len % mtd->erasesize) != 0) {
return -EINVAL;
}
addr = instr->addr + UBICOM32_FLASH_BASE;
len = instr->len;
mutex_lock(&flash->lock);
/* REVISIT in some cases we could speed up erasing large regions
* by using OPCODE_SE instead of OPCODE_BE_4K
*/
/* now erase those sectors */
if (mem_flash_erase(addr, len)) {
instr->state = MTD_ERASE_FAILED;
mutex_unlock(&flash->lock);
return -EIO;
}
mutex_unlock(&flash->lock);
instr->state = MTD_ERASE_DONE;
mtd_erase_callback(instr);
return 0;
}
/*
* Read an address range from the flash chip. The address range
* may be any size provided it is within the physical boundaries.
*/
static int ubicom32_flash_driver_read(struct mtd_info *mtd, loff_t from,
size_t len, size_t *retlen, u_char *buf)
{
struct m25p *flash = mtd_to_m25p(mtd);
u32 base_addr = UBICOM32_FLASH_BASE + from;
DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %d\n",
dev_name(&flash->plt_dev->dev), __FUNCTION__, "from",
(u32)from, len);
/* sanity checks */
if (!len)
return 0;
if (from + len > flash->mtd.size)
return -EINVAL;
/* Byte count starts at zero. */
if (retlen)
*retlen = 0;
mutex_lock(&flash->lock);
/* Wait till previous write/erase is done. */
if (wait_till_ready(flash)) {
/* REVISIT status return?? */
mutex_unlock(&flash->lock);
return 1;
}
mem_flash_read(base_addr, (void *)buf, len);
if (retlen)
*retlen = len;
mutex_unlock(&flash->lock);
return 0;
}
/*
* Write an address range to the flash chip. Data must be written in
* FLASH_PAGESIZE chunks. The address range may be any size provided
* it is within the physical boundaries.
*/
static int ubicom32_flash_driver_write(struct mtd_info *mtd, loff_t to,
size_t len, size_t *retlen,
const u_char *buf)
{
struct m25p *flash = mtd_to_m25p(mtd);
u32 base_addr = UBICOM32_FLASH_BASE + to;
DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %d\n",
dev_name(&flash->plt_dev->dev), __FUNCTION__, "to",
(u32)to, len);
if (retlen)
*retlen = 0;
/* sanity checks */
if (!len)
return 0;
if (to + len > flash->mtd.size)
return -EINVAL;
mutex_lock(&flash->lock);
mem_flash_write(base_addr, (void *) buf, len);
/* Wait until finished previous write command. */
if (wait_till_ready(flash)) {
mutex_unlock(&flash->lock);
return 1;
}
if (retlen)
*retlen = len;
mutex_unlock(&flash->lock);
return 0;
}
/****************************************************************************/
/*
* SPI device driver setup and teardown
*/
struct flash_info {
char *name;
/* JEDEC id zero means "no ID" (most older chips); otherwise it has
* a high byte of zero plus three data bytes: the manufacturer id,
* then a two byte device id.
*/
u32 jedec_id;
/* The size listed here is what works with OPCODE_SE, which isn't
* necessarily called a "sector" by the vendor.
*/
unsigned sector_size;
u16 n_sectors;
u16 flags;
#define SECT_4K 0x01 /* OPCODE_BE_4K works uniformly */
};
/* NOTE: double check command sets and memory organization when you add
* more flash chips. This current list focusses on newer chips, which
* have been converging on command sets which including JEDEC ID.
*/
static struct flash_info __devinitdata m25p_data[] = {
/* Atmel -- some are (confusingly) marketed as "DataFlash" */
{ "at25fs010", 0x1f6601, 32 * 1024, 4, SECT_4K, },
{ "at25fs040", 0x1f6604, 64 * 1024, 8, SECT_4K, },
{ "at25df041a", 0x1f4401, 64 * 1024, 8, SECT_4K, },
{ "at26f004", 0x1f0400, 64 * 1024, 8, SECT_4K, },
{ "at26df081a", 0x1f4501, 64 * 1024, 16, SECT_4K, },
{ "at26df161a", 0x1f4601, 64 * 1024, 32, SECT_4K, },
{ "at26df321", 0x1f4701, 64 * 1024, 64, SECT_4K, },
/* Spansion -- single (large) sector size only, at least
* for the chips listed here (without boot sectors).
*/
{ "s25sl004a", 0x010212, 64 * 1024, 8, },
{ "s25sl008a", 0x010213, 64 * 1024, 16, },
{ "s25sl016a", 0x010214, 64 * 1024, 32, },
{ "s25sl032a", 0x010215, 64 * 1024, 64, },
{ "s25sl064a", 0x010216, 64 * 1024, 128, },
/* SST -- large erase sizes are "overlays", "sectors" are 4K */
{ "sst25vf040b", 0xbf258d, 64 * 1024, 8, SECT_4K, },
{ "sst25vf080b", 0xbf258e, 64 * 1024, 16, SECT_4K, },
{ "sst25vf016b", 0xbf2541, 64 * 1024, 32, SECT_4K, },
{ "sst25vf032b", 0xbf254a, 64 * 1024, 64, SECT_4K, },
/* ST Microelectronics -- newer production may have feature updates */
{ "m25p05", 0x202010, 32 * 1024, 2, },
{ "m25p10", 0x202011, 32 * 1024, 4, },
{ "m25p20", 0x202012, 64 * 1024, 4, },
{ "m25p40", 0x202013, 64 * 1024, 8, },
{ "m25p80", 0, 64 * 1024, 16, },
{ "m25p16", 0x202015, 64 * 1024, 32, },
{ "m25p32", 0x202016, 64 * 1024, 64, },
{ "m25p64", 0x202017, 64 * 1024, 128, },
{ "m25p128", 0x202018, 256 * 1024, 64, },
{ "m45pe80", 0x204014, 64 * 1024, 16, },
{ "m45pe16", 0x204015, 64 * 1024, 32, },
{ "m25pe80", 0x208014, 64 * 1024, 16, },
{ "m25pe16", 0x208015, 64 * 1024, 32, SECT_4K, },
/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
{ "w25x10", 0xef3011, 64 * 1024, 2, SECT_4K, },
{ "w25x20", 0xef3012, 64 * 1024, 4, SECT_4K, },
{ "w25x40", 0xef3013, 64 * 1024, 8, SECT_4K, },
{ "w25x80", 0xef3014, 64 * 1024, 16, SECT_4K, },
{ "w25x16", 0xef3015, 64 * 1024, 32, SECT_4K, },
{ "w25x32", 0xef3016, 64 * 1024, 64, SECT_4K, },
{ "w25x64", 0xef3017, 64 * 1024, 128, SECT_4K, },
/* Macronix -- mx25lxxx */
{ "mx25l32", 0xc22016, 64 * 1024, 64, },
{ "mx25l64", 0xc22017, 64 * 1024, 128, },
{ "mx25l128", 0xc22018, 64 * 1024, 256, },
};
struct flash_info *__devinit jedec_probe(struct platform_device *spi)
{
int tmp;
u32 jedec;
struct flash_info *info;
struct ubicom32_io_port *io = (struct ubicom32_io_port *)RA;
/*
* Setup and run RDID command on the flash.
*/
io->ctl1 &= ~IO_XFL_CTL1_MASK;
io->ctl1 |= IO_XFL_CTL1_FC_INST(FLASH_FC_INST_RD) |
IO_XFL_CTL1_FC_DATA(3);
io->ctl2 = IO_XFL_CTL2_FC_CMD(OPCODE_RDID);
FLASH_COMMAND_EXEC(io);
jedec = io->status1 & 0x00ffffff;
for (tmp = 0, info = m25p_data;
tmp < ARRAY_SIZE(m25p_data);
tmp++, info++) {
if (info->jedec_id == jedec)
return info;
}
dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
return NULL;
}
/*
* board specific setup should have ensured the SPI clock used here
* matches what the READ command supports, at least until this driver
* understands FAST_READ (for clocks over 25 MHz).
*/
static int __devinit ubicom32_flash_probe(struct platform_device *spi)
{
struct flash_platform_data *data;
struct m25p *flash;
struct flash_info *info;
unsigned i;
/* Platform data helps sort out which chip type we have, as
* well as how this board partitions it. If we don't have
* a chip ID, try the JEDEC id commands; they'll work for most
* newer chips, even if we don't recognize the particular chip.
*/
data = spi->dev.platform_data;
if (data && data->type) {
for (i = 0, info = m25p_data;
i < ARRAY_SIZE(m25p_data);
i++, info++) {
if (strcmp(data->type, info->name) == 0)
break;
}
/* unrecognized chip? */
if (i == ARRAY_SIZE(m25p_data)) {
DEBUG(MTD_DEBUG_LEVEL0, "%s: unrecognized id %s\n",
dev_name(&spi->dev), data->type);
info = NULL;
/* recognized; is that chip really what's there? */
} else if (info->jedec_id) {
struct flash_info *chip = jedec_probe(spi);
if (!chip || chip != info) {
dev_warn(&spi->dev, "found %s, expected %s\n",
chip ? chip->name : "UNKNOWN",
info->name);
info = NULL;
}
}
} else
info = jedec_probe(spi);
if (!info)
return -ENODEV;
flash = kzalloc(sizeof *flash, GFP_KERNEL);
if (!flash)
return -ENOMEM;
flash->plt_dev = spi;
mutex_init(&flash->lock);
dev_set_drvdata(&spi->dev, flash);
if (data && data->name)
flash->mtd.name = data->name;
else
flash->mtd.name = dev_name(&spi->dev);
flash->mtd.type = MTD_NORFLASH;
flash->mtd.writesize = 1;
flash->mtd.flags = MTD_CAP_NORFLASH;
flash->mtd.size = info->sector_size * info->n_sectors;
flash->mtd.erase = ubicom32_flash_driver_erase;
flash->mtd.read = ubicom32_flash_driver_read;
flash->mtd.write = ubicom32_flash_driver_write;
/* prefer "small sector" erase if possible */
/*
* The Ubicom erase code does not use the opcode for smaller sectors,
* so disable that functionality and keep erasesize == sector_size
* so that the test in ubicom32_flash_driver_erase works properly.
*
* This was: `if (info->flags & SECT_4K) {' instead of `if (0) {'
*/
if (0) {
flash->erase_opcode = OPCODE_BE_4K;
flash->mtd.erasesize = 4096;
} else {
flash->erase_opcode = OPCODE_SE;
flash->mtd.erasesize = info->sector_size;
}
dev_info(&spi->dev, "%s (%lld Kbytes)\n", info->name,
flash->mtd.size / 1024);
DEBUG(MTD_DEBUG_LEVEL2,
"mtd .name = %s, .size = 0x%.8llx (%lluMiB) "
".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
flash->mtd.name,
flash->mtd.size, flash->mtd.size / (1024*1024),
flash->mtd.erasesize, flash->mtd.erasesize / 1024,
flash->mtd.numeraseregions);
if (flash->mtd.numeraseregions)
for (i = 0; i < flash->mtd.numeraseregions; i++)
DEBUG(MTD_DEBUG_LEVEL2,
"mtd.eraseregions[%d] = { .offset = 0x%.8llx, "
".erasesize = 0x%.8x (%uKiB), "
".numblocks = %d }\n",
i, flash->mtd.eraseregions[i].offset,
flash->mtd.eraseregions[i].erasesize,
flash->mtd.eraseregions[i].erasesize / 1024,
flash->mtd.eraseregions[i].numblocks);
/* partitions should match sector boundaries; and it may be good to
* use readonly partitions for writeprotected sectors (BP2..BP0).
*/
if (mtd_has_partitions()) {
struct mtd_partition *parts = NULL;
int nr_parts = 0;
#ifdef CONFIG_MTD_CMDLINE_PARTS
static const char *part_probes[] = { "cmdlinepart", NULL, };
nr_parts = parse_mtd_partitions(&flash->mtd,
part_probes, &parts, 0);
#endif
if (nr_parts <= 0 && data && data->parts) {
parts = data->parts;
nr_parts = data->nr_parts;
if (nr_parts >= 2) {
/*
* Set last partition size to be 1M.
*/
parts[1].size = flash->mtd.size -
parts[0].size - JFFS2_FILESYSTEM_SIZE;
parts[2].size = JFFS2_FILESYSTEM_SIZE;
}
}
if (nr_parts > 0) {
for (i = 0; i < nr_parts; i++) {
DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = "
"{.name = %s, .offset = 0x%.8llx, "
".size = 0x%.8llx (%lluKiB) }\n",
i, parts[i].name,
parts[i].offset,
parts[i].size,
parts[i].size / 1024);
}
flash->partitioned = 1;
return add_mtd_partitions(&flash->mtd, parts, nr_parts);
}
} else if (data->nr_parts)
dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
data->nr_parts, data->name);
return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0;
}
static int __devexit ubicom32_flash_remove(struct spi_device *spi)
{
struct m25p *flash = dev_get_drvdata(&spi->dev);
int status;
/* Clean up MTD stuff. */
if (mtd_has_partitions() && flash->partitioned)
status = del_mtd_partitions(&flash->mtd);
else
status = del_mtd_device(&flash->mtd);
if (status == 0)
kfree(flash);
return 0;
}
static struct platform_driver ubicom32_flash_driver = {
.driver = {
.name = "ubicom32flashdriver",
.bus = &platform_bus_type,
.owner = THIS_MODULE,
},
.probe = ubicom32_flash_probe,
.remove = NULL,
};
static int ubicom32_flash_driver_init(void)
{
return platform_driver_register(&ubicom32_flash_driver);
}
static void ubicom32_flash_driver_exit(void)
{
platform_driver_unregister(&ubicom32_flash_driver);
}
module_init(ubicom32_flash_driver_init);
module_exit(ubicom32_flash_driver_exit);
MODULE_LICENSE("GPL");
MODULE_AUTHOR("Mike Lavender");
MODULE_DESCRIPTION("Ubicom32 MTD SPI driver for ST M25Pxx flash chips");