1
0
mirror of git://projects.qi-hardware.com/openwrt-xburst.git synced 2024-12-21 04:39:54 +02:00
openwrt-xburst/target/linux/aruba-2.6/files/drivers/net/ar2313/ar2313.c

1650 lines
43 KiB
C
Raw Normal View History

/*
* ar2313.c: Linux driver for the Atheros AR2313 Ethernet device.
*
* Copyright 2004 by Sameer Dekate, <sdekate@arubanetworks.com>.
* Copyright (C) 2006 Imre Kaloz <kaloz@openwrt.org>
*
* Thanks to Atheros for providing hardware and documentation
* enabling me to write this driver.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* Additional credits:
* This code is taken from John Taylor's Sibyte driver and then
* modified for the AR2313.
*/
#include <linux/autoconf.h>
#include <linux/module.h>
#include <linux/version.h>
#include <linux/types.h>
#include <linux/errno.h>
#include <linux/ioport.h>
#include <linux/pci.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/mm.h>
#include <linux/highmem.h>
#include <linux/sockios.h>
#include <linux/pkt_sched.h>
#include <linux/compile.h>
#include <linux/mii.h>
#include <linux/ethtool.h>
#include <linux/ctype.h>
#include <net/sock.h>
#include <net/ip.h>
#include <asm/system.h>
#include <asm/io.h>
#include <asm/irq.h>
#include <asm/byteorder.h>
#include <asm/uaccess.h>
#include <asm/bootinfo.h>
extern char *getenv(char *e);
#undef INDEX_DEBUG
#define DEBUG 0
#define DEBUG_TX 0
#define DEBUG_RX 0
#define DEBUG_INT 0
#define DEBUG_MC 0
#define DEBUG_ERR 1
#ifndef __exit
#define __exit
#endif
#ifndef min
#define min(a,b) (((a)<(b))?(a):(b))
#endif
#ifndef SMP_CACHE_BYTES
#define SMP_CACHE_BYTES L1_CACHE_BYTES
#endif
#ifndef SET_MODULE_OWNER
#define SET_MODULE_OWNER(dev) {do{} while(0);}
#define AR2313_MOD_INC_USE_COUNT MOD_INC_USE_COUNT
#define AR2313_MOD_DEC_USE_COUNT MOD_DEC_USE_COUNT
#else
#define AR2313_MOD_INC_USE_COUNT {do{} while(0);}
#define AR2313_MOD_DEC_USE_COUNT {do{} while(0);}
#endif
#define PHYSADDR(a) ((_ACAST32_ (a)) & 0x1fffffff)
static char ethaddr[18] = "00:00:00:00:00:00";
static char ifname[5] = "bond";
#if LINUX_VERSION_CODE >= KERNEL_VERSION(2,5,52)
module_param_string(ethaddr, ethaddr, 18, 0);
module_param_string(ifname, ifname, 5, 0);
#else
MODULE_PARM(ethaddr, "c18");
MODULE_PARM(ifname, "c5");
#endif
#define AR2313_MBOX_SET_BIT 0x8
#define BOARD_IDX_STATIC 0
#define BOARD_IDX_OVERFLOW -1
/* margot includes */
#include <asm/idt-boards/rc32434/rc32434.h>
#include "ar2313_msg.h"
#include "platform.h"
#include "dma.h"
#include "ar2313.h"
/*
* New interrupt handler strategy:
*
* An old interrupt handler worked using the traditional method of
* replacing an skbuff with a new one when a packet arrives. However
* the rx rings do not need to contain a static number of buffer
* descriptors, thus it makes sense to move the memory allocation out
* of the main interrupt handler and do it in a bottom half handler
* and only allocate new buffers when the number of buffers in the
* ring is below a certain threshold. In order to avoid starving the
* NIC under heavy load it is however necessary to force allocation
* when hitting a minimum threshold. The strategy for alloction is as
* follows:
*
* RX_LOW_BUF_THRES - allocate buffers in the bottom half
* RX_PANIC_LOW_THRES - we are very low on buffers, allocate
* the buffers in the interrupt handler
* RX_RING_THRES - maximum number of buffers in the rx ring
*
* One advantagous side effect of this allocation approach is that the
* entire rx processing can be done without holding any spin lock
* since the rx rings and registers are totally independent of the tx
* ring and its registers. This of course includes the kmalloc's of
* new skb's. Thus start_xmit can run in parallel with rx processing
* and the memory allocation on SMP systems.
*
* Note that running the skb reallocation in a bottom half opens up
* another can of races which needs to be handled properly. In
* particular it can happen that the interrupt handler tries to run
* the reallocation while the bottom half is either running on another
* CPU or was interrupted on the same CPU. To get around this the
* driver uses bitops to prevent the reallocation routines from being
* reentered.
*
* TX handling can also be done without holding any spin lock, wheee
* this is fun! since tx_csm is only written to by the interrupt
* handler.
*/
/*
* Threshold values for RX buffer allocation - the low water marks for
* when to start refilling the rings are set to 75% of the ring
* sizes. It seems to make sense to refill the rings entirely from the
* intrrupt handler once it gets below the panic threshold, that way
* we don't risk that the refilling is moved to another CPU when the
* one running the interrupt handler just got the slab code hot in its
* cache.
*/
#define RX_RING_SIZE AR2313_DESCR_ENTRIES
#define RX_PANIC_THRES (RX_RING_SIZE/4)
#define RX_LOW_THRES ((3*RX_RING_SIZE)/4)
#define CRC_LEN 4
#define RX_OFFSET 2
#define AR2313_BUFSIZE (AR2313_MTU + ETH_HLEN + CRC_LEN + RX_OFFSET)
#ifdef MODULE
MODULE_AUTHOR("Sameer Dekate<sdekate@arubanetworks.com>");
MODULE_DESCRIPTION("AR2313 Ethernet driver");
#endif
#if DEBUG
static char version[] __initdata =
"ar2313.c: v0.02 2006/06/19 sdekate@arubanetworks.com\n";
#endif /* DEBUG */
#define virt_to_phys(x) ((u32)(x) & 0x1fffffff)
// prototypes
static short armiiread(short phy, short reg);
static void armiiwrite(short phy, short reg, short data);
#ifdef TX_TIMEOUT
static void ar2313_tx_timeout(struct net_device *dev);
#endif
static void ar2313_halt(struct net_device *dev);
static void rx_tasklet_func(unsigned long data);
static void ar2313_multicast_list(struct net_device *dev);
static struct net_device *root_dev;
static int probed __initdata = 0;
static unsigned long ar_eth_base;
static unsigned long ar_dma_base;
static unsigned long ar_int_base;
static unsigned long ar_int_mac_mask;
static unsigned long ar_int_phy_mask;
#ifndef ERR
#define ERR(fmt, args...) printk("%s: " fmt, __func__, ##args)
#endif
static int parse_mac_addr(struct net_device *dev, char* macstr){
int i, j;
unsigned char result, value;
for (i=0; i<6; i++) {
result = 0;
if (i != 5 && *(macstr+2) != ':') {
ERR("invalid mac address format: %d %c\n",
i, *(macstr+2));
return -EINVAL;
}
for (j=0; j<2; j++) {
if (isxdigit(*macstr) && (value = isdigit(*macstr) ? *macstr-'0' :
toupper(*macstr)-'A'+10) < 16)
{
result = result*16 + value;
macstr++;
}
else {
ERR("invalid mac address "
"character: %c\n", *macstr);
return -EINVAL;
}
}
macstr++;
dev->dev_addr[i] = result;
}
return 0;
}
int __init ar2313_probe(void)
{
struct net_device *dev;
struct ar2313_private *sp;
int version_disp;
char name[64] ;
if (probed)
return -ENODEV;
probed++;
version_disp = 0;
sprintf(name, "%s%%d", ifname) ;
dev = alloc_etherdev(sizeof(struct ar2313_private));
if (dev == NULL) {
printk(KERN_ERR "ar2313: Unable to allocate net_device structure!\n");
return -ENOMEM;
}
SET_MODULE_OWNER(dev);
sp = dev->priv;
sp->link = 0;
switch (mips_machtype) {
case MACH_ARUBA_AP60:
ar_eth_base = 0xb8100000;
ar_dma_base = ar_eth_base + 0x1000;
ar_int_base = 0x1C003020;
ar_int_mac_mask = RESET_ENET0|RESET_ENET1;
ar_int_phy_mask = RESET_EPHY0|RESET_EPHY1;
sp->mac = 1;
sp->phy = 1;
dev->irq = 4;
break;
case MACH_ARUBA_AP40:
ar_eth_base = 0xb0500000;
ar_dma_base = ar_eth_base + 0x1000;
ar_int_base = 0x11000004;
ar_int_mac_mask = 0x800;
ar_int_phy_mask = 0x400;
sp->mac = 0;
sp->phy = 1;
dev->irq = 4;
break;
case MACH_ARUBA_AP65:
ar_eth_base = 0xb8100000;
ar_dma_base = ar_eth_base + 0x1000;
ar_int_base = 0x1C003020;
ar_int_mac_mask = RESET_ENET0|RESET_ENET1;
ar_int_phy_mask = RESET_EPHY0|RESET_EPHY1;
sp->mac = 0;
#if 0
// commented out, for now
if (mips_machtype == MACH_ARUBA_SAMSUNG) {
sp->phy = 0x1f;
} else {
sp->phy = 1;
}
#else
sp->phy = 1;
#endif
dev->irq = 3;
break;
default:
printk("%s: unsupported mips_machtype=0x%lx\n",
__FUNCTION__, mips_machtype) ;
return -ENODEV;
}
spin_lock_init(&sp->lock);
/* initialize func pointers */
dev->open = &ar2313_open;
dev->stop = &ar2313_close;
dev->hard_start_xmit = &ar2313_start_xmit;
dev->get_stats = &ar2313_get_stats;
dev->set_multicast_list = &ar2313_multicast_list;
#ifdef TX_TIMEOUT
dev->tx_timeout = ar2313_tx_timeout;
dev->watchdog_timeo = AR2313_TX_TIMEOUT;
#endif
dev->do_ioctl = &ar2313_ioctl;
// SAMEER: do we need this?
dev->features |= NETIF_F_SG | NETIF_F_HIGHDMA;
tasklet_init(&sp->rx_tasklet, rx_tasklet_func, (unsigned long) dev);
tasklet_disable(&sp->rx_tasklet);
/* display version info if adapter is found */
if (!version_disp) {
/* set display flag to TRUE so that */
/* we only display this string ONCE */
version_disp = 1;
#if DEBUG
printk(version);
#endif /* DEBUG */
}
request_region(PHYSADDR(ETHERNET_BASE), ETHERNET_SIZE*ETHERNET_MACS,
"AR2313ENET");
sp->eth_regs = ioremap_nocache(PHYSADDR(ETHERNET_BASE + ETHERNET_SIZE*sp->mac),
sizeof(*sp->eth_regs));
if (!sp->eth_regs) {
printk("Can't remap eth registers\n");
return(-ENXIO);
}
sp->dma_regs = ioremap_nocache(PHYSADDR(DMA_BASE + DMA_SIZE*sp->mac),
sizeof(*sp->dma_regs));
dev->base_addr = (unsigned int) sp->dma_regs;
if (!sp->dma_regs) {
printk("Can't remap DMA registers\n");
return(-ENXIO);
}
sp->int_regs = ioremap_nocache(PHYSADDR(INTERRUPT_BASE),
sizeof(*sp->int_regs));
if (!sp->int_regs) {
printk("Can't remap INTERRUPT registers\n");
return(-ENXIO);
}
strncpy(sp->name, "Atheros AR2313", sizeof (sp->name) - 1);
sp->name [sizeof (sp->name) - 1] = '\0';
{
char mac[32];
extern char *getenv(char *e);
unsigned char def_mac[6] = {0, 0x0b, 0x86, 0xba, 0xdb, 0xad};
memset(mac, 0, 32);
memcpy(mac, getenv("ethaddr"), 17);
if (parse_mac_addr(dev, mac)){
printk("%s: MAC address not found, using default\n", __func__);
memcpy(dev->dev_addr, def_mac, 6);
}
}
sp->board_idx = BOARD_IDX_STATIC;
if (ar2313_init(dev)) {
/*
* ar2313_init() calls ar2313_init_cleanup() on error.
*/
kfree(dev);
return -ENODEV;
}
if (register_netdev(dev)){
printk("%s: register_netdev failed\n", __func__);
return -1;
}
printk("%s: %s: %02x:%02x:%02x:%02x:%02x:%02x, irq %d\n",
dev->name, sp->name,
dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5],
dev->irq);
/* start link poll timer */
ar2313_setup_timer(dev);
/*
* Register the device
*/
root_dev = dev;
return 0;
}
#if 0
static void ar2313_dump_regs(struct net_device *dev)
{
unsigned int *ptr, i;
struct ar2313_private *sp = (struct ar2313_private *)dev->priv;
ptr = (unsigned int *)sp->eth_regs;
for(i=0; i< (sizeof(ETHERNET_STRUCT)/ sizeof(unsigned int)); i++, ptr++) {
printk("ENET: %08x = %08x\n", (int)ptr, *ptr);
}
ptr = (unsigned int *)sp->dma_regs;
for(i=0; i< (sizeof(DMA)/ sizeof(unsigned int)); i++, ptr++) {
printk("DMA: %08x = %08x\n", (int)ptr, *ptr);
}
ptr = (unsigned int *)sp->int_regs;
for(i=0; i< (sizeof(INTERRUPT)/ sizeof(unsigned int)); i++, ptr++){
printk("INT: %08x = %08x\n", (int)ptr, *ptr);
}
for (i = 0; i < AR2313_DESCR_ENTRIES; i++) {
ar2313_descr_t *td = &sp->tx_ring[i];
printk("Tx desc %2d: %08x %08x %08x %08x\n", i,
td->status, td->devcs, td->addr, td->descr);
}
}
#endif
#ifdef TX_TIMEOUT
static void
ar2313_tx_timeout(struct net_device *dev)
{
struct ar2313_private *sp = (struct ar2313_private *)dev->priv;
unsigned long flags;
#if DEBUG_TX
printk("Tx timeout\n");
#endif
spin_lock_irqsave(&sp->lock, flags);
ar2313_restart(dev);
spin_unlock_irqrestore(&sp->lock, flags);
}
#endif
#if DEBUG_MC
static void
printMcList(struct net_device *dev)
{
struct dev_mc_list *list = dev->mc_list;
int num=0, i;
while(list){
printk("%d MC ADDR ", num);
for(i=0;i<list->dmi_addrlen;i++) {
printk(":%02x", list->dmi_addr[i]);
}
list = list->next;
printk("\n");
}
}
#endif
/*
* Set or clear the multicast filter for this adaptor.
* THIS IS ABSOLUTE CRAP, disabled
*/
static void
ar2313_multicast_list(struct net_device *dev)
{
/*
* Always listen to broadcasts and
* treat IFF bits independently
*/
struct ar2313_private *sp = (struct ar2313_private *)dev->priv;
unsigned int recognise;
recognise = sp->eth_regs->mac_control;
if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
recognise |= MAC_CONTROL_PR;
} else {
recognise &= ~MAC_CONTROL_PR;
}
if ((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 15)) {
#if DEBUG_MC
printMcList(dev);
printk("%s: all MULTICAST mc_count %d\n", __FUNCTION__, dev->mc_count);
#endif
recognise |= MAC_CONTROL_PM;/* all multicast */
} else if (dev->mc_count > 0) {
#if DEBUG_MC
printMcList(dev);
printk("%s: mc_count %d\n", __FUNCTION__, dev->mc_count);
#endif
recognise |= MAC_CONTROL_PM; /* for the time being */
}
#if DEBUG_MC
printk("%s: setting %08x to %08x\n", __FUNCTION__, (int)sp->eth_regs, recognise);
#endif
sp->eth_regs->mac_control = recognise;
}
static void rx_tasklet_cleanup(struct net_device *dev)
{
struct ar2313_private *sp = dev->priv;
/*
* Tasklet may be scheduled. Need to get it removed from the list
* since we're about to free the struct.
*/
sp->unloading = 1;
tasklet_enable(&sp->rx_tasklet);
tasklet_kill(&sp->rx_tasklet);
}
static void __exit ar2313_module_cleanup(void)
{
rx_tasklet_cleanup(root_dev);
ar2313_init_cleanup(root_dev);
unregister_netdev(root_dev);
kfree(root_dev);
release_region(PHYSADDR(ETHERNET_BASE), ETHERNET_SIZE*ETHERNET_MACS);
}
/*
* Restart the AR2313 ethernet controller.
*/
static int ar2313_restart(struct net_device *dev)
{
/* disable interrupts */
disable_irq(dev->irq);
/* stop mac */
ar2313_halt(dev);
/* initialize */
ar2313_init(dev);
/* enable interrupts */
enable_irq(dev->irq);
return 0;
}
extern unsigned long mips_machtype;
int __init ar2313_module_init(void)
{
int status=-1;
switch (mips_machtype){
case MACH_ARUBA_AP60:
case MACH_ARUBA_AP65:
case MACH_ARUBA_AP40:
root_dev = NULL;
status = ar2313_probe();
break;
}
return status;
}
module_init(ar2313_module_init);
module_exit(ar2313_module_cleanup);
static void ar2313_free_descriptors(struct net_device *dev)
{
struct ar2313_private *sp = dev->priv;
if (sp->rx_ring != NULL) {
kfree((void*)KSEG0ADDR(sp->rx_ring));
sp->rx_ring = NULL;
sp->tx_ring = NULL;
}
}
static int ar2313_allocate_descriptors(struct net_device *dev)
{
struct ar2313_private *sp = dev->priv;
int size;
int j;
ar2313_descr_t *space;
if(sp->rx_ring != NULL){
printk("%s: already done.\n", __FUNCTION__);
return 0;
}
size = (sizeof(ar2313_descr_t) * (AR2313_DESCR_ENTRIES * AR2313_QUEUES));
space = kmalloc(size, GFP_KERNEL);
if (space == NULL)
return 1;
/* invalidate caches */
dma_cache_inv((unsigned int)space, size);
/* now convert pointer to KSEG1 */
space = (ar2313_descr_t *)KSEG1ADDR(space);
memset((void *)space, 0, size);
sp->rx_ring = space;
space += AR2313_DESCR_ENTRIES;
sp->tx_ring = space;
space += AR2313_DESCR_ENTRIES;
/* Initialize the transmit Descriptors */
for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
ar2313_descr_t *td = &sp->tx_ring[j];
td->status = 0;
td->devcs = DMA_TX1_CHAINED;
td->addr = 0;
td->descr = K1_TO_PHYS(&sp->tx_ring[(j+1) & (AR2313_DESCR_ENTRIES-1)]);
}
return 0;
}
/*
* Generic cleanup handling data allocated during init. Used when the
* module is unloaded or if an error occurs during initialization
*/
static void ar2313_init_cleanup(struct net_device *dev)
{
struct ar2313_private *sp = dev->priv;
struct sk_buff *skb;
int j;
ar2313_free_descriptors(dev);
if (sp->eth_regs) iounmap((void*)sp->eth_regs);
if (sp->dma_regs) iounmap((void*)sp->dma_regs);
if (sp->rx_skb) {
for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
skb = sp->rx_skb[j];
if (skb) {
sp->rx_skb[j] = NULL;
dev_kfree_skb(skb);
}
}
kfree(sp->rx_skb);
sp->rx_skb = NULL;
}
if (sp->tx_skb) {
for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
skb = sp->tx_skb[j];
if (skb) {
sp->tx_skb[j] = NULL;
dev_kfree_skb(skb);
}
}
kfree(sp->tx_skb);
sp->tx_skb = NULL;
}
}
static int ar2313_setup_timer(struct net_device *dev)
{
struct ar2313_private *sp = dev->priv;
init_timer(&sp->link_timer);
sp->link_timer.function = ar2313_link_timer_fn;
sp->link_timer.data = (int) dev;
sp->link_timer.expires = jiffies + HZ;
add_timer(&sp->link_timer);
return 0;
}
static void ar2313_link_timer_fn(unsigned long data)
{
struct net_device *dev = (struct net_device *) data;
struct ar2313_private *sp = dev->priv;
// see if the link status changed
// This was needed to make sure we set the PHY to the
// autonegotiated value of half or full duplex.
ar2313_check_link(dev);
// Loop faster when we don't have link.
// This was needed to speed up the AP bootstrap time.
if(sp->link == 0) {
mod_timer(&sp->link_timer, jiffies + HZ/2);
} else {
mod_timer(&sp->link_timer, jiffies + LINK_TIMER);
}
}
static void ar2313_check_link(struct net_device *dev)
{
struct ar2313_private *sp = dev->priv;
u16 phyData;
phyData = armiiread(sp->phy, MII_BMSR);
if (sp->phyData != phyData) {
if (phyData & BMSR_LSTATUS) {
/* link is present, ready link partner ability to deterine duplexity */
int duplex = 0;
u16 reg;
sp->link = 1;
reg = armiiread(sp->phy, MII_BMCR);
if (reg & BMCR_ANENABLE) {
/* auto neg enabled */
reg = armiiread(sp->phy, MII_LPA);
duplex = (reg & (LPA_100FULL|LPA_10FULL))? 1:0;
} else {
/* no auto neg, just read duplex config */
duplex = (reg & BMCR_FULLDPLX)? 1:0;
}
printk(KERN_INFO "%s: Configuring MAC for %s duplex\n", dev->name,
(duplex)? "full":"half");
if (duplex) {
/* full duplex */
sp->eth_regs->mac_control = ((sp->eth_regs->mac_control | MAC_CONTROL_F) &
~MAC_CONTROL_DRO);
} else {
/* half duplex */
sp->eth_regs->mac_control = ((sp->eth_regs->mac_control | MAC_CONTROL_DRO) &
~MAC_CONTROL_F);
}
} else {
/* no link */
sp->link = 0;
}
sp->phyData = phyData;
}
}
static int
ar2313_reset_reg(struct net_device *dev)
{
struct ar2313_private *sp = (struct ar2313_private *)dev->priv;
unsigned int ethsal, ethsah;
unsigned int flags;
*sp->int_regs |= ar_int_mac_mask;
mdelay(10);
*sp->int_regs &= ~ar_int_mac_mask;
mdelay(10);
*sp->int_regs |= ar_int_phy_mask;
mdelay(10);
*sp->int_regs &= ~ar_int_phy_mask;
mdelay(10);
sp->dma_regs->bus_mode = (DMA_BUS_MODE_SWR);
mdelay(10);
sp->dma_regs->bus_mode = ((32 << DMA_BUS_MODE_PBL_SHIFT) | DMA_BUS_MODE_BLE);
/* enable interrupts */
sp->dma_regs->intr_ena = (DMA_STATUS_AIS |
DMA_STATUS_NIS |
DMA_STATUS_RI |
DMA_STATUS_TI |
DMA_STATUS_FBE);
sp->dma_regs->xmt_base = K1_TO_PHYS(sp->tx_ring);
sp->dma_regs->rcv_base = K1_TO_PHYS(sp->rx_ring);
sp->dma_regs->control = (DMA_CONTROL_SR | DMA_CONTROL_ST | DMA_CONTROL_SF);
sp->eth_regs->flow_control = (FLOW_CONTROL_FCE);
sp->eth_regs->vlan_tag = (0x8100);
/* Enable Ethernet Interface */
flags = (MAC_CONTROL_TE | /* transmit enable */
MAC_CONTROL_PM | /* pass mcast */
MAC_CONTROL_F | /* full duplex */
MAC_CONTROL_HBD); /* heart beat disabled */
if (dev->flags & IFF_PROMISC) { /* set promiscuous mode */
flags |= MAC_CONTROL_PR;
}
sp->eth_regs->mac_control = flags;
/* Set all Ethernet station address registers to their initial values */
ethsah = ((((u_int)(dev->dev_addr[5]) << 8) & (u_int)0x0000FF00) |
(((u_int)(dev->dev_addr[4]) << 0) & (u_int)0x000000FF));
ethsal = ((((u_int)(dev->dev_addr[3]) << 24) & (u_int)0xFF000000) |
(((u_int)(dev->dev_addr[2]) << 16) & (u_int)0x00FF0000) |
(((u_int)(dev->dev_addr[1]) << 8) & (u_int)0x0000FF00) |
(((u_int)(dev->dev_addr[0]) << 0) & (u_int)0x000000FF) );
sp->eth_regs->mac_addr[0] = ethsah;
sp->eth_regs->mac_addr[1] = ethsal;
mdelay(10);
return(0);
}
static int ar2313_init(struct net_device *dev)
{
struct ar2313_private *sp = dev->priv;
int ecode=0;
/*
* Allocate descriptors
*/
if (ar2313_allocate_descriptors(dev)) {
printk("%s: %s: ar2313_allocate_descriptors failed\n",
dev->name, __FUNCTION__);
ecode = -EAGAIN;
goto init_error;
}
/*
* Get the memory for the skb rings.
*/
if(sp->rx_skb == NULL) {
sp->rx_skb = kmalloc(sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES, GFP_KERNEL);
if (!(sp->rx_skb)) {
printk("%s: %s: rx_skb kmalloc failed\n",
dev->name, __FUNCTION__);
ecode = -EAGAIN;
goto init_error;
}
}
memset(sp->rx_skb, 0, sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES);
if(sp->tx_skb == NULL) {
sp->tx_skb = kmalloc(sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES, GFP_KERNEL);
if (!(sp->tx_skb)) {
printk("%s: %s: tx_skb kmalloc failed\n",
dev->name, __FUNCTION__);
ecode = -EAGAIN;
goto init_error;
}
}
memset(sp->tx_skb, 0, sizeof(struct sk_buff *) * AR2313_DESCR_ENTRIES);
/*
* Set tx_csm before we start receiving interrupts, otherwise
* the interrupt handler might think it is supposed to process
* tx ints before we are up and running, which may cause a null
* pointer access in the int handler.
*/
sp->rx_skbprd = 0;
sp->cur_rx = 0;
sp->tx_prd = 0;
sp->tx_csm = 0;
/*
* Zero the stats before starting the interface
*/
memset(&sp->stats, 0, sizeof(sp->stats));
/*
* We load the ring here as there seem to be no way to tell the
* firmware to wipe the ring without re-initializing it.
*/
ar2313_load_rx_ring(dev, RX_RING_SIZE);
/*
* Init hardware
*/
ar2313_reset_reg(dev);
/*
* Get the IRQ
*/
ecode = request_irq(dev->irq, &ar2313_interrupt, SA_SHIRQ | SA_INTERRUPT, dev->name, dev);
if (ecode) {
printk(KERN_WARNING "%s: %s: Requested IRQ %d is busy\n",
dev->name, __FUNCTION__, dev->irq);
goto init_error;
}
#if 0
// commented out, for now
if(mips_machtype == MACH_ARUBA_SAMSUNG) {
int i;
/* configure Marvell 88E6060 */
/* reset chip */
armiiwrite(0x1f, 0xa, 0xa130);
do {
udelay(1000);
i = armiiread(sp->phy, 0xa);
} while (i & 0x8000);
/* configure MAC address */
armiiwrite(sp->phy, 0x1, dev->dev_addr[0] << 8 | dev->dev_addr[1]);
armiiwrite(sp->phy, 0x2, dev->dev_addr[2] << 8 | dev->dev_addr[3]);
armiiwrite(sp->phy, 0x3, dev->dev_addr[4] << 8 | dev->dev_addr[5]);
/* set ports to forwarding */
armiiwrite(0x18, 0x4, 0x3);
armiiwrite(0x1c, 0x4, 0x3);
armiiwrite(0x1d, 0x4, 0x3);
}
#endif
tasklet_enable(&sp->rx_tasklet);
return 0;
init_error:
ar2313_init_cleanup(dev);
return ecode;
}
/*
* Load the rx ring.
*
* Loading rings is safe without holding the spin lock since this is
* done only before the device is enabled, thus no interrupts are
* generated and by the interrupt handler/tasklet handler.
*/
static void ar2313_load_rx_ring(struct net_device *dev, int nr_bufs)
{
struct ar2313_private *sp = ((struct net_device *)dev)->priv;
short i, idx;
idx = sp->rx_skbprd;
for (i = 0; i < nr_bufs; i++) {
struct sk_buff *skb;
ar2313_descr_t *rd;
if (sp->rx_skb[idx]) {
#if DEBUG_RX
printk(KERN_INFO "ar2313 rx refill full\n");
#endif /* DEBUG */
break;
}
// partha: create additional room for the second GRE fragment
skb = alloc_skb(AR2313_BUFSIZE+128, GFP_ATOMIC);
if (!skb) {
printk("\n\n\n\n %s: No memory in system\n\n\n\n", __FUNCTION__);
break;
}
// partha: create additional room in the front for tx pkt capture
skb_reserve(skb, 32);
/*
* Make sure IP header starts on a fresh cache line.
*/
skb->dev = dev;
skb_reserve(skb, RX_OFFSET);
sp->rx_skb[idx] = skb;
rd = (ar2313_descr_t *) &sp->rx_ring[idx];
/* initialize dma descriptor */
rd->devcs = ((AR2313_BUFSIZE << DMA_RX1_BSIZE_SHIFT) |
DMA_RX1_CHAINED);
rd->addr = virt_to_phys(skb->data);
rd->descr = virt_to_phys(&sp->rx_ring[(idx+1) & (AR2313_DESCR_ENTRIES-1)]);
rd->status = DMA_RX_OWN;
idx = DSC_NEXT(idx);
}
if (!i) {
#if DEBUG_ERR
printk(KERN_INFO "Out of memory when allocating standard receive buffers\n");
#endif /* DEBUG */
} else {
sp->rx_skbprd = idx;
}
return;
}
#define AR2313_MAX_PKTS_PER_CALL 64
static int ar2313_rx_int(struct net_device *dev)
{
struct ar2313_private *sp = dev->priv;
struct sk_buff *skb, *skb_new;
ar2313_descr_t *rxdesc;
unsigned int status;
u32 idx;
int pkts = 0;
int rval;
idx = sp->cur_rx;
/* process at most the entire ring and then wait for another interrupt */
while(1) {
rxdesc = &sp->rx_ring[idx];
status = rxdesc->status;
if (status & DMA_RX_OWN) {
/* SiByte owns descriptor or descr not yet filled in */
rval = 0;
break;
}
if (++pkts > AR2313_MAX_PKTS_PER_CALL) {
rval = 1;
break;
}
#if DEBUG_RX
printk("index %d\n", idx);
printk("RX status %08x\n", rxdesc->status);
printk("RX devcs %08x\n", rxdesc->devcs );
printk("RX addr %08x\n", rxdesc->addr );
printk("RX descr %08x\n", rxdesc->descr );
#endif
if ((status & (DMA_RX_ERROR|DMA_RX_ERR_LENGTH)) &&
(!(status & DMA_RX_LONG))){
#if DEBUG_RX
printk("%s: rx ERROR %08x\n", __FUNCTION__, status);
#endif
sp->stats.rx_errors++;
sp->stats.rx_dropped++;
/* add statistics counters */
if (status & DMA_RX_ERR_CRC) sp->stats.rx_crc_errors++;
if (status & DMA_RX_ERR_COL) sp->stats.rx_over_errors++;
if (status & DMA_RX_ERR_LENGTH)
sp->stats.rx_length_errors++;
if (status & DMA_RX_ERR_RUNT) sp->stats.rx_over_errors++;
if (status & DMA_RX_ERR_DESC) sp->stats.rx_over_errors++;
} else {
/* alloc new buffer. */
skb_new = dev_alloc_skb(AR2313_BUFSIZE + RX_OFFSET + 128);
if (skb_new != NULL) {
skb = sp->rx_skb[idx];
/* set skb */
skb_put(skb, ((status >> DMA_RX_LEN_SHIFT) & 0x3fff) - CRC_LEN);
#ifdef CONFIG_MERLOT
if ((dev->am_pkt_handler == NULL) ||
(dev->am_pkt_handler(skb, dev) == 0)) {
#endif
sp->stats.rx_bytes += skb->len;
skb->protocol = eth_type_trans(skb, dev);
/* pass the packet to upper layers */
#ifdef CONFIG_MERLOT
if (dev->asap_netif_rx)
dev->asap_netif_rx(skb);
else
#endif
netif_rx(skb);
#ifdef CONFIG_MERLOT
}
#endif
skb_new->dev = dev;
/* 16 bit align */
skb_reserve(skb_new, RX_OFFSET+32);
/* reset descriptor's curr_addr */
rxdesc->addr = virt_to_phys(skb_new->data);
sp->stats.rx_packets++;
sp->rx_skb[idx] = skb_new;
} else {
sp->stats.rx_dropped++;
}
}
rxdesc->devcs = ((AR2313_BUFSIZE << DMA_RX1_BSIZE_SHIFT) |
DMA_RX1_CHAINED);
rxdesc->status = DMA_RX_OWN;
idx = DSC_NEXT(idx);
}
sp->cur_rx = idx;
return rval;
}
static void ar2313_tx_int(struct net_device *dev)
{
struct ar2313_private *sp = dev->priv;
u32 idx;
struct sk_buff *skb;
ar2313_descr_t *txdesc;
unsigned int status=0;
idx = sp->tx_csm;
while (idx != sp->tx_prd) {
txdesc = &sp->tx_ring[idx];
#if DEBUG_TX
printk("%s: TXINT: csm=%d idx=%d prd=%d status=%x devcs=%x addr=%08x descr=%x\n",
dev->name, sp->tx_csm, idx, sp->tx_prd,
txdesc->status, txdesc->devcs, txdesc->addr, txdesc->descr);
#endif /* DEBUG */
if ((status = txdesc->status) & DMA_TX_OWN) {
/* ar2313 dma still owns descr */
break;
}
/* done with this descriptor */
txdesc->status = 0;
if (status & DMA_TX_ERROR){
sp->stats.tx_errors++;
sp->stats.tx_dropped++;
if(status & DMA_TX_ERR_UNDER)
sp->stats.tx_fifo_errors++;
if(status & DMA_TX_ERR_HB)
sp->stats.tx_heartbeat_errors++;
if(status & (DMA_TX_ERR_LOSS |
DMA_TX_ERR_LINK))
sp->stats.tx_carrier_errors++;
if (status & (DMA_TX_ERR_LATE|
DMA_TX_ERR_COL |
DMA_TX_ERR_JABBER |
DMA_TX_ERR_DEFER))
sp->stats.tx_aborted_errors++;
} else {
/* transmit OK */
sp->stats.tx_packets++;
}
skb = sp->tx_skb[idx];
sp->tx_skb[idx] = NULL;
idx = DSC_NEXT(idx);
sp->stats.tx_bytes += skb->len;
dev_kfree_skb_irq(skb);
}
sp->tx_csm = idx;
return;
}
static void
rx_tasklet_func(unsigned long data)
{
struct net_device *dev = (struct net_device *) data;
struct ar2313_private *sp = dev->priv;
if (sp->unloading) {
return;
}
if (ar2313_rx_int(dev)) {
tasklet_hi_schedule(&sp->rx_tasklet);
}
else {
unsigned long flags;
spin_lock_irqsave(&sp->lock, flags);
sp->dma_regs->intr_ena |= DMA_STATUS_RI;
spin_unlock_irqrestore(&sp->lock, flags);
}
}
static void
rx_schedule(struct net_device *dev)
{
struct ar2313_private *sp = dev->priv;
sp->dma_regs->intr_ena &= ~DMA_STATUS_RI;
tasklet_hi_schedule(&sp->rx_tasklet);
}
static irqreturn_t ar2313_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *)dev_id;
struct ar2313_private *sp = dev->priv;
unsigned int status, enabled;
/* clear interrupt */
/*
* Don't clear RI bit if currently disabled.
*/
status = sp->dma_regs->status;
enabled = sp->dma_regs->intr_ena;
sp->dma_regs->status = status & enabled;
if (status & DMA_STATUS_NIS) {
/* normal status */
/*
* Don't schedule rx processing if interrupt
* is already disabled.
*/
if (status & enabled & DMA_STATUS_RI) {
/* receive interrupt */
rx_schedule(dev);
}
if (status & DMA_STATUS_TI) {
/* transmit interrupt */
ar2313_tx_int(dev);
}
}
if (status & DMA_STATUS_AIS) {
#if DEBUG_INT
printk("%s: AIS set %08x & %x\n", __FUNCTION__,
status, (DMA_STATUS_FBE | DMA_STATUS_TPS));
#endif
/* abnormal status */
if (status & (DMA_STATUS_FBE | DMA_STATUS_TPS)) {
ar2313_restart(dev);
}
}
return IRQ_HANDLED;
}
static int ar2313_open(struct net_device *dev)
{
struct ar2313_private *sp;
sp = dev->priv;
dev->mtu = 1500;
netif_start_queue(dev);
sp->eth_regs->mac_control |= MAC_CONTROL_RE;
AR2313_MOD_INC_USE_COUNT;
return 0;
}
static void ar2313_halt(struct net_device *dev)
{
struct ar2313_private *sp = dev->priv;
int j;
tasklet_disable(&sp->rx_tasklet);
/* kill the MAC */
sp->eth_regs->mac_control &= ~(MAC_CONTROL_RE | /* disable Receives */
MAC_CONTROL_TE); /* disable Transmits */
/* stop dma */
sp->dma_regs->control = 0;
sp->dma_regs->bus_mode = DMA_BUS_MODE_SWR;
/* place phy and MAC in reset */
*sp->int_regs |= (ar_int_mac_mask | ar_int_phy_mask);
/* free buffers on tx ring */
for (j = 0; j < AR2313_DESCR_ENTRIES; j++) {
struct sk_buff *skb;
ar2313_descr_t *txdesc;
txdesc = &sp->tx_ring[j];
txdesc->descr = 0;
skb = sp->tx_skb[j];
if (skb) {
dev_kfree_skb(skb);
sp->tx_skb[j] = NULL;
}
}
}
/*
* close should do nothing. Here's why. It's called when
* 'ifconfig bond0 down' is run. If it calls free_irq then
* the irq is gone forever ! When bond0 is made 'up' again,
* the ar2313_open () does not call request_irq (). Worse,
* the call to ar2313_halt() generates a WDOG reset due to
* the write to 'sp->int_regs' and the box reboots.
* Commenting this out is good since it allows the
* system to resume when bond0 is made up again.
*/
static int ar2313_close(struct net_device *dev)
{
#if 0
/*
* Disable interrupts
*/
disable_irq(dev->irq);
/*
* Without (or before) releasing irq and stopping hardware, this
* is an absolute non-sense, by the way. It will be reset instantly
* by the first irq.
*/
netif_stop_queue(dev);
/* stop the MAC and DMA engines */
ar2313_halt(dev);
/* release the interrupt */
free_irq(dev->irq, dev);
#endif
AR2313_MOD_DEC_USE_COUNT;
return 0;
}
static int ar2313_start_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct ar2313_private *sp = dev->priv;
ar2313_descr_t *td;
u32 idx;
idx = sp->tx_prd;
td = &sp->tx_ring[idx];
if (td->status & DMA_TX_OWN) {
#if DEBUG_TX
printk("%s: No space left to Tx\n", __FUNCTION__);
#endif
/* free skbuf and lie to the caller that we sent it out */
sp->stats.tx_dropped++;
dev_kfree_skb(skb);
/* restart transmitter in case locked */
sp->dma_regs->xmt_poll = 0;
return 0;
}
/* Setup the transmit descriptor. */
td->devcs = ((skb->len << DMA_TX1_BSIZE_SHIFT) |
(DMA_TX1_LS|DMA_TX1_IC|DMA_TX1_CHAINED));
td->addr = virt_to_phys(skb->data);
td->status = DMA_TX_OWN;
/* kick transmitter last */
sp->dma_regs->xmt_poll = 0;
#if DEBUG_TX
printk("index %d\n", idx);
printk("TX status %08x\n", td->status);
printk("TX devcs %08x\n", td->devcs );
printk("TX addr %08x\n", td->addr );
printk("TX descr %08x\n", td->descr );
#endif
sp->tx_skb[idx] = skb;
idx = DSC_NEXT(idx);
sp->tx_prd = idx;
//dev->trans_start = jiffies;
return 0;
}
static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
{
struct ar2313_private *np = dev->priv;
u32 tmp;
ecmd->supported =
(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII);
ecmd->port = PORT_TP;
/* only supports internal transceiver */
ecmd->transceiver = XCVR_INTERNAL;
/* not sure what this is for */
ecmd->phy_address = 1;
ecmd->advertising = ADVERTISED_MII;
tmp = armiiread(np->phy, MII_ADVERTISE);
if (tmp & ADVERTISE_10HALF)
ecmd->advertising |= ADVERTISED_10baseT_Half;
if (tmp & ADVERTISE_10FULL)
ecmd->advertising |= ADVERTISED_10baseT_Full;
if (tmp & ADVERTISE_100HALF)
ecmd->advertising |= ADVERTISED_100baseT_Half;
if (tmp & ADVERTISE_100FULL)
ecmd->advertising |= ADVERTISED_100baseT_Full;
tmp = armiiread(np->phy, MII_BMCR);
if (tmp & BMCR_ANENABLE) {
ecmd->advertising |= ADVERTISED_Autoneg;
ecmd->autoneg = AUTONEG_ENABLE;
} else {
ecmd->autoneg = AUTONEG_DISABLE;
}
if (ecmd->autoneg == AUTONEG_ENABLE) {
tmp = armiiread(np->phy, MII_LPA);
if (tmp & (LPA_100FULL|LPA_10FULL)) {
ecmd->duplex = DUPLEX_FULL;
} else {
ecmd->duplex = DUPLEX_HALF;
}
if (tmp & (LPA_100FULL|LPA_100HALF)) {
ecmd->speed = SPEED_100;
} else {
ecmd->speed = SPEED_10;
}
} else {
if (tmp & BMCR_FULLDPLX) {
ecmd->duplex = DUPLEX_FULL;
} else {
ecmd->duplex = DUPLEX_HALF;
}
if (tmp & BMCR_SPEED100) {
ecmd->speed = SPEED_100;
} else {
ecmd->speed = SPEED_10;
}
}
/* ignore maxtxpkt, maxrxpkt for now */
return 0;
}
static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
{
struct ar2313_private *np = dev->priv;
u32 tmp;
if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100)
return -EINVAL;
if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
return -EINVAL;
if (ecmd->port != PORT_TP)
return -EINVAL;
if (ecmd->transceiver != XCVR_INTERNAL)
return -EINVAL;
if (ecmd->autoneg != AUTONEG_DISABLE && ecmd->autoneg != AUTONEG_ENABLE)
return -EINVAL;
/* ignore phy_address, maxtxpkt, maxrxpkt for now */
/* WHEW! now lets bang some bits */
tmp = armiiread(np->phy, MII_BMCR);
if (ecmd->autoneg == AUTONEG_ENABLE) {
/* turn on autonegotiation */
tmp |= BMCR_ANENABLE;
printk("%s: Enabling auto-neg\n", dev->name);
} else {
/* turn off auto negotiation, set speed and duplexity */
tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
if (ecmd->speed == SPEED_100)
tmp |= BMCR_SPEED100;
if (ecmd->duplex == DUPLEX_FULL)
tmp |= BMCR_FULLDPLX;
printk("%s: Hard coding %d/%s\n", dev->name,
(ecmd->speed == SPEED_100)? 100:10,
(ecmd->duplex == DUPLEX_FULL)? "full":"half");
}
armiiwrite(np->phy, MII_BMCR, tmp);
np->phyData = 0;
return 0;
}
static int netdev_ethtool_ioctl(struct net_device *dev, void *useraddr)
{
struct ar2313_private *np = dev->priv;
u32 cmd;
if (get_user(cmd, (u32 *)useraddr))
return -EFAULT;
switch (cmd) {
/* get settings */
case ETHTOOL_GSET: {
struct ethtool_cmd ecmd = { ETHTOOL_GSET };
spin_lock_irq(&np->lock);
netdev_get_ecmd(dev, &ecmd);
spin_unlock_irq(&np->lock);
if (copy_to_user(useraddr, &ecmd, sizeof(ecmd)))
return -EFAULT;
return 0;
}
/* set settings */
case ETHTOOL_SSET: {
struct ethtool_cmd ecmd;
int r;
if (copy_from_user(&ecmd, useraddr, sizeof(ecmd)))
return -EFAULT;
spin_lock_irq(&np->lock);
r = netdev_set_ecmd(dev, &ecmd);
spin_unlock_irq(&np->lock);
return r;
}
/* restart autonegotiation */
case ETHTOOL_NWAY_RST: {
int tmp;
int r = -EINVAL;
/* if autoneg is off, it's an error */
tmp = armiiread(np->phy, MII_BMCR);
if (tmp & BMCR_ANENABLE) {
tmp |= (BMCR_ANRESTART);
armiiwrite(np->phy, MII_BMCR, tmp);
r = 0;
}
return r;
}
/* get link status */
case ETHTOOL_GLINK: {
struct ethtool_value edata = {ETHTOOL_GLINK};
edata.data = (armiiread(np->phy, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
if (copy_to_user(useraddr, &edata, sizeof(edata)))
return -EFAULT;
return 0;
}
}
return -EOPNOTSUPP;
}
static int ar2313_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
{
struct mii_ioctl_data *data = (struct mii_ioctl_data *)&ifr->ifr_data;
switch (cmd) {
case SIOCDEVPRIVATE: {
struct ar2313_cmd scmd;
if (copy_from_user(&scmd, ifr->ifr_data, sizeof(scmd)))
return -EFAULT;
#if DEBUG
printk("%s: ioctl devprivate c=%d a=%x l=%d m=%d d=%x,%x\n",
dev->name, scmd.cmd,
scmd.address, scmd.length,
scmd.mailbox, scmd.data[0], scmd.data[1]);
#endif /* DEBUG */
switch (scmd.cmd) {
case AR2313_READ_DATA:
if(scmd.length==4){
scmd.data[0] = *((u32*)scmd.address);
} else if(scmd.length==2) {
scmd.data[0] = *((u16*)scmd.address);
} else if (scmd.length==1) {
scmd.data[0] = *((u8*)scmd.address);
} else {
return -EOPNOTSUPP;
}
if(copy_to_user(ifr->ifr_data, &scmd, sizeof(scmd)))
return -EFAULT;
break;
case AR2313_WRITE_DATA:
if(scmd.length==4){
*((u32*)scmd.address) = scmd.data[0];
} else if(scmd.length==2) {
*((u16*)scmd.address) = scmd.data[0];
} else if (scmd.length==1) {
*((u8*)scmd.address) = scmd.data[0];
} else {
return -EOPNOTSUPP;
}
break;
case AR2313_GET_VERSION:
// SAMEER: sprintf((char*) &scmd, "%s", ARUBA_VERSION);
if(copy_to_user(ifr->ifr_data, &scmd, sizeof(scmd)))
return -EFAULT;
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
case SIOCETHTOOL:
return netdev_ethtool_ioctl(dev, (void *) ifr->ifr_data);
case SIOCGMIIPHY: /* Get address of MII PHY in use. */
data->phy_id = 1;
/* Fall Through */
case SIOCGMIIREG: /* Read MII PHY register. */
case SIOCDEVPRIVATE+1: /* for binary compat, remove in 2.5 */
data->val_out = armiiread(data->phy_id & 0x1f,
data->reg_num & 0x1f);
return 0;
case SIOCSMIIREG: /* Write MII PHY register. */
case SIOCDEVPRIVATE+2: /* for binary compat, remove in 2.5 */
if (!capable(CAP_NET_ADMIN))
return -EPERM;
armiiwrite(data->phy_id & 0x1f,
data->reg_num & 0x1f, data->val_in);
return 0;
case SIOCSIFHWADDR:
if (copy_from_user(dev->dev_addr, ifr->ifr_data, sizeof(dev->dev_addr)))
return -EFAULT;
return 0;
case SIOCGIFHWADDR:
if (copy_to_user(ifr->ifr_data, dev->dev_addr, sizeof(dev->dev_addr)))
return -EFAULT;
return 0;
default:
break;
}
return -EOPNOTSUPP;
}
static struct net_device_stats *ar2313_get_stats(struct net_device *dev)
{
struct ar2313_private *sp = dev->priv;
return &sp->stats;
}
static short
armiiread(short phy, short reg)
{
volatile ETHERNET_STRUCT * ethernet;
ethernet = (volatile ETHERNET_STRUCT *)ETHERNET_BASE; /* always MAC 0 */
ethernet->mii_addr = ((reg << MII_ADDR_REG_SHIFT) |
(phy << MII_ADDR_PHY_SHIFT));
while (ethernet->mii_addr & MII_ADDR_BUSY);
return (ethernet->mii_data >> MII_DATA_SHIFT);
}
static void
armiiwrite(short phy, short reg, short data)
{
volatile ETHERNET_STRUCT * ethernet;
ethernet = (volatile ETHERNET_STRUCT *)ETHERNET_BASE; /* always MAC 0 */
while (ethernet->mii_addr & MII_ADDR_BUSY);
ethernet->mii_data = data << MII_DATA_SHIFT;
ethernet->mii_addr = ((reg << MII_ADDR_REG_SHIFT) |
(phy << MII_ADDR_PHY_SHIFT) |
MII_ADDR_WRITE);
}